Mercurial > repos > florianbegusch > qiime2_suite
view qiime2/qiime_longitudinal_volatility.xml @ 9:f190567fe3f6 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 14 Aug 2019 15:12:48 -0400 |
parents | 914fa4daf16a |
children | a0a8d77a991c |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_longitudinal_volatility" name="qiime longitudinal volatility" version="2019.7"> <description> - Generate interactive volatility plot</description> <requirements> <requirement type="package" version="2019.7">qiime2</requirement> </requirements> <command><![CDATA[ qiime longitudinal volatility --p-state-column="$pstatecolumn" #if str($itable) != 'None': --i-table=$itable #end if #if '__sq__' in str($pindividualidcolumn): #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__sq__', "'") #set $pindividualidcolumn = $pindividualidcolumn_temp #end if #if str($pindividualidcolumn): --p-individual-id-column="$pindividualidcolumn" #end if #if str($pdefaultgroupcolumn): --p-default-group-column="$pdefaultgroupcolumn" #end if #if str($pdefaultmetric): --p-default-metric="$pdefaultmetric" #end if #if str($pyscale) != 'None': --p-yscale=$pyscale #end if #if $input_files_mmetadatafile: #def list_dict_to_string(list_dict): #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') #for d in list_dict[1:]: #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') #end for #return $file_list #end def --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) #end if --o-visualization=ovisualization ; qiime tools export --input-path ovisualization.qzv --output-path out && mkdir -p '$ovisualization.files_path' && cp -r out/* '$ovisualization.files_path' && mv '$ovisualization.files_path/index.html' '$ovisualization'; ]]></command> <inputs> <param label="--p-state-column: TEXT Metadata column containing state (time) variable information. [required]" name="pstatecolumn" optional="False" type="text"/> <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[RelativeFrequency] Feature table containing metrics. [optional]" name="itable" optional="True" type="data"/> <param label="--p-individual-id-column: TEXT Metadata column containing IDs for individual subjects. [optional]" name="pindividualidcolumn" optional="True" type="text"/> <param label="--p-default-group-column: TEXT The default metadata column on which to separate groups for comparison (all categorical metadata columns will be available in the visualization). [optional]" name="pdefaultgroupcolumn" optional="True" type="text"/> <param label="--p-default-metric: TEXT Numeric metadata or artifact column to test by default (all numeric metadata columns will be available in the visualization). [optional]" name="pdefaultmetric" optional="True" type="text"/> <param label="--p-yscale: " name="pyscale" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="linear">linear</option> <option value="pow">pow</option> <option value="sqrt">sqrt</option> <option value="log">log</option> </param> <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file [required]"> <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> </repeat> </inputs> <outputs> <data format="html" label="${tool.name} on ${on_string}: visualization.qzv" name="ovisualization"/> </outputs> <help><![CDATA[ Generate interactive volatility plot #################################### Generate an interactive control chart depicting the longitudinal volatility of sample metadata and/or feature frequencies across time (as set using the "state_column" parameter). Any numeric metadata column (and metadata- transformable artifacts, e.g., alpha diversity results) can be plotted on the y-axis, and are selectable using the "metric_column" selector. Metric values are averaged to compare across any categorical metadata column using the "group_column" selector. Longitudinal volatility for individual subjects sampled over time is co-plotted as "spaghetti" plots if the "individual_id_column" parameter is used. state_column will typically be a measure of time, but any numeric metadata column can be used. Parameters ---------- metadata : Metadata Sample metadata file containing individual_id_column. state_column : Str Metadata column containing state (time) variable information. individual_id_column : Str, optional Metadata column containing IDs for individual subjects. default_group_column : Str, optional The default metadata column on which to separate groups for comparison (all categorical metadata columns will be available in the visualization). default_metric : Str, optional Numeric metadata or artifact column to test by default (all numeric metadata columns will be available in the visualization). table : FeatureTable[RelativeFrequency], optional Feature table containing metrics. yscale : Str % Choices('linear', 'pow', 'sqrt', 'log'), optional y-axis scaling strategy to apply. Returns ------- visualization : Visualization ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>