| 2 | 1 <?xml version="1.0" ?> | 
|  | 2 <tool id="qiime_sample-classifier_fit-classifier" name="qiime sample-classifier fit-classifier" version="2019.4"> | 
|  | 3 	<description> - Fit a supervised learning classifier.</description> | 
|  | 4 	<requirements> | 
|  | 5 		<requirement type="package" version="2019.4">qiime2</requirement> | 
|  | 6 	</requirements> | 
|  | 7 	<command><![CDATA[ | 
|  | 8 qiime sample-classifier fit-classifier | 
|  | 9 | 
|  | 10 --i-table=$itable | 
|  | 11 --m-metadata-column="$mmetadatacolumn" | 
|  | 12 | 
|  | 13 #if $pstep: | 
|  | 14  --p-step=$pstep | 
|  | 15 #end if | 
|  | 16 | 
|  | 17 #if $pcv: | 
|  | 18  --p-cv=$pcv | 
|  | 19 #end if | 
|  | 20 | 
|  | 21 #if str($prandomstate): | 
|  | 22  --p-random-state="$prandomstate" | 
|  | 23 #end if | 
|  | 24 | 
|  | 25 #set $pnjobs = '${GALAXY_SLOTS:-4}' | 
|  | 26 | 
|  | 27 #if str($pnjobs): | 
|  | 28  --p-n-jobs="$pnjobs" | 
|  | 29 #end if | 
|  | 30 | 
|  | 31 | 
|  | 32 #if $pnestimators: | 
|  | 33  --p-n-estimators=$pnestimators | 
|  | 34 #end if | 
|  | 35 | 
|  | 36 #if str($pestimator) != 'None': | 
|  | 37  --p-estimator=$pestimator | 
|  | 38 #end if | 
|  | 39 | 
|  | 40 #if $poptimizefeatureselection: | 
|  | 41  --p-optimize-feature-selection | 
|  | 42 #end if | 
|  | 43 | 
|  | 44 #if $pparametertuning: | 
|  | 45  --p-parameter-tuning | 
|  | 46 #end if | 
|  | 47 | 
|  | 48 #if str($pmissingsamples) != 'None': | 
|  | 49  --p-missing-samples=$pmissingsamples | 
|  | 50 #end if | 
|  | 51 | 
|  | 52 | 
|  | 53 #if $input_files_mmetadatafile: | 
|  | 54 #def list_dict_to_string(list_dict): | 
|  | 55 	#set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | 
|  | 56 	#for d in list_dict[1:]: | 
|  | 57 		#set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | 
|  | 58 	#end for | 
|  | 59 	#return $file_list | 
|  | 60 #end def | 
|  | 61  --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | 
|  | 62 #end if | 
|  | 63 | 
|  | 64 | 
|  | 65 --o-sample-estimator=osampleestimator | 
|  | 66 --o-feature-importance=ofeatureimportance | 
|  | 67 ; | 
|  | 68 cp osampleestimator.qza $osampleestimator; | 
|  | 69 cp ofeatureimportance.qza $ofeatureimportance | 
|  | 70 	]]></command> | 
|  | 71 	<inputs> | 
|  | 72 		<param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction.                  [required]" name="itable" optional="False" type="data"/> | 
|  | 73 		<param label="--m-metadata-column: COLUMN  MetadataColumn[Categorical] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> | 
|  | 74 		<param label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" value="0.05" min="0" max="1" exclusive_start="True"/> | 
|  | 75 		<param label="--p-cv: INTEGER       Number of k-fold cross-validations to perform. Range(1, None)                                                [default: 5]" name="pcv" optional="True" type="integer" value="5" min="1"/> | 
|  | 76 		<param label="--p-random-state: INTEGER Seed used by random number generator.        [optional]" name="prandomstate" optional="True" type="integer"/> | 
|  | 77 		<param label="--p-n-estimators: INTEGER Range(1, None)     Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting.        [default: 100]" name="pnestimators" optional="True" type="integer" value="100" min="1"/> | 
|  | 78 		<param label="--p-estimator: " name="pestimator" optional="True" type="select"> | 
|  | 79 			<option selected="True" value="None">Selection is Optional</option> | 
|  | 80 			<option value="RandomForestClassifier">RandomForestClassifier</option> | 
|  | 81 			<option value="ExtraTreesClassifier">ExtraTreesClassifier</option> | 
|  | 82 			<option value="GradientBoostingClassifier">GradientBoostingClassifier</option> | 
|  | 83 			<option value="AdaBoostClassifier">AdaBoostClassifier</option> | 
|  | 84 			<option value="KNeighborsClassifier">KNeighborsClassifier</option> | 
|  | 85 			<option value="LinearSVC">LinearSVC</option> | 
|  | 86 			<option value="SVC">SVC</option> | 
|  | 87 		</param> | 
|  | 88 		<param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination.         [default: False]" name="poptimizefeatureselection" selected="False" type="boolean"/> | 
|  | 89 		<param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search.                                [default: False]" name="pparametertuning" selected="False" type="boolean"/> | 
|  | 90 		<param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | 
|  | 91 			<option selected="True" value="None">Selection is Optional</option> | 
|  | 92 			<option value="error">error</option> | 
|  | 93 			<option value="ignore">ignore</option> | 
|  | 94 		</param> | 
|  | 95 | 
|  | 96 		<repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | 
|  | 97 			<param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> | 
|  | 98 		</repeat> | 
|  | 99 | 
|  | 100 	</inputs> | 
|  | 101 	<outputs> | 
|  | 102 		<data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator"/> | 
|  | 103 		<data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/> | 
|  | 104 	</outputs> | 
|  | 105 	<help><![CDATA[ | 
|  | 106 Fit a supervised learning classifier. | 
|  | 107 ##################################### | 
|  | 108 | 
|  | 109 Fit a supervised learning classifier. Outputs the fit estimator (for | 
|  | 110 prediction of test samples and/or unknown samples) and the relative | 
|  | 111 importance of each feature for model accuracy. Optionally use k-fold cross- | 
|  | 112 validation for automatic recursive feature elimination and hyperparameter | 
|  | 113 tuning. | 
|  | 114 | 
|  | 115 Parameters | 
|  | 116 ---------- | 
|  | 117 table : FeatureTable[Frequency] | 
|  | 118     Feature table containing all features that should be used for target | 
|  | 119     prediction. | 
|  | 120 metadata : MetadataColumn[Categorical] | 
|  | 121     Numeric metadata column to use as prediction target. | 
|  | 122 step : Float % Range(0.0, 1.0, inclusive_start=False), optional | 
|  | 123     If optimize_feature_selection is True, step is the percentage of | 
|  | 124     features to remove at each iteration. | 
|  | 125 cv : Int % Range(1, None), optional | 
|  | 126     Number of k-fold cross-validations to perform. | 
|  | 127 random_state : Int, optional | 
|  | 128     Seed used by random number generator. | 
|  | 129 n_estimators : Int % Range(1, None), optional | 
|  | 130     Number of trees to grow for estimation. More trees will improve | 
|  | 131     predictive accuracy up to a threshold level, but will also increase | 
|  | 132     time and memory requirements. This parameter only affects ensemble | 
|  | 133     estimators, such as Random Forest, AdaBoost, ExtraTrees, and | 
|  | 134     GradientBoosting. | 
|  | 135 estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional | 
|  | 136     Estimator method to use for sample prediction. | 
|  | 137 optimize_feature_selection : Bool, optional | 
|  | 138     Automatically optimize input feature selection using recursive feature | 
|  | 139     elimination. | 
|  | 140 parameter_tuning : Bool, optional | 
|  | 141     Automatically tune hyperparameters using random grid search. | 
|  | 142 missing_samples : Str % Choices('error', 'ignore'), optional | 
|  | 143     How to handle missing samples in metadata. "error" will fail if missing | 
|  | 144     samples are detected. "ignore" will cause the feature table and | 
|  | 145     metadata to be filtered, so that only samples found in both files are | 
|  | 146     retained. | 
|  | 147 | 
|  | 148 Returns | 
|  | 149 ------- | 
|  | 150 sample_estimator : SampleEstimator[Classifier] | 
|  | 151     Trained sample classifier. | 
|  | 152 feature_importance : FeatureData[Importance] | 
|  | 153     Importance of each input feature to model accuracy. | 
|  | 154 	]]></help> | 
|  | 155 <macros> | 
|  | 156     <import>qiime_citation.xml</import> | 
|  | 157 </macros> | 
|  | 158 <expand macro="qiime_citation"/> | 
|  | 159 </tool> |