changeset 1:c8e1543546f8 draft

planemo upload for repository https://github.com/ncbi/egapx commit 8173d01b08d9a91c9ec5f6cb50af346edc8020c4-dirty
author fubar
date Sat, 03 Aug 2024 12:10:13 +0000
parents d9c5c5b87fec
children a3b158471bd3
files EGAPXREADME.md README.md assets/default_task_params.yaml egapx_runner.tgz egapx_runner.xml test-data/yamlconfig_sample ui/assets/config/executor/docker_minimal.config
diffstat 7 files changed, 532 insertions(+), 299 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/EGAPXREADME.md	Sat Aug 03 12:10:13 2024 +0000
@@ -0,0 +1,377 @@
+# Eukaryotic Genome Annotation Pipeline - External (EGAPx) 
+
+EGAPx is the publicly accessible version of the updated NCBI [Eukaryotic Genome Annotation Pipeline](https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/). 
+
+EGAPx takes an assembly fasta file, a taxid of the organism, and RNA-seq data. Based on the taxid, EGAPx will pick protein sets and HMM models. The pipeline runs `miniprot` to align protein sequences, and `STAR` to align RNA-seq to the assembly. Protein alignments and RNA-seq read alignments are then passed to `Gnomon` for gene prediction. In the first step of `Gnomon`, the short alignments are chained together into putative gene models. In the second step, these predictions are further supplemented by _ab-initio_ predictions based on HMM models. The final annotation for the input assembly is produced as a `gff` file. 
+
+We currently have protein datasets posted that are suitable for most vertebrates and arthropods:
+  - Chordata - Mammalia, Sauropsida, Actinopterygii (ray-finned fishes)
+  - Insecta - Hymenoptera, Diptera, Lepidoptera, Coleoptera, Hemiptera 
+  - Arthropoda - Arachnida, other Arthropoda
+
+We will be adding datasets for plants and other invertebrates in the next couple of months. Fungi, protists and nematodes are currently out-of-scope for EGAPx pending additional refinements.
+
+We currently have protein datasets posted for most vertebrates (mammals, sauropsids, ray-finned fishes) and arthropods. We will be adding datasets for more arthropods, vertebrates and plants in the next couple of months. Fungi, protists and nematodes are currently out-of-scope for EGAPx pending additional refinements.
+
+**Warning:**
+The current version is an alpha release with limited features and organism scope to collect initial feedback on execution. Outputs are not yet complete and not intended for production use. Please open a GitHub [Issue](https://github.com/ncbi/egapx/issues)  if you encounter any problems with EGAPx. You can also write to cgr@nlm.nih.gov to give us your feedback or if you have any questions.  
+
+
+**Security Notice:**
+EGAPx has dependencies in and outside of its execution path that include several thousand files from the [NCBI C++ toolkit](https://www.ncbi.nlm.nih.gov/toolkit), and more than a million total lines of code. Static Application Security Testing has shown a small number of verified buffer overrun security vulnerabilities. Users should consult with their organizational security team on risk and if there is concern, consider mitigating options like running via VM or cloud instance. 
+
+**License:**
+See the EGAPx license [here](https://github.com/ncbi/egapx/blob/main/LICENSE).
+
+
+
+## Prerequisites
+
+- Docker or Singularity  
+- AWS batch, UGE cluster, or a r6a.4xlarge machine (32 CPUs, 256GB RAM) 
+- Nextflow v.23.10.1
+- Python v.3.9+ 
+
+Notes:
+- General configuration for AWS Batch is described in the Nextflow documentation at https://www.nextflow.io/docs/latest/aws.html
+- See Nextflow installation at https://www.nextflow.io/docs/latest/getstarted.html
+
+## The workflow files
+
+- Clone the EGAPx repo:
+  ```
+  git clone https://github.com/ncbi/egapx.git
+  cd egapx
+  ```
+
+## Input data format
+
+Input to EGAPx is in the form of a YAML file. 
+
+- The following are the _required_ key-value pairs for the input file:
+
+  ```
+  genome: path to assembled genome in FASTA format
+  taxid: NCBI Taxonomy identifier of the target organism 
+  reads: RNA-seq data
+  ```
+  You can obtain taxid from the [NCBI Taxonomy page](https://www.ncbi.nlm.nih.gov/taxonomy).
+
+
+  - RNA-seq data can be supplied in any one of the following ways:
+
+    ```
+    reads: [ array of paths to reads FASTA or FASTQ files]
+    reads: [ array of SRA run IDs ]
+    reads: [SRA Study ID]
+    reads: SRA query for reads
+    ```
+  - If you are using your local reads, then the FASTA/FASTQ files should be provided in the following format:
+    ```
+    reads:
+     - path_to_Sample1_R1.gz
+     - path_to_Sample1_R2.gz
+     - path_to_Sample2_R1.gz
+     - path_to_Sample2_R2.gz
+    ```
+
+  - If you provide an SRA Study ID, all the SRA run ID's belonging to that Study ID will be included in the EGAPx run.    
+
+- The following are the _optional_ key-value pairs for the input file:  
+
+  - A protein set. A taxid-based protein set will be chosen if no protein set is provided.
+    ```
+    proteins: path to proteins data in FASTA format. 
+    ```
+
+  - HMM file used in Gnomon training. A taxid-based HMM will be chosen if no HMM file is provided.
+    ```
+    hmm: path to HMM file
+    ```
+
+
+
+## Input example
+ 
+- A test example YAML file `./examples/input_D_farinae_small.yaml` is included in the `egapx` folder. Here, the RNA-seq data is provided as paths to the reads FASTA files. These FASTA files are a sampling of the reads from the complete SRA read files to expedite testing. 
+
+
+  ```
+  genome: https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/020/809/275/GCF_020809275.1_ASM2080927v1/GCF_020809275.1_ASM2080927v1_genomic.fna.gz
+  taxid: 6954
+  reads:
+    - https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/EGAP/data/Dermatophagoides_farinae_small/SRR8506572.1
+    - https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/EGAP/data/Dermatophagoides_farinae_small/SRR8506572.2
+    - https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/EGAP/data/Dermatophagoides_farinae_small/SRR9005248.1
+    - https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/EGAP/data/Dermatophagoides_farinae_small/SRR9005248.2
+  ```
+
+- To specify an array of NCBI SRA datasets:
+   ```
+   reads:
+     - SRR8506572
+     - SRR9005248
+   ```
+
+- To specify an SRA entrez query:
+    ```
+    reads: 'txid6954[Organism] AND biomol_transcript[properties] NOT SRS024887[Accession] AND (SRR8506572[Accession] OR SRR9005248[Accession] )'
+    ```
+
+  **Note:** Both the above examples will have more RNA-seq data than the `input_D_farinae_small.yaml` example. To make sure the entrez query does not produce a large number of SRA runs, please run it first at the [NCBI SRA page](https://www.ncbi.nlm.nih.gov/sra). If there are too many SRA runs, then select a few of them and list it in the input yaml.   
+
+- First, test EGAPx on the example provided (`input_D_farinae_small.yaml`, a dust mite) to make sure everything works. This example usually runs under 30 minutes depending upon resource availability. There are other examples you can try: `input_C_longicornis.yaml`, a green fly, and `input_Gavia_tellata.yaml`, a bird. These will take close to two hours.  You can prepare your input YAML file following these examples.  
+
+## Run EGAPx
+
+- The `egapx` folder contains the following directories:
+    - examples
+    - nf
+    - test
+    - third_party_licenses
+    - ui 
+     
+- The runner script is within the ui directory (`ui/egapx.py`). 
+
+- Create a virtual environment where you can run EGAPx. There is a `requirements.txt` file. PyYAML will be installed in this environment.
+  ```
+  python -m venv /path/to/new/virtual/environment
+  source /path/to/new/virtual/environment/bin/activate
+  pip install -r ui/requirements.txt
+  ```  
+
+
+ 
+
+
+- Run EGAPx for the first time to copy the config files so you can edit them:
+  ```
+  python3 ui/egapx.py ./examples/input_D_farinae_small.yaml -o example_out 
+  ```
+  - When you run `egapx.py` for the first time it copies the template config files to the directory `./egapx_config`.
+  - You will need to edit these templates to reflect the actual parameters of your setup.
+    - For AWS Batch execution, set up AWS Batch Service following advice in the AWS link above. Then edit the value for `process.queue` in `./egapx_config/aws.config` file.
+    - For execution on the local machine you don't need to adjust anything.
+
+
+- Run EGAPx with the following command for real this time.
+  - For AWS Batch execution, replace temp_datapath with an existing S3 bucket.
+  - For local execution, use a local path for `-w` 
+  ```
+  python3 ui/egapx.py ./examples/input_D_farinae_small.yaml -e aws -w s3://temp_datapath/D_farinae -o example_out
+  ```
+    
+    - use `-e aws` for AWS batch using Docker image
+    - use `-e docker` for using Docker image
+    - use `-e singularity` for using the Singularity image
+    - use `-e biowulf_cluster` for Biowulf cluster using Singularity image
+    - use '-e slurm` for using SLURM in your HPC.
+        - Note that for this option, you have to edit `./egapx_config/slurm.config` according to your cluster specifications.
+    - type `python3 ui/egapx.py  -h ` for the help menu 
+
+      ```
+      $ ui/egapx.py  -h
+      
+      
+      !!WARNING!!
+      This is an alpha release with limited features and organism scope to collect initial feedback on execution. Outputs are not yet complete and not intended for production use.
+
+      usage: egapx.py [-h] [-o OUTPUT] [-e EXECUTOR] [-c CONFIG_DIR] [-w WORKDIR] [-r REPORT] [-n] [-st]
+                [-so] [-dl] [-lc LOCAL_CACHE] [-q] [-v] [-fn FUNC_NAME]
+                [filename]
+
+      Main script for EGAPx
+
+      optional arguments:
+        -h, --help            show this help message and exit
+        -e EXECUTOR, --executor EXECUTOR
+                        Nextflow executor, one of docker, singularity, aws, or local (for NCBI
+                        internal use only). Uses corresponding Nextflow config file
+        -c CONFIG_DIR, --config-dir CONFIG_DIR
+                        Directory for executor config files, default is ./egapx_config. Can be also
+                        set as env EGAPX_CONFIG_DIR
+        -w WORKDIR, --workdir WORKDIR
+                        Working directory for cloud executor
+        -r REPORT, --report REPORT
+                        Report file prefix for report (.report.html) and timeline (.timeline.html)
+                        files, default is in output directory
+        -n, --dry-run
+        -st, --stub-run
+        -so, --summary-only   Print result statistics only if available, do not compute result
+        -lc LOCAL_CACHE, --local-cache LOCAL_CACHE
+                        Where to store the downloaded files
+        -q, --quiet
+        -v, --verbose
+        -fn FUNC_NAME, --func_name FUNC_NAME
+                        func_name
+
+      run:
+        filename              YAML file with input: section with at least genome: and reads: parameters
+        -o OUTPUT, --output OUTPUT
+                        Output path
+
+      download:
+        -dl, --download-only  Download external files to local storage, so that future runs can be
+                        isolated
+
+      
+      ```
+
+
+## Test run
+
+```
+$ python3 ui/egapx.py examples/input_D_farinae_small.yaml -e aws -o example_out -w s3://temp_datapath/D_farinae
+
+!!WARNING!!
+This is an alpha release with limited features and organism scope to collect initial feedback on execution. Outputs are not yet complete and not intended for production use.
+
+N E X T F L O W  ~  version 23.10.1
+Launching `/../home/user/egapx/ui/../nf/ui.nf` [golden_mercator] DSL2 - revision: c134f40af5
+in egapx block
+executor >  awsbatch (67)
+[f5/3007b8] process > egapx:setup_genome:get_genome_info            [100%] 1 of 1 ✔
+[32/a1bfa5] process > egapx:setup_proteins:convert_proteins         [100%] 1 of 1 ✔
+[96/621c4b] process > egapx:miniprot:run_miniprot                   [100%] 1 of 1 ✔
+[6d/766c2f] process > egapx:paf2asn:run_paf2asn                     [100%] 1 of 1 ✔
+[56/f1dd6b] process > egapx:best_aligned_prot:run_best_aligned_prot [100%] 1 of 1 ✔
+[c1/ccc4a3] process > egapx:align_filter_sa:run_align_filter_sa     [100%] 1 of 1 ✔
+[e0/5548d0] process > egapx:run_align_sort                          [100%] 1 of 1 ✔
+[a8/456a0e] process > egapx:star_index:build_index                  [100%] 1 of 1 ✔
+[d5/6469a6] process > egapx:star_simplified:exec (1)                [100%] 2 of 2 ✔
+[64/99ab35] process > egapx:bam_strandedness:exec (2)               [100%] 2 of 2 ✔
+[98/a12969] process > egapx:bam_strandedness:merge                  [100%] 1 of 1 ✔
+[78/0d7007] process > egapx:bam_bin_and_sort:calc_assembly_sizes    [100%] 1 of 1 ✔
+[74/bb014e] process > egapx:bam_bin_and_sort:bam_bin (2)            [100%] 2 of 2 ✔
+[39/3cdd00] process > egapx:bam_bin_and_sort:merge_prepare          [100%] 1 of 1 ✔
+[01/f64e38] process > egapx:bam_bin_and_sort:merge (1)              [100%] 1 of 1 ✔
+[aa/47a002] process > egapx:bam2asn:convert (1)                     [100%] 1 of 1 ✔
+[45/6661b3] process > egapx:rnaseq_collapse:generate_jobs           [100%] 1 of 1 ✔
+[64/68bc37] process > egapx:rnaseq_collapse:run_rnaseq_collapse (3) [100%] 9 of 9 ✔
+[18/bff1ac] process > egapx:rnaseq_collapse:run_gpx_make_outputs    [100%] 1 of 1 ✔
+[a4/76a4a5] process > egapx:get_hmm_params:run_get_hmm              [100%] 1 of 1 ✔
+[3c/b71c42] process > egapx:chainer:run_align_sort (1)              [100%] 1 of 1 ✔
+[e1/340b6d] process > egapx:chainer:generate_jobs                   [100%] 1 of 1 ✔
+[c0/477d02] process > egapx:chainer:run_chainer (16)                [100%] 16 of 16 ✔
+[9f/27c1c8] process > egapx:chainer:run_gpx_make_outputs            [100%] 1 of 1 ✔
+[5c/8f65d0] process > egapx:gnomon_wnode:gpx_qsubmit                [100%] 1 of 1 ✔
+[34/6ab0c9] process > egapx:gnomon_wnode:annot (1)                  [100%] 10 of 10 ✔
+[a9/e38221] process > egapx:gnomon_wnode:gpx_qdump                  [100%] 1 of 1 ✔
+[bc/8ebca4] process > egapx:annot_builder:annot_builder_main        [100%] 1 of 1 ✔
+[5f/6b72c0] process > egapx:annot_builder:annot_builder_input       [100%] 1 of 1 ✔
+[eb/1ccdd0] process > egapx:annot_builder:annot_builder_run         [100%] 1 of 1 ✔
+[4d/6c33db] process > egapx:annotwriter:run_annotwriter             [100%] 1 of 1 ✔
+[b6/d73d18] process > export                                        [100%] 1 of 1 ✔
+Waiting for file transfers to complete (1 files)
+Completed at: 27-Mar-2024 11:43:15
+Duration    : 27m 36s
+CPU hours   : 4.2
+Succeeded   : 67
+```
+## Output
+
+Look at the output in the out diectory (`example_out`) that was supplied in the command line. The annotation file is called `accept.gff`. 
+```
+accept.gff
+annot_builder_output
+nextflow.log
+run.report.html
+run.timeline.html
+run.trace.txt
+run_params.yaml
+```
+The `nextflow.log` is the log file that captures all the process information and their work directories. `run_params.yaml` has all the parameters that were used in the EGAPx run. More information about the process time and resources can be found in the other run* files.  
+
+
+
+## Intermediate files
+
+In the above log, each line denotes the process that completed in the workflow. The first column (_e.g._ `[96/621c4b]`) is the subdirectory where the intermediate output files and logs are found for the process in the same line, _i.e._, `egapx:miniprot:run_miniprot`. To see the intermediate files for that process, you can go to the work directory path that you had supplied and traverse to the subdirectory `96/621c4b`: 
+
+```
+$ aws s3 ls s3://temp_datapath/D_farinae/96/      
+                           PRE 06834b76c8d7ceb8c97d2ccf75cda4/
+                           PRE 621c4ba4e6e87a4d869c696fe50034/
+$ aws s3 ls s3://temp_datapath/D_farinae/96/621c4ba4e6e87a4d869c696fe50034/
+                           PRE output/
+2024-03-27 11:19:18          0 
+2024-03-27 11:19:28          6 .command.begin
+2024-03-27 11:20:24        762 .command.err
+2024-03-27 11:20:26        762 .command.log
+2024-03-27 11:20:23          0 .command.out
+2024-03-27 11:19:18      13103 .command.run
+2024-03-27 11:19:18        129 .command.sh
+2024-03-27 11:20:24        276 .command.trace
+2024-03-27 11:20:25          1 .exitcode
+$ aws s3 ls s3://temp_datapath/D_farinae/96/621c4ba4e6e87a4d869c696fe50034/output/
+2024-03-27 11:20:24   17127134 aligns.paf
+```
+
+## Offline mode
+
+If you do not have internet access from your cluster, you can run EGAPx in offline mode. To do this, you would first pull the Singularity image, then download the necessary files from NCBI FTP using `egapx.py` script, and then finally use the path of the downloaded folder in the run command. Here is an example of how to download the files and execute EGAPx in the Biowulf cluster. 
+
+
+- Download the Singularity image:
+```
+rm egap*sif
+singularity cache clean
+singularity pull docker://ncbi/egapx:0.2-alpha
+```
+
+- Clone the repo:
+```
+git clone https://github.com/ncbi/egapx.git
+cd egapx
+```
+
+- Download EGAPx related files from NCBI:
+```
+python3 ui/egapx.py -dl -lc ../local_cache
+```
+
+- Download SRA reads:
+```
+prefetch SRR8506572
+prefetch SRR9005248
+fasterq-dump --skip-technical --threads 6 --split-files --seq-defline ">\$ac.\$si.\$ri" --fasta -O sradir/  ./SRR8506572
+fasterq-dump --skip-technical --threads 6 --split-files --seq-defline ">\$ac.\$si.\$ri" --fasta -O sradir/  ./SRR9005248
+
+```
+You should see downloaded files inside the 'sradir' folder":
+```
+ls  sradir/
+SRR8506572_1.fasta  SRR8506572_2.fasta  SRR9005248_1.fasta  SRR9005248_2.fasta
+```
+Now edit the file paths of SRA reads files in `examples/input_D_farinae_small.yaml` to include the above SRA files. 
+
+- Run `egapx.py` first to edit the `biowulf_cluster.config`:
+```
+ui/egapx.py examples/input_D_farinae_small.yaml -e biowulf_cluster -w dfs_work -o dfs_out -lc ../local_cache
+echo "process.container = '/path_to_/egapx_0.2-alpha.sif'" >> egapx_config/biowulf_cluster.config
+```
+
+- Run `egapx.py`:
+```
+ui/egapx.py examples/input_D_farinae_small.yaml -e biowulf_cluster -w dfs_work -o dfs_out -lc ../local_cache
+
+```
+
+
+## References
+
+Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021 Apr;18(4):366-368. doi: 10.1038/s41592-021-01101-x. Epub 2021 Apr 7. PMID: 33828273; PMCID: PMC8026399.
+
+Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. Twelve years of SAMtools and BCFtools. Gigascience. 2021 Feb 16;10(2):giab008. doi: 10.1093/gigascience/giab008. PMID: 33590861; PMCID: PMC7931819.
+
+Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25. PMID: 23104886; PMCID: PMC3530905.
+
+Li H. Protein-to-genome alignment with miniprot. Bioinformatics. 2023 Jan 1;39(1):btad014. doi: 10.1093/bioinformatics/btad014. PMID: 36648328; PMCID: PMC9869432.
+
+Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One. 2016 Oct 5;11(10):e0163962. doi: 10.1371/journal.pone.0163962. PMID: 27706213; PMCID: PMC5051824.
+
+
+
+## Contact us
+
+Please open a GitHub [Issue](https://github.com/ncbi/egapx/issues)  if you encounter any problems with EGAPx. You can also write to cgr@nlm.nih.gov to give us your feedback or if you have any questions. 
--- a/README.md	Sat Aug 03 11:16:53 2024 +0000
+++ b/README.md	Sat Aug 03 12:10:13 2024 +0000
@@ -1,18 +1,27 @@
-# Eukaryotic Genome Annotation Pipeline - External (EGAPx) 
+# Galaxy tool wrapping the Eukaryotic Genome Annotation Pipeline - External (EGAPx) 
+
+**Warning**
+This is a very simple and crude way to run the EGAPx workflow inside Galaxy.
+
+EGAPx requires huge resources to run with useful data. 128GB and 32 cores are the minimum; 256GB and 64 cores are recommended.
+
+There is a special test minimal example that can be run in 6GB with 4 cores.
+
+The user must supply a yaml configuration file in this initial proof of concept.
+Samples are available in the EGAPx github repository and one is shown below for cut/paste into a history dataset in the upload tool.
+
+This is not intended for production. Just a proof of concept.
+It is possibly too inefficient to be useful although it may turn out not to be a problem if run on a dedicated workstation.
+At least the efficiency can now be more easily estimated.
+
+This is not recommended for public deployment because of the resource demands.
+
+
 
 EGAPx is the publicly accessible version of the updated NCBI [Eukaryotic Genome Annotation Pipeline](https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/). 
 
 EGAPx takes an assembly fasta file, a taxid of the organism, and RNA-seq data. Based on the taxid, EGAPx will pick protein sets and HMM models. The pipeline runs `miniprot` to align protein sequences, and `STAR` to align RNA-seq to the assembly. Protein alignments and RNA-seq read alignments are then passed to `Gnomon` for gene prediction. In the first step of `Gnomon`, the short alignments are chained together into putative gene models. In the second step, these predictions are further supplemented by _ab-initio_ predictions based on HMM models. The final annotation for the input assembly is produced as a `gff` file. 
 
-We currently have protein datasets posted that are suitable for most vertebrates and arthropods:
-  - Chordata - Mammalia, Sauropsida, Actinopterygii (ray-finned fishes)
-  - Insecta - Hymenoptera, Diptera, Lepidoptera, Coleoptera, Hemiptera 
-  - Arthropoda - Arachnida, other Arthropoda
-
-We will be adding datasets for plants and other invertebrates in the next couple of months. Fungi, protists and nematodes are currently out-of-scope for EGAPx pending additional refinements.
-
-We currently have protein datasets posted for most vertebrates (mammals, sauropsids, ray-finned fishes) and arthropods. We will be adding datasets for more arthropods, vertebrates and plants in the next couple of months. Fungi, protists and nematodes are currently out-of-scope for EGAPx pending additional refinements.
-
 **Warning:**
 The current version is an alpha release with limited features and organism scope to collect initial feedback on execution. Outputs are not yet complete and not intended for production use. Please open a GitHub [Issue](https://github.com/ncbi/egapx/issues)  if you encounter any problems with EGAPx. You can also write to cgr@nlm.nih.gov to give us your feedback or if you have any questions.  
 
@@ -20,77 +29,6 @@
 **Security Notice:**
 EGAPx has dependencies in and outside of its execution path that include several thousand files from the [NCBI C++ toolkit](https://www.ncbi.nlm.nih.gov/toolkit), and more than a million total lines of code. Static Application Security Testing has shown a small number of verified buffer overrun security vulnerabilities. Users should consult with their organizational security team on risk and if there is concern, consider mitigating options like running via VM or cloud instance. 
 
-**License:**
-See the EGAPx license [here](https://github.com/ncbi/egapx/blob/main/LICENSE).
-
-
-
-## Prerequisites
-
-- Docker or Singularity  
-- AWS batch, UGE cluster, or a r6a.4xlarge machine (32 CPUs, 256GB RAM) 
-- Nextflow v.23.10.1
-- Python v.3.9+ 
-
-Notes:
-- General configuration for AWS Batch is described in the Nextflow documentation at https://www.nextflow.io/docs/latest/aws.html
-- See Nextflow installation at https://www.nextflow.io/docs/latest/getstarted.html
-
-## The workflow files
-
-- Clone the EGAPx repo:
-  ```
-  git clone https://github.com/ncbi/egapx.git
-  cd egapx
-  ```
-
-## Input data format
-
-Input to EGAPx is in the form of a YAML file. 
-
-- The following are the _required_ key-value pairs for the input file:
-
-  ```
-  genome: path to assembled genome in FASTA format
-  taxid: NCBI Taxonomy identifier of the target organism 
-  reads: RNA-seq data
-  ```
-  You can obtain taxid from the [NCBI Taxonomy page](https://www.ncbi.nlm.nih.gov/taxonomy).
-
-
-  - RNA-seq data can be supplied in any one of the following ways:
-
-    ```
-    reads: [ array of paths to reads FASTA or FASTQ files]
-    reads: [ array of SRA run IDs ]
-    reads: [SRA Study ID]
-    reads: SRA query for reads
-    ```
-  - If you are using your local reads, then the FASTA/FASTQ files should be provided in the following format:
-    ```
-    reads:
-     - path_to_Sample1_R1.gz
-     - path_to_Sample1_R2.gz
-     - path_to_Sample2_R1.gz
-     - path_to_Sample2_R2.gz
-    ```
-
-  - If you provide an SRA Study ID, all the SRA run ID's belonging to that Study ID will be included in the EGAPx run.    
-
-- The following are the _optional_ key-value pairs for the input file:  
-
-  - A protein set. A taxid-based protein set will be chosen if no protein set is provided.
-    ```
-    proteins: path to proteins data in FASTA format. 
-    ```
-
-  - HMM file used in Gnomon training. A taxid-based HMM will be chosen if no HMM file is provided.
-    ```
-    hmm: path to HMM file
-    ```
-
-
-
 ## Input example
  
 - A test example YAML file `./examples/input_D_farinae_small.yaml` is included in the `egapx` folder. Here, the RNA-seq data is provided as paths to the reads FASTA files. These FASTA files are a sampling of the reads from the complete SRA read files to expedite testing. 
@@ -120,154 +58,6 @@
 
   **Note:** Both the above examples will have more RNA-seq data than the `input_D_farinae_small.yaml` example. To make sure the entrez query does not produce a large number of SRA runs, please run it first at the [NCBI SRA page](https://www.ncbi.nlm.nih.gov/sra). If there are too many SRA runs, then select a few of them and list it in the input yaml.   
 
-- First, test EGAPx on the example provided (`input_D_farinae_small.yaml`, a dust mite) to make sure everything works. This example usually runs under 30 minutes depending upon resource availability. There are other examples you can try: `input_C_longicornis.yaml`, a green fly, and `input_Gavia_tellata.yaml`, a bird. These will take close to two hours.  You can prepare your input YAML file following these examples.  
-
-## Run EGAPx
-
-- The `egapx` folder contains the following directories:
-    - examples
-    - nf
-    - test
-    - third_party_licenses
-    - ui 
-     
-- The runner script is within the ui directory (`ui/egapx.py`). 
-
-- Create a virtual environment where you can run EGAPx. There is a `requirements.txt` file. PyYAML will be installed in this environment.
-  ```
-  python -m venv /path/to/new/virtual/environment
-  source /path/to/new/virtual/environment/bin/activate
-  pip install -r ui/requirements.txt
-  ```  
-
-
- 
-
-
-- Run EGAPx for the first time to copy the config files so you can edit them:
-  ```
-  python3 ui/egapx.py ./examples/input_D_farinae_small.yaml -o example_out 
-  ```
-  - When you run `egapx.py` for the first time it copies the template config files to the directory `./egapx_config`.
-  - You will need to edit these templates to reflect the actual parameters of your setup.
-    - For AWS Batch execution, set up AWS Batch Service following advice in the AWS link above. Then edit the value for `process.queue` in `./egapx_config/aws.config` file.
-    - For execution on the local machine you don't need to adjust anything.
-
-
-- Run EGAPx with the following command for real this time.
-  - For AWS Batch execution, replace temp_datapath with an existing S3 bucket.
-  - For local execution, use a local path for `-w` 
-  ```
-  python3 ui/egapx.py ./examples/input_D_farinae_small.yaml -e aws -w s3://temp_datapath/D_farinae -o example_out
-  ```
-    
-    - use `-e aws` for AWS batch using Docker image
-    - use `-e docker` for using Docker image
-    - use `-e singularity` for using the Singularity image
-    - use `-e biowulf_cluster` for Biowulf cluster using Singularity image
-    - use '-e slurm` for using SLURM in your HPC.
-        - Note that for this option, you have to edit `./egapx_config/slurm.config` according to your cluster specifications.
-    - type `python3 ui/egapx.py  -h ` for the help menu 
-
-      ```
-      $ ui/egapx.py  -h
-      
-      
-      !!WARNING!!
-      This is an alpha release with limited features and organism scope to collect initial feedback on execution. Outputs are not yet complete and not intended for production use.
-
-      usage: egapx.py [-h] [-o OUTPUT] [-e EXECUTOR] [-c CONFIG_DIR] [-w WORKDIR] [-r REPORT] [-n] [-st]
-                [-so] [-dl] [-lc LOCAL_CACHE] [-q] [-v] [-fn FUNC_NAME]
-                [filename]
-
-      Main script for EGAPx
-
-      optional arguments:
-        -h, --help            show this help message and exit
-        -e EXECUTOR, --executor EXECUTOR
-                        Nextflow executor, one of docker, singularity, aws, or local (for NCBI
-                        internal use only). Uses corresponding Nextflow config file
-        -c CONFIG_DIR, --config-dir CONFIG_DIR
-                        Directory for executor config files, default is ./egapx_config. Can be also
-                        set as env EGAPX_CONFIG_DIR
-        -w WORKDIR, --workdir WORKDIR
-                        Working directory for cloud executor
-        -r REPORT, --report REPORT
-                        Report file prefix for report (.report.html) and timeline (.timeline.html)
-                        files, default is in output directory
-        -n, --dry-run
-        -st, --stub-run
-        -so, --summary-only   Print result statistics only if available, do not compute result
-        -lc LOCAL_CACHE, --local-cache LOCAL_CACHE
-                        Where to store the downloaded files
-        -q, --quiet
-        -v, --verbose
-        -fn FUNC_NAME, --func_name FUNC_NAME
-                        func_name
-
-      run:
-        filename              YAML file with input: section with at least genome: and reads: parameters
-        -o OUTPUT, --output OUTPUT
-                        Output path
-
-      download:
-        -dl, --download-only  Download external files to local storage, so that future runs can be
-                        isolated
-
-      
-      ```
-
-
-## Test run
-
-```
-$ python3 ui/egapx.py examples/input_D_farinae_small.yaml -e aws -o example_out -w s3://temp_datapath/D_farinae
-
-!!WARNING!!
-This is an alpha release with limited features and organism scope to collect initial feedback on execution. Outputs are not yet complete and not intended for production use.
-
-N E X T F L O W  ~  version 23.10.1
-Launching `/../home/user/egapx/ui/../nf/ui.nf` [golden_mercator] DSL2 - revision: c134f40af5
-in egapx block
-executor >  awsbatch (67)
-[f5/3007b8] process > egapx:setup_genome:get_genome_info            [100%] 1 of 1 ✔
-[32/a1bfa5] process > egapx:setup_proteins:convert_proteins         [100%] 1 of 1 ✔
-[96/621c4b] process > egapx:miniprot:run_miniprot                   [100%] 1 of 1 ✔
-[6d/766c2f] process > egapx:paf2asn:run_paf2asn                     [100%] 1 of 1 ✔
-[56/f1dd6b] process > egapx:best_aligned_prot:run_best_aligned_prot [100%] 1 of 1 ✔
-[c1/ccc4a3] process > egapx:align_filter_sa:run_align_filter_sa     [100%] 1 of 1 ✔
-[e0/5548d0] process > egapx:run_align_sort                          [100%] 1 of 1 ✔
-[a8/456a0e] process > egapx:star_index:build_index                  [100%] 1 of 1 ✔
-[d5/6469a6] process > egapx:star_simplified:exec (1)                [100%] 2 of 2 ✔
-[64/99ab35] process > egapx:bam_strandedness:exec (2)               [100%] 2 of 2 ✔
-[98/a12969] process > egapx:bam_strandedness:merge                  [100%] 1 of 1 ✔
-[78/0d7007] process > egapx:bam_bin_and_sort:calc_assembly_sizes    [100%] 1 of 1 ✔
-[74/bb014e] process > egapx:bam_bin_and_sort:bam_bin (2)            [100%] 2 of 2 ✔
-[39/3cdd00] process > egapx:bam_bin_and_sort:merge_prepare          [100%] 1 of 1 ✔
-[01/f64e38] process > egapx:bam_bin_and_sort:merge (1)              [100%] 1 of 1 ✔
-[aa/47a002] process > egapx:bam2asn:convert (1)                     [100%] 1 of 1 ✔
-[45/6661b3] process > egapx:rnaseq_collapse:generate_jobs           [100%] 1 of 1 ✔
-[64/68bc37] process > egapx:rnaseq_collapse:run_rnaseq_collapse (3) [100%] 9 of 9 ✔
-[18/bff1ac] process > egapx:rnaseq_collapse:run_gpx_make_outputs    [100%] 1 of 1 ✔
-[a4/76a4a5] process > egapx:get_hmm_params:run_get_hmm              [100%] 1 of 1 ✔
-[3c/b71c42] process > egapx:chainer:run_align_sort (1)              [100%] 1 of 1 ✔
-[e1/340b6d] process > egapx:chainer:generate_jobs                   [100%] 1 of 1 ✔
-[c0/477d02] process > egapx:chainer:run_chainer (16)                [100%] 16 of 16 ✔
-[9f/27c1c8] process > egapx:chainer:run_gpx_make_outputs            [100%] 1 of 1 ✔
-[5c/8f65d0] process > egapx:gnomon_wnode:gpx_qsubmit                [100%] 1 of 1 ✔
-[34/6ab0c9] process > egapx:gnomon_wnode:annot (1)                  [100%] 10 of 10 ✔
-[a9/e38221] process > egapx:gnomon_wnode:gpx_qdump                  [100%] 1 of 1 ✔
-[bc/8ebca4] process > egapx:annot_builder:annot_builder_main        [100%] 1 of 1 ✔
-[5f/6b72c0] process > egapx:annot_builder:annot_builder_input       [100%] 1 of 1 ✔
-[eb/1ccdd0] process > egapx:annot_builder:annot_builder_run         [100%] 1 of 1 ✔
-[4d/6c33db] process > egapx:annotwriter:run_annotwriter             [100%] 1 of 1 ✔
-[b6/d73d18] process > export                                        [100%] 1 of 1 ✔
-Waiting for file transfers to complete (1 files)
-Completed at: 27-Mar-2024 11:43:15
-Duration    : 27m 36s
-CPU hours   : 4.2
-Succeeded   : 67
-```
 ## Output
 
 Look at the output in the out diectory (`example_out`) that was supplied in the command line. The annotation file is called `accept.gff`. 
@@ -307,71 +97,3 @@
 2024-03-27 11:20:24   17127134 aligns.paf
 ```
 
-## Offline mode
-
-If you do not have internet access from your cluster, you can run EGAPx in offline mode. To do this, you would first pull the Singularity image, then download the necessary files from NCBI FTP using `egapx.py` script, and then finally use the path of the downloaded folder in the run command. Here is an example of how to download the files and execute EGAPx in the Biowulf cluster. 
-
-
-- Download the Singularity image:
-```
-rm egap*sif
-singularity cache clean
-singularity pull docker://ncbi/egapx:0.2-alpha
-```
-
-- Clone the repo:
-```
-git clone https://github.com/ncbi/egapx.git
-cd egapx
-```
-
-- Download EGAPx related files from NCBI:
-```
-python3 ui/egapx.py -dl -lc ../local_cache
-```
-
-- Download SRA reads:
-```
-prefetch SRR8506572
-prefetch SRR9005248
-fasterq-dump --skip-technical --threads 6 --split-files --seq-defline ">\$ac.\$si.\$ri" --fasta -O sradir/  ./SRR8506572
-fasterq-dump --skip-technical --threads 6 --split-files --seq-defline ">\$ac.\$si.\$ri" --fasta -O sradir/  ./SRR9005248
-
-```
-You should see downloaded files inside the 'sradir' folder":
-```
-ls  sradir/
-SRR8506572_1.fasta  SRR8506572_2.fasta  SRR9005248_1.fasta  SRR9005248_2.fasta
-```
-Now edit the file paths of SRA reads files in `examples/input_D_farinae_small.yaml` to include the above SRA files. 
-
-- Run `egapx.py` first to edit the `biowulf_cluster.config`:
-```
-ui/egapx.py examples/input_D_farinae_small.yaml -e biowulf_cluster -w dfs_work -o dfs_out -lc ../local_cache
-echo "process.container = '/path_to_/egapx_0.2-alpha.sif'" >> egapx_config/biowulf_cluster.config
-```
-
-- Run `egapx.py`:
-```
-ui/egapx.py examples/input_D_farinae_small.yaml -e biowulf_cluster -w dfs_work -o dfs_out -lc ../local_cache
-
-```
-
-
-## References
-
-Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021 Apr;18(4):366-368. doi: 10.1038/s41592-021-01101-x. Epub 2021 Apr 7. PMID: 33828273; PMCID: PMC8026399.
-
-Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. Twelve years of SAMtools and BCFtools. Gigascience. 2021 Feb 16;10(2):giab008. doi: 10.1093/gigascience/giab008. PMID: 33590861; PMCID: PMC7931819.
-
-Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25. PMID: 23104886; PMCID: PMC3530905.
-
-Li H. Protein-to-genome alignment with miniprot. Bioinformatics. 2023 Jan 1;39(1):btad014. doi: 10.1093/bioinformatics/btad014. PMID: 36648328; PMCID: PMC9869432.
-
-Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One. 2016 Oct 5;11(10):e0163962. doi: 10.1371/journal.pone.0163962. PMID: 27706213; PMCID: PMC5051824.
-
-
-
-## Contact us
-
-Please open a GitHub [Issue](https://github.com/ncbi/egapx/issues)  if you encounter any problems with EGAPx. You can also write to cgr@nlm.nih.gov to give us your feedback or if you have any questions. 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/assets/default_task_params.yaml	Sat Aug 03 12:10:13 2024 +0000
@@ -0,0 +1,71 @@
+tasks:
+  setup:
+    convert_genome: force-local-ids
+    convert_proteins: force-local-ids
+  bam_bin_and_sort:
+    bam_bin: -avg-size-per-bin 200000000 -file-pattern 'bin#.bam' -exclude-organelle
+  bam_strandedness:
+    rnaseq_divide_by_strandedness: -min-aligned 1000000 -min-unambiguous 200 -min-unambiguous-pct
+      2 -percentage-threshold 98
+  chainer:
+    chainer_wnode: -altfrac 80.0 -capgap 5 -cdsbonus 0.05 -composite 10000 -end-pair-support-cutoff
+      0.1 -endprotfrac 0.05 -filters 'remove_single_exon_est_models remove_single_exon_noncoding_models'
+      -high-identity 0.98 -hmaxlen 0.25 -hthresh 0.02 -i3p 14.0 -i5p 7.0 -lenpen 0.005
+      -longenoughcds 900 -max-extension 20 -min-consensus-support 2 -min-edge-coverage
+      5 -min-non-consensussupport 10 -min-support-fraction 0.03 -minex 10 -mininframefrac
+      0.95 -minlen 225 -minpolya 6 -minprotfrac 0.9 -minscor 40.0 -minsupport 3 -minsupport_mrna
+      1 -minsupport_rnaseq 5 -mrnaCDS use_objmgr -oep 10 -protcdslen 450 -sharp-boundary
+      0.2 -tolerance 3 -trim 6 -utrclipthreshold 0.01 -fillgenomicgaps -filterest
+      -filtermrna -filterprots -opposite
+    gpx_make_outputs: -default-output-name chains -slices-for affinity -sort-by affinity
+    input_aligns_sort: merge_only
+    submit_chainer: -minimum-abut-margin 20 -separate-within-introns
+  convert_from_bam:
+    sam2asn: -filter 'pct_identity_gap >= 95' -ofmt seq-align-compressed -collapse-identical
+      -no-scores
+  getfasta:
+    getfasta: -u full-assembly -bare-accession -use-reference-non-nuclear
+  gnomon:
+    annot_wnode: -margin 1000 -mincont 1000 -minlen 225 -mpp 10.0 -ncsp 25 -window
+      200000 -nonconsens -open
+    generic_action_node: -app annot_wnode
+    gpx_qdump: -slices-for affinity -sort-by affinity -unzip '*'
+    gpx_qsubmit: ''
+  prot_gnomon_prepare:
+    prot_gnomon_prepare: ''
+  rnaseq_collapse:
+    gpx_make_outputs: -default-output-name align -slices-for affinity -sort-by job-id
+      -unzip align
+    gpx_qsubmit: -affinity subject
+    rnaseq_collapse: -backlog 1 -max-jobs 1 -support-non-sra
+    # -rank-counts-precalculated
+    rnaseq_collapse_create_jobs: -alignments-per-job 50000 -min-range 100000
+  star_index:
+    STAR: --runThreadN 8
+  star_wnode:
+    gpx_qdump: -unzip '*'
+    gpx_qsubmit: -affinity subject
+    star_wnode: -cpus-per-worker 16 -csi-threshold 512000000 -preserve-star-logs
+    star-params: --alignSJoverhangMin 8 --outFilterMultimapNmax 200 --outFilterMismatchNmax
+      50 --runThreadN 16 --genomeLoad NoSharedMemory --outSAMtype SAM --outSAMattributes
+      'NH HI AS nM NM MD jM jI XS MC' --outSAMprimaryFlag AllBestScore --outFilterMultimapScoreRange
+      50 --seedSearchStartLmax 15 --limitOutSAMoneReadBytes 1000000 --outSJtype None 
+  miniprot:
+    split_proteins: -n 100000
+    miniprot: -t 31 -p 0.4 --outs=0.4
+  paf2asn:
+    paf2asn: -prosplign-refinement
+  best_aligned_prot:
+    best_aligned_prot: -asm_alns_filter 'reciprocity = 3'
+  chainer_sort_alignments:
+    align_sort:  -ifmt seq-align  -k subject,subject_start,-subject_end,subject_strand,query,query_start,-query_end,query_strand,-num_ident,gap_count
+  align_filter_sa:
+    align_filter:  -filter 'rank=1 OR (pct_identity_gapopen_only > 58 AND (pct_coverage > 50 OR align_length_ungap > 1000))' -ifmt seq-align  
+  gnomon_training:
+    gnomon_training: -asn -b
+  diamond:
+    diamond: -query-fmt seq-ids -subject-fmt seq-ids -output-prefix hits -ofmt seq-align-set
+    diamond_blastp:  --sam-query-len --very-sensitive --unal 0 --comp-based-stats 0 --masking 0
+  diamond_orthology:
+    diamond_orhtology: -ofmt seq-align-set -query-fmt seq-ids -subject-fmt seq-ids -output-prefix hits
+    diamond_orthology_blastp: --sam-query-len --very-sensitive --unal 0 --comp-based-stats 0 --masking 0 
Binary file egapx_runner.tgz has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/egapx_runner.xml	Sat Aug 03 12:10:13 2024 +0000
@@ -0,0 +1,47 @@
+<tool name="egapx_runner" id="egapx_runner" version="6.0.1" profile="22.05">
+  <!--Source in git at: https://github.com/fubar2/galaxy_tf_overlay-->
+  <!--Created by toolfactory@galaxy.org at 03/08/2024 10:40:32 using the Galaxy Tool Factory.-->
+  <description>Runs egapx</description>
+  <requirements>
+    <requirement version="3.12.3" type="package">python</requirement>
+    <requirement version="24.04.4-0" type="package">nextflow</requirement>
+    <requirement version="6.0.1" type="package">pyyaml</requirement>
+  </requirements>
+  <version_command><![CDATA[echo "6.0.1"]]></version_command>
+  <command><![CDATA[mkdir -p ./egapx_config &&
+#set econfigfile = $econfig + '.config'
+cp  '$__tool_directory__/ui/assets/config/executor/$econfigfile' ./egapx_config/ &&
+python '$__tool_directory__/ui/egapx.py' '$yamlconfig'  -e '$econfig' -o 'egapx_out']]></command>
+  <inputs>
+    <param name="yamlconfig" type="data" optional="false" label="egapx configuration yaml file to execute" help="" format="yaml,txt" multiple="false"/>
+    <param name="econfig" type="select" label="Configuration" help="">
+      <option value="docker_minimal">docker minimal only works for the minimal dust mite sample using 6GB and 4 cores</option>
+      <option value="singularity">singularity requires at least 128GB ram and 32 cores. 256GB and 64 cores recommendd</option>
+      <option value="docker">docker requires at least 128GB ram and 32 cores. 256GB and 64 cores recommend</option>
+    </param>
+  </inputs>
+  <outputs>
+    <collection name="egapx_out" type="list" label="Outputs from egapx">
+      <discover_datasets pattern="__name_and_ext__" directory="egapx_out" visible="false"/>
+    </collection>
+  </outputs>
+  
+
+<tests>
+    <test>
+      <output_collection name="egapx_out" count="8"/>
+      <param name="yamlconfig" value="yamlconfig_sample"/>
+      <param name="econfig" value="docker_minimal"/>
+    </test>
+</tests>
+
+
+
+  <help><![CDATA[
+ **What it Does**
+  ]]></help>
+  <citations>
+    <citation type="doi">10.1093/bioinformatics/bts573</citation>
+  </citations>
+</tool>
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/yamlconfig_sample	Sat Aug 03 12:10:13 2024 +0000
@@ -0,0 +1,16 @@
+# This is a very minimal example of EGAPx, it fits into 4 CPU cores and 6GB of memory.
+# To be able to do this, we culled the input files and some stages of execution.
+# To limit the requirements you also need to use -e docker_minimal
+
+genome: https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/020/809/275/GCF_020809275.1_ASM2080927v1/GCF_020809275.1_ASM2080927v1_genomic.fna.gz
+reads:
+  - https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/EGAP/sample_data/Dermatophagoides_farinae_small/SRR8506572.1
+  - https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/EGAP/sample_data/Dermatophagoides_farinae_small/SRR8506572.2
+  - https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/EGAP/sample_data/Dermatophagoides_farinae_small/SRR9005248.1
+  - https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/EGAP/sample_data/Dermatophagoides_farinae_small/SRR9005248.2
+taxid: 6954
+proteins: []
+hmm: https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/EGAP/gnomon/hmm_parameters/6956.params
+tasks:
+  star_wnode:
+    star_wnode: -cpus-per-worker 4
--- a/ui/assets/config/executor/docker_minimal.config	Sat Aug 03 11:16:53 2024 +0000
+++ b/ui/assets/config/executor/docker_minimal.config	Sat Aug 03 12:10:13 2024 +0000
@@ -1,5 +1,5 @@
 docker.enabled = true
 process {
-    memory = 6.GB
+    memory = 8.GB
     cpus = 4
-}
\ No newline at end of file
+}