Mercurial > repos > fubar > jbrowse2dev
view jbrowse2/blastxml_to_gapped_gff3.py @ 3:0d953fc4ca97 draft
Uploaded
author | fubar |
---|---|
date | Wed, 03 Jan 2024 08:07:45 +0000 |
parents | cd5d63cd0eb5 |
children | 88b9b105c09b |
line wrap: on
line source
#!/usr/bin/env python import argparse import copy import logging import re import sys from BCBio import GFF logging.basicConfig(level=logging.INFO) log = logging.getLogger(name='blastxml2gff3') __doc__ = """ BlastXML files, when transformed to GFF3, do not normally show gaps in the blast hits. This tool aims to fill that "gap". """ def blastxml2gff3(blastxml, min_gap=3, trim=False, trim_end=False, include_seq=False): from Bio.Blast import NCBIXML from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio.SeqFeature import SeqFeature, SimpleLocation blast_records = NCBIXML.parse(blastxml) for idx_record, record in enumerate(blast_records): # http://www.sequenceontology.org/browser/release_2.4/term/SO:0000343 match_type = { # Currently we can only handle BLASTN, BLASTP 'BLASTN': 'nucleotide_match', 'BLASTP': 'protein_match', }.get(record.application, 'match') recid = record.query if ' ' in recid: recid = recid[0:recid.index(' ')] rec = SeqRecord(Seq("ACTG"), id=recid) for idx_hit, hit in enumerate(record.alignments): for idx_hsp, hsp in enumerate(hit.hsps): qualifiers = { "ID": 'b2g.%s.%s.%s' % (idx_record, idx_hit, idx_hsp), "source": "blast", "score": hsp.expect, "accession": hit.accession, "hit_id": hit.hit_id, "length": hit.length, "hit_titles": hit.title.split(' >'), } if include_seq: qualifiers.update({ 'blast_qseq': hsp.query, 'blast_sseq': hsp.sbjct, 'blast_mseq': hsp.match, }) for prop in ('score', 'bits', 'identities', 'positives', 'gaps', 'align_length', 'strand', 'frame', 'query_start', 'query_end', 'sbjct_start', 'sbjct_end'): qualifiers['blast_' + prop] = getattr(hsp, prop, None) desc = hit.title.split(' >')[0] qualifiers['description'] = desc[desc.index(' '):] # This required a fair bit of sketching out/match to figure out # the first time. # # the match_start location must account for queries and # subjecst that start at locations other than 1 parent_match_start = hsp.query_start - hsp.sbjct_start # The end is the start + hit.length because the match itself # may be longer than the parent feature, so we use the supplied # subject/hit length to calculate the real ending of the target # protein. parent_match_end = hsp.query_start + hit.length + hsp.query.count('-') # If we trim the left end, we need to trim without losing information. used_parent_match_start = parent_match_start if trim: if parent_match_start < 1: used_parent_match_start = 0 if trim or trim_end: if parent_match_end > hsp.query_end: parent_match_end = hsp.query_end + 1 # The ``match`` feature will hold one or more ``match_part``s top_feature = SeqFeature( SimpleLocation(used_parent_match_start, parent_match_end, strand=0), type=match_type, qualifiers=qualifiers ) # Unlike the parent feature, ``match_part``s have sources. part_qualifiers = { "source": "blast", } top_feature.sub_features = [] for idx_part, (start, end, cigar) in \ enumerate(generate_parts(hsp.query, hsp.match, hsp.sbjct, ignore_under=min_gap)): part_qualifiers['Gap'] = cigar part_qualifiers['ID'] = qualifiers['ID'] + ('.%s' % idx_part) # Otherwise, we have to account for the subject start's location match_part_start = parent_match_start + hsp.sbjct_start + start - 1 # We used to use hsp.align_length here, but that includes # gaps in the parent sequence # # Furthermore align_length will give calculation errors in weird places # So we just use (end-start) for simplicity match_part_end = match_part_start + (end - start) top_feature.sub_features.append( SeqFeature( SimpleLocation(match_part_start, match_part_end, strand=1), type="match_part", qualifiers=copy.deepcopy(part_qualifiers)) ) rec.features.append(top_feature) rec.annotations = {} yield rec def __remove_query_gaps(query, match, subject): """remove positions in all three based on gaps in query In order to simplify math and calculations...we remove all of the gaps based on gap locations in the query sequence:: Q:ACTG-ACTGACTG S:ACTGAAC---CTG will become:: Q:ACTGACTGACTG S:ACTGAC---CTG which greatly simplifies the process of identifying the correct location for a match_part """ prev = 0 fq = '' fm = '' fs = '' for position in re.finditer('-', query): fq += query[prev:position.start()] fm += match[prev:position.start()] fs += subject[prev:position.start()] prev = position.start() + 1 fq += query[prev:] fm += match[prev:] fs += subject[prev:] return (fq, fm, fs) def generate_parts(query, match, subject, ignore_under=3): region_q = [] region_m = [] region_s = [] (query, match, subject) = __remove_query_gaps(query, match, subject) region_start = -1 region_end = -1 mismatch_count = 0 for i, (q, m, s) in enumerate(zip(query, match, subject)): # If we have a match if m != ' ' or m == '+': if region_start == -1: region_start = i # It's a new region, we need to reset or it's pre-seeded with # spaces region_q = [] region_m = [] region_s = [] region_end = i mismatch_count = 0 else: mismatch_count += 1 region_q.append(q) region_m.append(m) region_s.append(s) if mismatch_count >= ignore_under and region_start != -1 and region_end != -1: region_q = region_q[0:-ignore_under] region_m = region_m[0:-ignore_under] region_s = region_s[0:-ignore_under] yield region_start, region_end + 1, \ cigar_from_string(region_q, region_m, region_s, strict_m=True) region_q = [] region_m = [] region_s = [] region_start = -1 region_end = -1 mismatch_count = 0 yield region_start, region_end + 1, \ cigar_from_string(region_q, region_m, region_s, strict_m=True) def _qms_to_matches(query, match, subject, strict_m=True): matchline = [] for (q, m, s) in zip(query, match, subject): ret = '' if m != ' ' or m == '+': ret = '=' elif m == ' ': if q == '-': ret = 'D' elif s == '-': ret = 'I' else: ret = 'X' else: log.warn("Bad data: \n\t%s\n\t%s\n\t%s\n" % (query, match, subject)) if strict_m: if ret == '=' or ret == 'X': ret = 'M' matchline.append(ret) return matchline def _matchline_to_cigar(matchline): cigar_line = [] last_char = matchline[0] count = 0 for char in matchline: if char == last_char: count += 1 else: cigar_line.append("%s%s" % (last_char, count)) count = 1 last_char = char cigar_line.append("%s%s" % (last_char, count)) return ' '.join(cigar_line) def cigar_from_string(query, match, subject, strict_m=True): matchline = _qms_to_matches(query, match, subject, strict_m=strict_m) if len(matchline) > 0: return _matchline_to_cigar(matchline) else: return "" if __name__ == '__main__': parser = argparse.ArgumentParser(description='Convert Blast XML to gapped GFF3', epilog='') parser.add_argument('blastxml', type=argparse.FileType("r"), help='Blast XML Output') parser.add_argument('--min_gap', type=int, help='Maximum gap size before generating a new match_part', default=3) parser.add_argument('--trim', action='store_true', help='Trim blast hits to be only as long as the parent feature') parser.add_argument('--trim_end', action='store_true', help='Cut blast results off at end of gene') parser.add_argument('--include_seq', action='store_true', help='Include sequence') args = parser.parse_args() for rec in blastxml2gff3(**vars(args)): if len(rec.features): GFF.write([rec], sys.stdout)