Mercurial > repos > fubar > lifelines_km_cph_tool
comparison lifelines_tool/run_log.txt @ 2:dd5e65893cb8 draft default tip
add survival and collapsed life table outputs suggested by Wolfgang
author | fubar |
---|---|
date | Thu, 10 Aug 2023 22:52:45 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
1:232b874046a7 | 2:dd5e65893cb8 |
---|---|
1 ## Lifelines tool | |
2 Input data header = Index(['Unnamed: 0', 'week', 'arrest', 'fin', 'age', 'race', 'wexp', 'mar', | |
3 'paro', 'prio'], | |
4 dtype='object') time column = week status column = arrest | |
5 #### No grouping variable, so no log rank or other Kaplan-Meier statistical output is available | |
6 Survival table using time week and event arrest | |
7 removed observed censored entrance at_risk | |
8 event_at | |
9 0.0 0 0 0 432 432 | |
10 1.0 1 1 0 0 432 | |
11 2.0 1 1 0 0 431 | |
12 3.0 1 1 0 0 430 | |
13 4.0 1 1 0 0 429 | |
14 5.0 1 1 0 0 428 | |
15 6.0 1 1 0 0 427 | |
16 7.0 1 1 0 0 426 | |
17 8.0 5 5 0 0 425 | |
18 9.0 2 2 0 0 420 | |
19 10.0 1 1 0 0 418 | |
20 11.0 2 2 0 0 417 | |
21 12.0 2 2 0 0 415 | |
22 13.0 1 1 0 0 413 | |
23 14.0 3 3 0 0 412 | |
24 15.0 2 2 0 0 409 | |
25 16.0 2 2 0 0 407 | |
26 17.0 3 3 0 0 405 | |
27 18.0 3 3 0 0 402 | |
28 19.0 2 2 0 0 399 | |
29 20.0 5 5 0 0 397 | |
30 21.0 2 2 0 0 392 | |
31 22.0 1 1 0 0 390 | |
32 23.0 1 1 0 0 389 | |
33 24.0 4 4 0 0 388 | |
34 25.0 3 3 0 0 384 | |
35 26.0 3 3 0 0 381 | |
36 27.0 2 2 0 0 378 | |
37 28.0 2 2 0 0 376 | |
38 30.0 2 2 0 0 374 | |
39 31.0 1 1 0 0 372 | |
40 32.0 2 2 0 0 371 | |
41 33.0 2 2 0 0 369 | |
42 34.0 2 2 0 0 367 | |
43 35.0 4 4 0 0 365 | |
44 36.0 3 3 0 0 361 | |
45 37.0 4 4 0 0 358 | |
46 38.0 1 1 0 0 354 | |
47 39.0 2 2 0 0 353 | |
48 40.0 4 4 0 0 351 | |
49 42.0 2 2 0 0 347 | |
50 43.0 4 4 0 0 345 | |
51 44.0 2 2 0 0 341 | |
52 45.0 2 2 0 0 339 | |
53 46.0 4 4 0 0 337 | |
54 47.0 1 1 0 0 333 | |
55 48.0 2 2 0 0 332 | |
56 49.0 5 5 0 0 330 | |
57 50.0 3 3 0 0 325 | |
58 52.0 322 4 318 0 322 | |
59 Life table using time week and event arrest | |
60 removed observed censored at_risk | |
61 event_at | |
62 (-0.001, 13.844] 20 20 0 432 | |
63 (13.844, 27.687] 36 36 0 412 | |
64 (27.687, 41.531] 29 29 0 376 | |
65 (41.531, 55.374] 347 29 318 347 | |
66 ### Lifelines test of Proportional Hazards results with prio, age, race, paro, mar, fin as covariates on test | |
67 <lifelines.CoxPHFitter: fitted with 432 total observations, 318 right-censored observations> | |
68 duration col = 'week' | |
69 event col = 'arrest' | |
70 baseline estimation = breslow | |
71 number of observations = 432 | |
72 number of events observed = 114 | |
73 partial log-likelihood = -659.00 | |
74 time fit was run = 2023-08-10 11:57:10 UTC | |
75 | |
76 --- | |
77 coef exp(coef) se(coef) coef lower 95% coef upper 95% exp(coef) lower 95% exp(coef) upper 95% | |
78 covariate | |
79 prio 0.10 1.10 0.03 0.04 0.15 1.04 1.16 | |
80 age -0.06 0.94 0.02 -0.10 -0.02 0.90 0.98 | |
81 race 0.32 1.38 0.31 -0.28 0.92 0.75 2.52 | |
82 paro -0.09 0.91 0.20 -0.47 0.29 0.62 1.34 | |
83 mar -0.48 0.62 0.38 -1.22 0.25 0.30 1.29 | |
84 fin -0.38 0.68 0.19 -0.75 -0.00 0.47 1.00 | |
85 | |
86 cmp to z p -log2(p) | |
87 covariate | |
88 prio 0.00 3.53 <0.005 11.26 | |
89 age 0.00 -2.95 <0.005 8.28 | |
90 race 0.00 1.04 0.30 1.75 | |
91 paro 0.00 -0.46 0.65 0.63 | |
92 mar 0.00 -1.28 0.20 2.32 | |
93 fin 0.00 -1.98 0.05 4.40 | |
94 --- | |
95 Concordance = 0.63 | |
96 Partial AIC = 1330.00 | |
97 log-likelihood ratio test = 32.77 on 6 df | |
98 -log2(p) of ll-ratio test = 16.39 | |
99 | |
100 | |
101 Bootstrapping lowess lines. May take a moment... | |
102 | |
103 | |
104 Bootstrapping lowess lines. May take a moment... | |
105 | |
106 The ``p_value_threshold`` is set at 0.01. Even under the null hypothesis of no violations, some | |
107 covariates will be below the threshold by chance. This is compounded when there are many covariates. | |
108 Similarly, when there are lots of observations, even minor deviances from the proportional hazard | |
109 assumption will be flagged. | |
110 | |
111 With that in mind, it's best to use a combination of statistical tests and visual tests to determine | |
112 the most serious violations. Produce visual plots using ``check_assumptions(..., show_plots=True)`` | |
113 and looking for non-constant lines. See link [A] below for a full example. | |
114 | |
115 <lifelines.StatisticalResult: proportional_hazard_test> | |
116 null_distribution = chi squared | |
117 degrees_of_freedom = 1 | |
118 model = <lifelines.CoxPHFitter: fitted with 432 total observations, 318 right-censored observations> | |
119 test_name = proportional_hazard_test | |
120 | |
121 --- | |
122 test_statistic p -log2(p) | |
123 age km 6.99 0.01 6.93 | |
124 rank 7.40 0.01 7.26 | |
125 fin km 0.02 0.90 0.15 | |
126 rank 0.01 0.91 0.13 | |
127 mar km 1.64 0.20 2.32 | |
128 rank 1.80 0.18 2.48 | |
129 paro km 0.06 0.81 0.31 | |
130 rank 0.07 0.79 0.34 | |
131 prio km 0.92 0.34 1.57 | |
132 rank 0.88 0.35 1.52 | |
133 race km 1.70 0.19 2.38 | |
134 rank 1.68 0.19 2.36 | |
135 | |
136 | |
137 1. Variable 'age' failed the non-proportional test: p-value is 0.0065. | |
138 | |
139 Advice 1: the functional form of the variable 'age' might be incorrect. That is, there may be | |
140 non-linear terms missing. The proportional hazard test used is very sensitive to incorrect | |
141 functional forms. See documentation in link [D] below on how to specify a functional form. | |
142 | |
143 Advice 2: try binning the variable 'age' using pd.cut, and then specify it in `strata=['age', | |
144 ...]` in the call in `.fit`. See documentation in link [B] below. | |
145 | |
146 Advice 3: try adding an interaction term with your time variable. See documentation in link [C] | |
147 below. | |
148 | |
149 | |
150 Bootstrapping lowess lines. May take a moment... | |
151 | |
152 | |
153 Bootstrapping lowess lines. May take a moment... | |
154 | |
155 | |
156 Bootstrapping lowess lines. May take a moment... | |
157 | |
158 | |
159 Bootstrapping lowess lines. May take a moment... | |
160 | |
161 | |
162 --- | |
163 [A] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html | |
164 [B] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Bin-variable-and-stratify-on-it | |
165 [C] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Introduce-time-varying-covariates | |
166 [D] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Modify-the-functional-form | |
167 [E] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Stratification | |
168 |