view docker/alphafold/alphafold/data/parsers.py @ 1:6c92e000d684 draft

"planemo upload for repository https://github.com/usegalaxy-au/galaxy-local-tools commit a510e97ebd604a5e30b1f16e5031f62074f23e86"
author galaxy-australia
date Tue, 01 Mar 2022 02:53:05 +0000
parents
children
line wrap: on
line source

# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions for parsing various file formats."""
import collections
import dataclasses
import itertools
import re
import string
from typing import Dict, Iterable, List, Optional, Sequence, Tuple, Set

DeletionMatrix = Sequence[Sequence[int]]


@dataclasses.dataclass(frozen=True)
class Msa:
  """Class representing a parsed MSA file."""
  sequences: Sequence[str]
  deletion_matrix: DeletionMatrix
  descriptions: Sequence[str]

  def __post_init__(self):
    if not (len(self.sequences) ==
            len(self.deletion_matrix) ==
            len(self.descriptions)):
      raise ValueError(
          'All fields for an MSA must have the same length. '
          f'Got {len(self.sequences)} sequences, '
          f'{len(self.deletion_matrix)} rows in the deletion matrix and '
          f'{len(self.descriptions)} descriptions.')

  def __len__(self):
    return len(self.sequences)

  def truncate(self, max_seqs: int):
    return Msa(sequences=self.sequences[:max_seqs],
               deletion_matrix=self.deletion_matrix[:max_seqs],
               descriptions=self.descriptions[:max_seqs])


@dataclasses.dataclass(frozen=True)
class TemplateHit:
  """Class representing a template hit."""
  index: int
  name: str
  aligned_cols: int
  sum_probs: Optional[float]
  query: str
  hit_sequence: str
  indices_query: List[int]
  indices_hit: List[int]


def parse_fasta(fasta_string: str) -> Tuple[Sequence[str], Sequence[str]]:
  """Parses FASTA string and returns list of strings with amino-acid sequences.

  Arguments:
    fasta_string: The string contents of a FASTA file.

  Returns:
    A tuple of two lists:
    * A list of sequences.
    * A list of sequence descriptions taken from the comment lines. In the
      same order as the sequences.
  """
  sequences = []
  descriptions = []
  index = -1
  for line in fasta_string.splitlines():
    line = line.strip()
    if line.startswith('>'):
      index += 1
      descriptions.append(line[1:])  # Remove the '>' at the beginning.
      sequences.append('')
      continue
    elif not line:
      continue  # Skip blank lines.
    sequences[index] += line

  return sequences, descriptions


def parse_stockholm(stockholm_string: str) -> Msa:
  """Parses sequences and deletion matrix from stockholm format alignment.

  Args:
    stockholm_string: The string contents of a stockholm file. The first
      sequence in the file should be the query sequence.

  Returns:
    A tuple of:
      * A list of sequences that have been aligned to the query. These
        might contain duplicates.
      * The deletion matrix for the alignment as a list of lists. The element
        at `deletion_matrix[i][j]` is the number of residues deleted from
        the aligned sequence i at residue position j.
      * The names of the targets matched, including the jackhmmer subsequence
        suffix.
  """
  name_to_sequence = collections.OrderedDict()
  for line in stockholm_string.splitlines():
    line = line.strip()
    if not line or line.startswith(('#', '//')):
      continue
    name, sequence = line.split()
    if name not in name_to_sequence:
      name_to_sequence[name] = ''
    name_to_sequence[name] += sequence

  msa = []
  deletion_matrix = []

  query = ''
  keep_columns = []
  for seq_index, sequence in enumerate(name_to_sequence.values()):
    if seq_index == 0:
      # Gather the columns with gaps from the query
      query = sequence
      keep_columns = [i for i, res in enumerate(query) if res != '-']

    # Remove the columns with gaps in the query from all sequences.
    aligned_sequence = ''.join([sequence[c] for c in keep_columns])

    msa.append(aligned_sequence)

    # Count the number of deletions w.r.t. query.
    deletion_vec = []
    deletion_count = 0
    for seq_res, query_res in zip(sequence, query):
      if seq_res != '-' or query_res != '-':
        if query_res == '-':
          deletion_count += 1
        else:
          deletion_vec.append(deletion_count)
          deletion_count = 0
    deletion_matrix.append(deletion_vec)

  return Msa(sequences=msa,
             deletion_matrix=deletion_matrix,
             descriptions=list(name_to_sequence.keys()))


def parse_a3m(a3m_string: str) -> Msa:
  """Parses sequences and deletion matrix from a3m format alignment.

  Args:
    a3m_string: The string contents of a a3m file. The first sequence in the
      file should be the query sequence.

  Returns:
    A tuple of:
      * A list of sequences that have been aligned to the query. These
        might contain duplicates.
      * The deletion matrix for the alignment as a list of lists. The element
        at `deletion_matrix[i][j]` is the number of residues deleted from
        the aligned sequence i at residue position j.
      * A list of descriptions, one per sequence, from the a3m file.
  """
  sequences, descriptions = parse_fasta(a3m_string)
  deletion_matrix = []
  for msa_sequence in sequences:
    deletion_vec = []
    deletion_count = 0
    for j in msa_sequence:
      if j.islower():
        deletion_count += 1
      else:
        deletion_vec.append(deletion_count)
        deletion_count = 0
    deletion_matrix.append(deletion_vec)

  # Make the MSA matrix out of aligned (deletion-free) sequences.
  deletion_table = str.maketrans('', '', string.ascii_lowercase)
  aligned_sequences = [s.translate(deletion_table) for s in sequences]
  return Msa(sequences=aligned_sequences,
             deletion_matrix=deletion_matrix,
             descriptions=descriptions)


def _convert_sto_seq_to_a3m(
    query_non_gaps: Sequence[bool], sto_seq: str) -> Iterable[str]:
  for is_query_res_non_gap, sequence_res in zip(query_non_gaps, sto_seq):
    if is_query_res_non_gap:
      yield sequence_res
    elif sequence_res != '-':
      yield sequence_res.lower()


def convert_stockholm_to_a3m(stockholm_format: str,
                             max_sequences: Optional[int] = None,
                             remove_first_row_gaps: bool = True) -> str:
  """Converts MSA in Stockholm format to the A3M format."""
  descriptions = {}
  sequences = {}
  reached_max_sequences = False

  for line in stockholm_format.splitlines():
    reached_max_sequences = max_sequences and len(sequences) >= max_sequences
    if line.strip() and not line.startswith(('#', '//')):
      # Ignore blank lines, markup and end symbols - remainder are alignment
      # sequence parts.
      seqname, aligned_seq = line.split(maxsplit=1)
      if seqname not in sequences:
        if reached_max_sequences:
          continue
        sequences[seqname] = ''
      sequences[seqname] += aligned_seq

  for line in stockholm_format.splitlines():
    if line[:4] == '#=GS':
      # Description row - example format is:
      # #=GS UniRef90_Q9H5Z4/4-78            DE [subseq from] cDNA: FLJ22755 ...
      columns = line.split(maxsplit=3)
      seqname, feature = columns[1:3]
      value = columns[3] if len(columns) == 4 else ''
      if feature != 'DE':
        continue
      if reached_max_sequences and seqname not in sequences:
        continue
      descriptions[seqname] = value
      if len(descriptions) == len(sequences):
        break

  # Convert sto format to a3m line by line
  a3m_sequences = {}
  if remove_first_row_gaps:
    # query_sequence is assumed to be the first sequence
    query_sequence = next(iter(sequences.values()))
    query_non_gaps = [res != '-' for res in query_sequence]
  for seqname, sto_sequence in sequences.items():
    # Dots are optional in a3m format and are commonly removed.
    out_sequence = sto_sequence.replace('.', '')
    if remove_first_row_gaps:
      out_sequence = ''.join(
          _convert_sto_seq_to_a3m(query_non_gaps, out_sequence))
    a3m_sequences[seqname] = out_sequence

  fasta_chunks = (f">{k} {descriptions.get(k, '')}\n{a3m_sequences[k]}"
                  for k in a3m_sequences)
  return '\n'.join(fasta_chunks) + '\n'  # Include terminating newline.


def _keep_line(line: str, seqnames: Set[str]) -> bool:
  """Function to decide which lines to keep."""
  if not line.strip():
    return True
  if line.strip() == '//':  # End tag
    return True
  if line.startswith('# STOCKHOLM'):  # Start tag
    return True
  if line.startswith('#=GC RF'):  # Reference Annotation Line
    return True
  if line[:4] == '#=GS':  # Description lines - keep if sequence in list.
    _, seqname, _ = line.split(maxsplit=2)
    return seqname in seqnames
  elif line.startswith('#'):  # Other markup - filter out
    return False
  else:  # Alignment data - keep if sequence in list.
    seqname = line.partition(' ')[0]
    return seqname in seqnames


def truncate_stockholm_msa(stockholm_msa: str, max_sequences: int) -> str:
  """Truncates a stockholm file to a maximum number of sequences."""
  seqnames = set()
  filtered_lines = []
  for line in stockholm_msa.splitlines():
    if line.strip() and not line.startswith(('#', '//')):
      # Ignore blank lines, markup and end symbols - remainder are alignment
      # sequence parts.
      seqname = line.partition(' ')[0]
      seqnames.add(seqname)
      if len(seqnames) >= max_sequences:
        break

  for line in stockholm_msa.splitlines():
    if _keep_line(line, seqnames):
      filtered_lines.append(line)

  return '\n'.join(filtered_lines) + '\n'


def remove_empty_columns_from_stockholm_msa(stockholm_msa: str) -> str:
  """Removes empty columns (dashes-only) from a Stockholm MSA."""
  processed_lines = {}
  unprocessed_lines = {}
  for i, line in enumerate(stockholm_msa.splitlines()):
    if line.startswith('#=GC RF'):
      reference_annotation_i = i
      reference_annotation_line = line
      # Reached the end of this chunk of the alignment. Process chunk.
      _, _, first_alignment = line.rpartition(' ')
      mask = []
      for j in range(len(first_alignment)):
        for _, unprocessed_line in unprocessed_lines.items():
          prefix, _, alignment = unprocessed_line.rpartition(' ')
          if alignment[j] != '-':
            mask.append(True)
            break
        else:  # Every row contained a hyphen - empty column.
          mask.append(False)
      # Add reference annotation for processing with mask.
      unprocessed_lines[reference_annotation_i] = reference_annotation_line

      if not any(mask):  # All columns were empty. Output empty lines for chunk.
        for line_index in unprocessed_lines:
          processed_lines[line_index] = ''
      else:
        for line_index, unprocessed_line in unprocessed_lines.items():
          prefix, _, alignment = unprocessed_line.rpartition(' ')
          masked_alignment = ''.join(itertools.compress(alignment, mask))
          processed_lines[line_index] = f'{prefix} {masked_alignment}'

      # Clear raw_alignments.
      unprocessed_lines = {}
    elif line.strip() and not line.startswith(('#', '//')):
      unprocessed_lines[i] = line
    else:
      processed_lines[i] = line
  return '\n'.join((processed_lines[i] for i in range(len(processed_lines))))


def deduplicate_stockholm_msa(stockholm_msa: str) -> str:
  """Remove duplicate sequences (ignoring insertions wrt query)."""
  sequence_dict = collections.defaultdict(str)

  # First we must extract all sequences from the MSA.
  for line in stockholm_msa.splitlines():
    # Only consider the alignments - ignore reference annotation, empty lines,
    # descriptions or markup.
    if line.strip() and not line.startswith(('#', '//')):
      line = line.strip()
      seqname, alignment = line.split()
      sequence_dict[seqname] += alignment

  seen_sequences = set()
  seqnames = set()
  # First alignment is the query.
  query_align = next(iter(sequence_dict.values()))
  mask = [c != '-' for c in query_align]  # Mask is False for insertions.
  for seqname, alignment in sequence_dict.items():
    # Apply mask to remove all insertions from the string.
    masked_alignment = ''.join(itertools.compress(alignment, mask))
    if masked_alignment in seen_sequences:
      continue
    else:
      seen_sequences.add(masked_alignment)
      seqnames.add(seqname)

  filtered_lines = []
  for line in stockholm_msa.splitlines():
    if _keep_line(line, seqnames):
      filtered_lines.append(line)

  return '\n'.join(filtered_lines) + '\n'


def _get_hhr_line_regex_groups(
    regex_pattern: str, line: str) -> Sequence[Optional[str]]:
  match = re.match(regex_pattern, line)
  if match is None:
    raise RuntimeError(f'Could not parse query line {line}')
  return match.groups()


def _update_hhr_residue_indices_list(
    sequence: str, start_index: int, indices_list: List[int]):
  """Computes the relative indices for each residue with respect to the original sequence."""
  counter = start_index
  for symbol in sequence:
    if symbol == '-':
      indices_list.append(-1)
    else:
      indices_list.append(counter)
      counter += 1


def _parse_hhr_hit(detailed_lines: Sequence[str]) -> TemplateHit:
  """Parses the detailed HMM HMM comparison section for a single Hit.

  This works on .hhr files generated from both HHBlits and HHSearch.

  Args:
    detailed_lines: A list of lines from a single comparison section between 2
      sequences (which each have their own HMM's)

  Returns:
    A dictionary with the information from that detailed comparison section

  Raises:
    RuntimeError: If a certain line cannot be processed
  """
  # Parse first 2 lines.
  number_of_hit = int(detailed_lines[0].split()[-1])
  name_hit = detailed_lines[1][1:]

  # Parse the summary line.
  pattern = (
      'Probab=(.*)[\t ]*E-value=(.*)[\t ]*Score=(.*)[\t ]*Aligned_cols=(.*)[\t'
      ' ]*Identities=(.*)%[\t ]*Similarity=(.*)[\t ]*Sum_probs=(.*)[\t '
      ']*Template_Neff=(.*)')
  match = re.match(pattern, detailed_lines[2])
  if match is None:
    raise RuntimeError(
        'Could not parse section: %s. Expected this: \n%s to contain summary.' %
        (detailed_lines, detailed_lines[2]))
  (_, _, _, aligned_cols, _, _, sum_probs, _) = [float(x)
                                                 for x in match.groups()]

  # The next section reads the detailed comparisons. These are in a 'human
  # readable' format which has a fixed length. The strategy employed is to
  # assume that each block starts with the query sequence line, and to parse
  # that with a regexp in order to deduce the fixed length used for that block.
  query = ''
  hit_sequence = ''
  indices_query = []
  indices_hit = []
  length_block = None

  for line in detailed_lines[3:]:
    # Parse the query sequence line
    if (line.startswith('Q ') and not line.startswith('Q ss_dssp') and
        not line.startswith('Q ss_pred') and
        not line.startswith('Q Consensus')):
      # Thus the first 17 characters must be 'Q <query_name> ', and we can parse
      # everything after that.
      #              start    sequence       end       total_sequence_length
      patt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*([0-9]*) \([0-9]*\)'
      groups = _get_hhr_line_regex_groups(patt, line[17:])

      # Get the length of the parsed block using the start and finish indices,
      # and ensure it is the same as the actual block length.
      start = int(groups[0]) - 1  # Make index zero based.
      delta_query = groups[1]
      end = int(groups[2])
      num_insertions = len([x for x in delta_query if x == '-'])
      length_block = end - start + num_insertions
      assert length_block == len(delta_query)

      # Update the query sequence and indices list.
      query += delta_query
      _update_hhr_residue_indices_list(delta_query, start, indices_query)

    elif line.startswith('T '):
      # Parse the hit sequence.
      if (not line.startswith('T ss_dssp') and
          not line.startswith('T ss_pred') and
          not line.startswith('T Consensus')):
        # Thus the first 17 characters must be 'T <hit_name> ', and we can
        # parse everything after that.
        #              start    sequence       end     total_sequence_length
        patt = r'[\t ]*([0-9]*) ([A-Z-]*)[\t ]*[0-9]* \([0-9]*\)'
        groups = _get_hhr_line_regex_groups(patt, line[17:])
        start = int(groups[0]) - 1  # Make index zero based.
        delta_hit_sequence = groups[1]
        assert length_block == len(delta_hit_sequence)

        # Update the hit sequence and indices list.
        hit_sequence += delta_hit_sequence
        _update_hhr_residue_indices_list(delta_hit_sequence, start, indices_hit)

  return TemplateHit(
      index=number_of_hit,
      name=name_hit,
      aligned_cols=int(aligned_cols),
      sum_probs=sum_probs,
      query=query,
      hit_sequence=hit_sequence,
      indices_query=indices_query,
      indices_hit=indices_hit,
  )


def parse_hhr(hhr_string: str) -> Sequence[TemplateHit]:
  """Parses the content of an entire HHR file."""
  lines = hhr_string.splitlines()

  # Each .hhr file starts with a results table, then has a sequence of hit
  # "paragraphs", each paragraph starting with a line 'No <hit number>'. We
  # iterate through each paragraph to parse each hit.

  block_starts = [i for i, line in enumerate(lines) if line.startswith('No ')]

  hits = []
  if block_starts:
    block_starts.append(len(lines))  # Add the end of the final block.
    for i in range(len(block_starts) - 1):
      hits.append(_parse_hhr_hit(lines[block_starts[i]:block_starts[i + 1]]))
  return hits


def parse_e_values_from_tblout(tblout: str) -> Dict[str, float]:
  """Parse target to e-value mapping parsed from Jackhmmer tblout string."""
  e_values = {'query': 0}
  lines = [line for line in tblout.splitlines() if line[0] != '#']
  # As per http://eddylab.org/software/hmmer/Userguide.pdf fields are
  # space-delimited. Relevant fields are (1) target name:  and
  # (5) E-value (full sequence) (numbering from 1).
  for line in lines:
    fields = line.split()
    e_value = fields[4]
    target_name = fields[0]
    e_values[target_name] = float(e_value)
  return e_values


def _get_indices(sequence: str, start: int) -> List[int]:
  """Returns indices for non-gap/insert residues starting at the given index."""
  indices = []
  counter = start
  for symbol in sequence:
    # Skip gaps but add a placeholder so that the alignment is preserved.
    if symbol == '-':
      indices.append(-1)
    # Skip deleted residues, but increase the counter.
    elif symbol.islower():
      counter += 1
    # Normal aligned residue. Increase the counter and append to indices.
    else:
      indices.append(counter)
      counter += 1
  return indices


@dataclasses.dataclass(frozen=True)
class HitMetadata:
  pdb_id: str
  chain: str
  start: int
  end: int
  length: int
  text: str


def _parse_hmmsearch_description(description: str) -> HitMetadata:
  """Parses the hmmsearch A3M sequence description line."""
  # Example 1: >4pqx_A/2-217 [subseq from] mol:protein length:217  Free text
  # Example 2: >5g3r_A/1-55 [subseq from] mol:protein length:352
  match = re.match(
      r'^>?([a-z0-9]+)_(\w+)/([0-9]+)-([0-9]+).*protein length:([0-9]+) *(.*)$',
      description.strip())

  if not match:
    raise ValueError(f'Could not parse description: "{description}".')

  return HitMetadata(
      pdb_id=match[1],
      chain=match[2],
      start=int(match[3]),
      end=int(match[4]),
      length=int(match[5]),
      text=match[6])


def parse_hmmsearch_a3m(query_sequence: str,
                        a3m_string: str,
                        skip_first: bool = True) -> Sequence[TemplateHit]:
  """Parses an a3m string produced by hmmsearch.

  Args:
    query_sequence: The query sequence.
    a3m_string: The a3m string produced by hmmsearch.
    skip_first: Whether to skip the first sequence in the a3m string.

  Returns:
    A sequence of `TemplateHit` results.
  """
  # Zip the descriptions and MSAs together, skip the first query sequence.
  parsed_a3m = list(zip(*parse_fasta(a3m_string)))
  if skip_first:
    parsed_a3m = parsed_a3m[1:]

  indices_query = _get_indices(query_sequence, start=0)

  hits = []
  for i, (hit_sequence, hit_description) in enumerate(parsed_a3m, start=1):
    if 'mol:protein' not in hit_description:
      continue  # Skip non-protein chains.
    metadata = _parse_hmmsearch_description(hit_description)
    # Aligned columns are only the match states.
    aligned_cols = sum([r.isupper() and r != '-' for r in hit_sequence])
    indices_hit = _get_indices(hit_sequence, start=metadata.start - 1)

    hit = TemplateHit(
        index=i,
        name=f'{metadata.pdb_id}_{metadata.chain}',
        aligned_cols=aligned_cols,
        sum_probs=None,
        query=query_sequence,
        hit_sequence=hit_sequence.upper(),
        indices_query=indices_query,
        indices_hit=indices_hit,
    )
    hits.append(hit)

  return hits