Mercurial > repos > galaxyp > cravatool
diff cravatp_submit.py @ 1:2c7bcc1219fc draft
Updated cravatool to version 1.0 with updated formatting and new CRAVAT target URL.
author | galaxyp |
---|---|
date | Thu, 16 Aug 2018 12:27:35 -0400 |
parents | |
children | a018c44dc18b |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cravatp_submit.py Thu Aug 16 12:27:35 2018 -0400 @@ -0,0 +1,390 @@ +# -*- coding: utf-8 -*- +# +# Author: Ray W. Sajulga +# +# + +import requests # pipenv requests +import json +import time +import urllib +import sys +import csv +import re +import math +import argparse +from xml.etree import ElementTree as ET +from zipfile import ZipFile +try: #Python 3 + from urllib.request import urlopen +except ImportError: #Python 2 + from urllib2 import urlopen +from io import BytesIO + +# initializes blank parameters +chasm_classifier = '' +probed_filename = None +intersected_only = False +vcf_output = None +analysis_type = None + +# # Testing Command +# python cravatp_submit.py test-data/Freebayes_two-variants.vcf GRCh38 +# test-data/variant.tsv test-data/gene.tsv test-data/noncoding.tsv +# test-data/error.tsv CHASM -—classifier Breast -—proBED +# test-data/MCF7_proBed.bed +parser = argparse.ArgumentParser() +parser.add_argument('cravatInput',help='The filename of the input ' + 'CRAVAT-formatted tabular file ' + '(e.g., VCF)') +parser.add_argument('GRCh', help='The name of the human reference ' + 'genome used for annotation: ' + 'GRCh38/hg38 or GRCh37/hg19') +parser.add_argument('variant', help='The filename of the output ' + 'variant file') +parser.add_argument('gene', help='The filename of the output gene ' + 'variant report') +parser.add_argument('noncoding', help='The filename of the output ' + 'non-coding variant report') +parser.add_argument('error', help='The filename of the output error ' + 'file') +parser.add_argument('analysis', help='The machine-learning algorithm ' + 'used for CRAVAT annotation (VEST' + ' and/or CHASM)') +parser.add_argument('--classifier', help='The cancer classifier for the' + ' CHASM algorithm') +parser.add_argument('--proBED', help='The filename of the proBED file ' + 'containing peptides with genomic ' + 'coordinates') +parser.add_argument('--intersectOnly', help='Specifies whether to ' + 'analyze only variants ' + 'intersected between the ' + 'CRAVAT input and proBED ' + 'file') +parser.add_argument('--vcfOutput', help='The output filename of the ' + 'intersected VCF file') + +# assigns parsed arguments to appropriate variables +args = parser.parse_args() +input_filename = args.cravatInput +GRCh_build = args.GRCh +output_filename = args.variant +file_3 = args.gene +file_4 = args.noncoding +file_5 = args.error +if args.analysis != 'None': + analysis_type = args.analysis +if args.classifier: + chasm_classifier = args.classifier +if args.proBED: + probed_filename = args.proBED +if args.intersectOnly: + intersected_only = args.intersectOnly +if args.vcfOutput: + vcf_output = args.vcfOutput + +if analysis_type and '+' in analysis_type: + analysis_type = 'CHASM;VEST' + +# obtains the transcript's protein sequence using Ensembl API +def getSequence(transcript_id): + server = 'http://rest.ensembl.org' + ext = ('/sequence/id/' + transcript_id + + '?content-type=text/x-seqxml%2Bxml;' + 'multiple_sequences=1;type=protein') + req = requests.get(server+ext, + headers={ "Content-Type" : "text/plain"}) + + if not req.ok: + return None + + root = ET.fromstring(req.content) + for child in root.iter('AAseq'): + return child.text + +# parses the proBED file as a list. +def loadProBED(): + proBED = [] + with open(probed_filename) as tsvin: + tsvreader = csv.reader(tsvin, delimiter='\t') + for i, row in enumerate(tsvreader): + proBED.append(row) + return proBED + +write_header = True + + +# Creates an VCF file that only contains variants that overlap with the +# proteogenomic input (proBED) file if the user specifies that they want +# to only include intersected variants or if they want to receive the +# intersected VCF as well. +if probed_filename and (vcf_output or intersected_only == 'true'): + proBED = loadProBED() + if not vcf_output: + vcf_output = 'intersected_input.vcf' + with open(input_filename) as tsvin, open(vcf_output, 'wb') as tsvout: + tsvreader = csv.reader(tsvin, delimiter='\t') + tsvout = csv.writer(tsvout, delimiter='\t', escapechar=' ', + quoting=csv.QUOTE_NONE) + + for row in tsvreader: + if row == [] or row[0][0] == '#': + tsvout.writerow(row) + else: + genchrom = row[0] + genpos = int(row[1]) + + for peptide in proBED: + pepchrom = peptide[0] + pepposA = int(peptide[1]) + pepposB = int(peptide[2]) + if (genchrom == pepchrom and + pepposA <= genpos and + genpos <= pepposB): + tsvout.writerow(row) + break +if intersected_only == 'true': + input_filename = vcf_output + +# sets up the parameters for submission to the CRAVAT API +parameters = {'email':'rsajulga@umn.edu', + 'hg19': 'on' if GRCh_build == 'GRCh37' else 'off', + 'functionalannotation': 'on', + 'tsvreport' : 'on', + 'mupitinput' : 'on'} +if analysis_type: + parameters['analyses'] = analysis_type +if chasm_classifier: + parameters['chasmclassifier'] = chasm_classifier + +# plugs in params to given URL +submit = requests.post('http://www.cravat.us/CRAVAT/rest/service/submit', + files = {'inputfile':open(input_filename)}, + data = parameters) + +# makes the data a json dictionary; takes out only the job ID +jobid = json.loads(submit.text)['jobid'] + +# loops until we find a status equal to Success, then breaks +while True: + check = requests.get( + 'http://www.cravat.us/CRAVAT/rest/service/status', + params = {'jobid' : jobid}) + status = json.loads(check.text)['status'] + resultfileurl = json.loads(check.text)['resultfileurl'] + #out_file.write(str(status) + ', ') + if status == 'Success': + #out_file.write('\t' + resultfileurl) + break + else: + time.sleep(2) + +# obtains the zipfile created by CRAVAT and loads the variants and VAD +# file for processing +r = requests.get(resultfileurl, stream=True) +url = urlopen(resultfileurl) +zipfile = ZipFile(BytesIO(r.content)) +variants = zipfile.open(jobid + '/Variant.Result.tsv').readlines() +vad = zipfile.open(jobid + '/Variant_Additional_Details.Result.tsv').readlines() + +# reads and writes the gene, noncoding, and error files +open(file_3, 'wb').write(zipfile.read(jobid + '/Gene_Level_Analysis.Result.tsv')) +open(file_4, 'wb').write(zipfile.read(jobid + '/Variant_Non-coding.Result.tsv')) +open(file_5, 'wb').write(zipfile.read(jobid + '/Input_Errors.Result.tsv')) + + + +if probed_filename and not vcf_output: + proBED = loadProBED() + +if probed_filename: + with open(output_filename, 'w') as tsvout: + tsvout = csv.writer(tsvout, + delimiter='\t', + escapechar=' ', + quoting=csv.QUOTE_NONE) + n = 11 #Index for proteogenomic column start + reg_seq_change = re.compile('([A-Z]+)(\d+)([A-Z]+)') + SOtranscripts = re.compile('([A-Z]+[\d\.]+):([A-Z]+\d+[A-Z]+)') + pep_muts = {} + pep_map = {} + rows = [] + for row in vad: + row = row.decode().split('\t') + row[-1] = row[-1].replace('\n','') + if row and row[0] and not row[0].startswith('#'): + # checks if the row begins with input line + if row[0].startswith('Input line'): + vad_headers = row + + else: + # Initially screens through the output Variant + # Additional Details to catch mutations on + # same peptide region + genchrom = row[vad_headers.index('Chromosome')] + genpos = int(row[vad_headers.index('Position')]) + aa_change = row[vad_headers.index('Protein sequence change')] + input_line = row[vad_headers.index('Input line')] + + for peptide in proBED: + pepseq = peptide[3] + pepchrom = peptide[0] + pepposA = int(peptide[1]) + pepposB = int(peptide[2]) + if genchrom == pepchrom and pepposA <= genpos and genpos <= pepposB: + strand = row[vad_headers.index('Strand')] + transcript_strand = row[vad_headers.index('S.O. transcript strand')] + + # Calculates the position of the variant + # amino acid(s) on peptide + if transcript_strand == strand: + aa_peppos = int(math.ceil((genpos - pepposA)/3.0) - 1) + if (strand == '-' or transcript_strand == '-' + or aa_peppos >= len(pepseq)): + aa_peppos = int(math.floor((pepposB - genpos)/3.0)) + if pepseq in pep_muts: + if aa_change not in pep_muts[pepseq]: + pep_muts[pepseq][aa_change] = [aa_peppos] + else: + if aa_peppos not in pep_muts[pepseq][aa_change]: + pep_muts[pepseq][aa_change].append(aa_peppos) + else: + pep_muts[pepseq] = {aa_change : [aa_peppos]} + # Stores the intersect information by mapping + # Input Line (CRAVAT output) to peptide sequence. + if input_line in pep_map: + if pepseq not in pep_map[input_line]: + pep_map[input_line].append(pepseq) + else: + pep_map[input_line] = [pepseq] + # TODO: Need to obtain strand information as + # well i.e., positive (+) or negative (-) + + +with open(output_filename, 'w') as tsvout: + tsvout = csv.writer(tsvout, delimiter='\t', escapechar='', + quoting=csv.QUOTE_NONE) + headers = [] + duplicate_indices = [] + + # loops through each row in the Variant Additional Details (VAD) file + for x, row in enumerate(variants): + row = row.decode().split('\t') + row[-1] = row[-1].replace('\n','') + # sets row_2 equal to the same row in Variant Result (VR) file + row_2 = vad[x].decode().split('\t') + row_2[-1] = row_2[-1].replace('\n','') + + # checks if row is empty or if the first term contains '#' + if not row or not row[0] or row[0].startswith('#'): + if row[0]: + tsvout.writerow(row) + else: + if row[0].startswith('Input line'): + # goes through each value in the headers list in VAD + headers = row + # loops through the Keys in VR + for i,value in enumerate(row_2): + #Checks if the value is already in headers + if value in headers: + duplicate_indices.append(i) + continue + #else adds the header to headers + else: + headers.append(value) + # adds appropriate headers when proteomic input is supplied + if probed_filename: + headers.insert(n, 'Variant peptide') + headers.insert(n, 'Reference peptide') + tsvout.writerow(headers) + else: + cells = [] + # goes through each value in the next list + for value in row: + #adds it to cells + cells.append(value) + # goes through each value from the VR file after position + # 11 (After it is done repeating from VAD file) + for i,value in enumerate(row_2): + # adds in the rest of the values to cells + if i not in duplicate_indices: + # Skips the initial 11 columns and the + # VEST p-value (already in VR file) + cells.append(value) + + # Verifies the peptides intersected previously through + # sequences obtained from Ensembl's API + if probed_filename: + cells.insert(n,'') + cells.insert(n,'') + input_line = cells[headers.index('Input line')] + if input_line in pep_map: + pepseq = pep_map[input_line][0] + aa_changes = pep_muts[pepseq] + transcript_id = cells[headers.index('S.O. transcript')] + ref_fullseq = getSequence(transcript_id) + # Checks the other S.O. transcripts if the primary + # S.O. transcript has no sequence available + if not ref_fullseq: + transcripts = cells[headers.index('S.O. all transcripts')] + for transcript in transcripts.split(','): + if transcript: + mat = SOtranscripts.search(transcript) + ref_fullseq = getSequence(mat.group(1)) + if ref_fullseq: + aa_changes = {mat.group(2): [aa_changes.values()[0][0]]} + break + # Resubmits the previous transcripts without + # extensions if all S.O. transcripts fail to + # provide a sequence + if not ref_fullseq: + transcripts = cells[headers.index('S.O. all transcripts')] + for transcript in transcripts.split(','): + if transcript: + mat = SOtranscripts.search(transcript) + ref_fullseq = getSequence(mat.group(1).split('.')[0]) + if ref_fullseq: + aa_changes = {mat.group(2): [aa_changes.values()[0][0]]} + break + if ref_fullseq: + # Sorts the amino acid changes + positions = {} + for aa_change in aa_changes: + m = reg_seq_change.search(aa_change) + aa_protpos = int(m.group(2)) + aa_peppos = aa_changes[aa_change][0] + aa_startpos = aa_protpos - aa_peppos - 1 + if aa_startpos in positions: + positions[aa_startpos].append(aa_change) + else: + positions[aa_startpos] = [aa_change] + # Goes through the sorted categories to mutate the Ensembl peptide + # (uses proBED peptide as a reference) + for pep_protpos in positions: + ref_seq = ref_fullseq[pep_protpos:pep_protpos+len(pepseq)] + muts = positions[pep_protpos] + options = [] + mut_seq = ref_seq + for mut in muts: + m = reg_seq_change.search(mut) + ref_aa = m.group(1) + mut_pos = int(m.group(2)) + alt_aa = m.group(3) + pep_mutpos = mut_pos - pep_protpos - 1 + if (ref_seq[pep_mutpos] == ref_aa + and (pepseq[pep_mutpos] == alt_aa + or pepseq[pep_mutpos] == ref_aa)): + if pepseq[pep_mutpos] == ref_aa: + mut_seq = (mut_seq[:pep_mutpos] + ref_aa + + mut_seq[pep_mutpos+1:]) + else: + mut_seq = (mut_seq[:pep_mutpos] + alt_aa + + mut_seq[pep_mutpos+1:]) + else: + break + # Adds the mutated peptide and reference peptide if mutated correctly + if pepseq == mut_seq: + cells[n+1] = pepseq + cells[n] = ref_seq + tsvout.writerow(cells) +