changeset 0:83181dabeb90 draft

planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cravatool commit 4f73619e5f750916a9971e433ddd6b8dee0d7dd3
author galaxyp
date Fri, 18 May 2018 13:25:29 -0400
parents
children 2c7bcc1219fc
files cravat_submit.py cravat_submit.xml test-data/[PepPointer].bed test-data/[VCF-BEDintersect__on_data_65_and_data_6].vcf test-results/Additional_Details.tsv test-results/Gene_Level_Analysis.tsv test-results/Input_Errors.Result.tsv test-results/Variant_Non-coding.Result.tsv test-results/Variant_Result.tsv test-results/combined_variants.tsv
diffstat 10 files changed, 986 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cravat_submit.py	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,287 @@
+import requests
+import json
+import time
+import urllib
+import sys
+import csv
+import re
+import math
+from difflib import SequenceMatcher
+from xml.etree import ElementTree as ET
+import sqlite3
+
+try:
+    input_filename = sys.argv[1]
+    input_select_bar = sys.argv[2]
+    GRCh_build = sys.argv[3]
+    probed_filename = sys.argv[4]
+    output_filename = sys.argv[5]
+    file_3 = sys.argv[6]
+    file_4 = sys.argv[7]
+    file_5 = sys.argv[8]
+except:
+    # Filenames for testing.
+    input_filename = 'test-data/[VCF-BEDintersect__on_data_65_and_data_6].vcf'
+    probed_filename = 'test-data/[PepPointer].bed'
+    input_select_bar = 'VEST'
+    GRCh_build = 'GRCh38'
+    output_filename = 'combined_variants.tsv'
+    file_3 = 'test-results/Gene_Level_Analysis.tsv'
+    file_4 = 'test-results/Variant_Non-coding.Result.tsv'
+    file_5 = 'test-results/Input_Errors.Result.tsv'
+    matches_filename = 'matches.tsv'
+
+def getSequence(transcript_id):
+    server = 'http://rest.ensembl.org'
+    ext = '/sequence/id/' + transcript_id + '?content-type=text/x-seqxml%2Bxml;multiple_sequences=1;type=protein'
+    req = requests.get(server+ext, headers={ "Content-Type" : "text/plain"})
+    
+    if not req.ok:
+        return None
+    
+    root = ET.fromstring(req.content)
+    for child in root.iter('AAseq'):
+        return child.text
+
+
+write_header = True
+
+GRCh37hg19 = 'off'
+if GRCh_build == 'GRCh37':
+    GRCh37hg19 = 'on'
+
+#plugs in params to given URL
+submit = requests.post('http://staging.cravat.us/CRAVAT/rest/service/submit', files={'inputfile':open(input_filename)}, data={'email':'znylund@insilico.us.com', 'analyses': input_select_bar, 'hg19': GRCh37hg19})
+
+#Makes the data a json dictionary, takes out only the job ID
+jobid = json.loads(submit.text)['jobid']
+
+#out_file.write(jobid)    
+submitted = json.loads(submit.text)['status']
+#out_file.write('\t' + submitted)
+
+input_file = open(input_filename)
+
+# Loads the proBED file as a list. 
+if (probed_filename != 'None'):
+    proBED = []
+    with open(probed_filename) as tsvin:
+        tsvreader = csv.reader(tsvin, delimiter='\t')
+        for i, row in enumerate(tsvreader):
+            proBED.append(row)
+  
+#loops until we find a status equal to Success, then breaks
+while True:
+    check = requests.get('http://staging.cravat.us/CRAVAT/rest/service/status', params={'jobid': jobid})
+    status = json.loads(check.text)['status']
+    resultfileurl = json.loads(check.text)['resultfileurl']
+    #out_file.write(str(status) + ', ')
+    if status == 'Success':
+        #out_file.write('\t' + resultfileurl)
+        break
+    else:
+        time.sleep(2)
+        
+#out_file.write('\n')
+
+#creates three files
+file_1 = 'Variant_Result.tsv'
+file_2 = 'Additional_Details.tsv'
+#file_3 = time.strftime("%H:%M") + 'Combined_Variant_Results.tsv'
+
+#Downloads the tabular results
+urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Variant.Result.tsv", file_1)
+urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Variant_Additional_Details.Result.tsv", file_2)
+urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Gene_Level_Analysis.Result.tsv", file_3)
+urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Variant_Non-coding.Result.tsv", file_4)
+urllib.urlretrieve("http://staging.cravat.us/CRAVAT/results/" + jobid + "/" + "Input_Errors.Result.tsv", file_5)
+
+#opens the Variant Result file and the Variant Additional Details file as csv readers, then opens the output file (galaxy) as a writer
+with open(file_1) as tsvin_1, open(file_2) as tsvin_2, open(output_filename, 'wb') as tsvout:
+    tsvreader_2 = csv.reader(tsvin_2, delimiter='\t')        
+    tsvout = csv.writer(tsvout, delimiter='\t')
+
+    headers = []
+    duplicate_indices = []
+    n = 12 #Index for proteogenomic column start
+    reg_seq_change = re.compile('([A-Z]+)(\d+)([A-Z]+)')
+    SOtranscripts = re.compile('([A-Z]+[\d\.]+):([A-Z]+\d+[A-Z]+)')
+    pep_muts = {}
+    pep_map = {}
+    rows = []
+
+    for row in tsvreader_2:
+        if row != [] and row[0][0] != '#':
+        #checks if the row begins with input line
+            if row[0] == 'Input line':
+                vad_headers = row
+            else:
+                # Initially screens through the output Variant Additional Details to catch mutations on same peptide region
+                genchrom = row[vad_headers.index('Chromosome')]
+                genpos = int(row[vad_headers.index('Position')])
+                aa_change = row[vad_headers.index('Protein sequence change')]
+                input_line = row[vad_headers.index('Input line')]
+                
+                for peptide in proBED:
+                    pepseq = peptide[3]
+                    pepchrom = peptide[0]
+                    pepposA = int(peptide[1])
+                    pepposB = int(peptide[2])
+                    if genchrom == pepchrom and pepposA <= genpos and genpos <= pepposB:
+                        strand = row[vad_headers.index('Strand')]
+                        transcript_strand = row[vad_headers.index('S.O. transcript strand')]
+
+                        # Calculates the position of the variant amino acid(s) on peptide
+                        if transcript_strand == strand:                               
+                            aa_peppos = int(math.ceil((genpos - pepposA)/3.0) - 1)
+                        if strand == '-' or transcript_strand == '-' or aa_peppos >= len(pepseq):
+                            aa_peppos = int(math.floor((pepposB - genpos)/3.0))
+                        if pepseq in pep_muts:
+                            if aa_change not in pep_muts[pepseq]:
+                                pep_muts[pepseq][aa_change] = [aa_peppos]
+                            else:
+                                if aa_peppos not in pep_muts[pepseq][aa_change]:
+                                    pep_muts[pepseq][aa_change].append(aa_peppos)
+                        else:
+                            pep_muts[pepseq] = {aa_change : [aa_peppos]}
+                        # Stores the intersect information by mapping Input Line (CRAVAT output) to peptide sequence.
+                        if input_line in pep_map:
+                            if pepseq not in pep_map[input_line]:
+                                pep_map[input_line].append(pepseq)
+                        else:
+                            pep_map[input_line] = [pepseq]
+
+with open(file_1) as tsvin_1, open(file_2) as tsvin_2, open(output_filename, 'wb') as tsvout:
+    tsvreader_1 = csv.reader(tsvin_1, delimiter='\t')
+    tsvreader_2 = csv.reader(tsvin_2, delimiter='\t')
+    tsvout = csv.writer(tsvout, delimiter='\t')
+
+    headers = []
+            
+    #loops through each row in the Variant Additional Details (VAD) file
+    for row in tsvreader_2:
+        
+        #sets row_2 equal to the same row in Variant Result (VR) file
+        row_2 = tsvreader_1.next()
+        #checks if row is empty or if the first term contains '#'
+        if row == [] or row[0][0] == '#':
+            tsvout.writerow(row)
+        else:
+            if row[0] == 'Input line': 
+                #Goes through each value in the headers list in VAD
+                for value in row:   
+                    #Adds each value into headers 
+                    headers.append(value)
+                #Loops through the Keys in VR
+                for i,value in enumerate(row_2):
+                    #Checks if the value is already in headers
+                    if value in headers:
+                        duplicate_indices.append(i)
+                        continue
+                    #else adds the header to headers
+                    else:
+                        headers.append(value)
+                #Adds appropriate headers when proteomic input is supplied
+                if (probed_filename != 'None'):
+                    headers.insert(n, 'Variant peptide')
+                    headers.insert(n, 'Reference peptide')
+                tsvout.writerow(headers)
+            else:                        
+                cells = []
+                #Goes through each value in the next list
+                for value in row:
+                    #adds it to cells
+                    cells.append(value)
+                #Goes through each value from the VR file after position 11 (After it is done repeating from VAD file)
+                for i,value in enumerate(row_2):
+                    #adds in the rest of the values to cells
+                    if i not in duplicate_indices:
+                        # Skips the initial 11 columns and the VEST p-value (already in VR file)
+                        cells.append(value)
+
+                # Verifies the peptides intersected previously through sequences obtained from Ensembl's API
+                if (probed_filename != 'None'):
+                    cells.insert(n,'')
+                    cells.insert(n,'')
+                    input_line = cells[headers.index('Input line')]
+                    if input_line in pep_map:
+                        pepseq = pep_map[input_line][0]
+                        aa_changes = pep_muts[pepseq]
+                        transcript_id = cells[headers.index('S.O. transcript')]
+                        ref_fullseq = getSequence(transcript_id)
+                        # Checks the other S.O. transcripts if the primary S.O. transcript has no sequence available
+                        if not ref_fullseq:
+                            transcripts = cells[headers.index('S.O. all transcripts')]
+                            for transcript in transcripts.split(','):
+                                if transcript:
+                                    mat = SOtranscripts.search(transcript)
+                                    ref_fullseq = getSequence(mat.group(1))
+                                    if ref_fullseq:
+                                        aa_changes = {mat.group(2): [aa_changes.values()[0][0]]}
+                                        break
+                        # Resubmits the previous transcripts without extensions if all S.O. transcripts fail to provide a sequence
+                        if not ref_fullseq:
+                            transcripts = cells[headers.index('S.O. all transcripts')]
+                            for transcript in transcripts.split(','):
+                                if transcript:
+                                    mat = SOtranscripts.search(transcript)
+                                    ref_fullseq = getSequence(mat.group(1).split('.')[0])
+                                    if ref_fullseq:
+                                        aa_changes = {mat.group(2): [aa_changes.values()[0][0]]}
+                                        break
+                        if ref_fullseq:
+                            # Sorts the amino acid changes
+                            positions = {}
+                            for aa_change in aa_changes:
+                                m = reg_seq_change.search(aa_change)
+                                aa_protpos = int(m.group(2))
+                                aa_peppos = aa_changes[aa_change][0]
+                                aa_startpos = aa_protpos - aa_peppos - 1
+                                if aa_startpos in positions:
+                                    positions[aa_startpos].append(aa_change)
+                                else:
+                                    positions[aa_startpos] = [aa_change]
+                            # Goes through the sorted categories to mutate the Ensembl peptide (uses proBED peptide as a reference)
+                            for pep_protpos in positions:
+                                ref_seq = ref_fullseq[pep_protpos:pep_protpos+len(pepseq)]
+                                muts = positions[pep_protpos]
+                                options = []
+                                mut_seq = ref_seq
+                                for mut in muts:
+                                    m = reg_seq_change.search(mut)
+                                    ref_aa = m.group(1)
+                                    mut_pos = int(m.group(2))
+                                    alt_aa = m.group(3)
+                                    pep_mutpos = mut_pos - pep_protpos - 1
+                                    if ref_seq[pep_mutpos] == ref_aa and (pepseq[pep_mutpos] == alt_aa or pepseq[pep_mutpos] == ref_aa):
+                                        if pepseq[pep_mutpos] == ref_aa:
+                                            mut_seq = mut_seq[:pep_mutpos] + ref_aa + mut_seq[pep_mutpos+1:]
+                                        else:
+                                            mut_seq = mut_seq[:pep_mutpos] + alt_aa + mut_seq[pep_mutpos+1:]
+                                    else:
+                                        break
+                                # Adds the mutated peptide and reference peptide if mutated correctly
+                                if pepseq == mut_seq:
+                                    cells[n+1] = pepseq
+                                    cells[n] = ref_seq
+                #print  cells
+                tsvout.writerow(cells)
+
+
+
+            
+    
+
+#a = 'col1\tcol2\tcol3'
+#header_list = a.split('\t')
+
+#loop through the two results, when you first hit header you print out the headers in tabular form
+#Print out each header only once
+#Combine both headers into one output file
+#loop through the rest of the data and assign each value to its assigned header
+#combine this all into one output file
+
+
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cravat_submit.xml	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,44 @@
+<tool id="cravat_submit" name="CRAVAT Submit, Check, and Retrieve" version="0.1.0">
+    <description>Submits, checks for, and retrieves data for cancer annotation</description>
+  <command interpreter="python">cravat_submit.py $input $dropdown $GRCh $psm $Variant $Gene $Noncoding $Error</command>
+  
+  
+  <inputs>
+  
+    <param format="tabular" name="input" type="data" label="Source file"> </param>
+    <param format="tabular" name="dropdown" type="select" label="Analysis Program">
+      <option value="">None</option>
+      <option value="VEST">VEST</option>
+      <option value="CHASM">CHASM</option>
+      <option value="VEST;CHASM">VEST and CHASM</option>
+    </param>
+    <param format="tabular" name="GRCh" type="select" label="Genome Reference Consortium Human Build (GRCh)">
+      <option value="GRCh38">GRCh38/hg38</option>
+      <option value="GRCh37">GRCh37/hg19</option>
+    </param>
+    <param format="tabular" name="psm" type="data" optional="true" label="ProBED File(Optional)"> </param>
+    
+    
+  </inputs>
+  
+  <outputs>
+      <collection name="collection" type="list" label="CRAVAT Results: ${on_string} using ${dropdown}">
+        <data format="cravat" label="CRAVAT: Gene Level Annotation Report" name="Gene" />
+        <data format="cravat" label="CRAVAT: Variant Report" name="Variant" />
+        <data format="cravat" label="CRAVAT: Non-coding Variant Report" name="Noncoding" />
+        <data format="cravat" label="CRAVAT: Errors" name="Error" />
+      </collection>
+  </outputs>
+
+  <tests>
+    <test>
+      <param name="input" value="fa_gc_content_input.fa"/>
+      <output name="out_file1" file="fa_gc_content_output.txt"/>
+    </test>
+  </tests>
+
+  <help>
+ This tool submits, checks for, and retrieves data for cancer annotation from the CRAVAT platform at cravat.us.
+  </help>
+
+</tool>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/[PepPointer].bed	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,20 @@
+chr14	94079127	94079178	ADVSAWKDLFVPGPVLR	255	-	CDS
+chr14	94079127	94079178	ADVSAWKDLFVPGPVLR	255	-	CDS
+chr14	102011973	102012027	ALESLEGVEGVAHIIDPK	255	+	CDS
+chr19	18856027	18856078	EAIDSPVSFLVLHNQIR	255	+	CDS
+chr12	110339607	110339637	EWGSGSDILR	255	+	CDS
+chr12	110339607	110339637	EWGSGSDILR	255	+	CDS
+chr14	102083930	102083972	GVVDSENLPLNISR	255	-	CDS
+chr14	102083930	102083972	GVVDSENLPLNISR	255	-	CDS
+chr19	17205300	17206022	IQSHCSYTYGRMGEPGAEPGHFGVCVDSLTSDK	255	+	SpliceJunction
+chr1	156705410	156705446	MPNFSGNWEIIR	255	-	CDS
+chr1	156705410	156705446	MPNFSGNWEIIR	255	-	CDS
+chr2	231457346	231457474	NSTWSDDSR	255	-	SpliceJunction
+chr17	82082586	82082643	QGVQVQVSTSNINSLEGAR	255	-	CDS
+chr17	82082586	82082643	QGVQVQVSTSNINSLEGAR	255	-	CDS
+chr12	6561014	6561056	STGVILANDANAER	255	-	CDS
+chr12	6561014	6561056	STGVILANDANAER	255	-	CDS
+chr12	6561014	6561056	STGVILANDANAER	255	-	CDS
+chr12	6561014	6561056	STGVILANDANAER	255	-	CDS
+chr2	231457113	231457124	TLQHVLGESK	255	-	SpliceJunction
+chr17	2711607	2711658	VIKTDELPAAAPADSAR	255	-	CDS
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/[VCF-BEDintersect__on_data_65_and_data_6].vcf	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,526 @@
+##fileformat=VCFv4.2
+##fileDate=20180504
+##source=freeBayes v1.1.0-46-g8d2b3a0-dirty
+##reference=/panfs/roc/rissdb/galaxy/genomes/hg38/seq/hg38.fa
+##contig=<ID=chr1,length=248956422>
+##contig=<ID=chr10,length=133797422>
+##contig=<ID=chr11,length=135086622>
+##contig=<ID=chr11_KI270721v1_random,length=100316>
+##contig=<ID=chr12,length=133275309>
+##contig=<ID=chr13,length=114364328>
+##contig=<ID=chr14,length=107043718>
+##contig=<ID=chr14_GL000009v2_random,length=201709>
+##contig=<ID=chr14_GL000225v1_random,length=211173>
+##contig=<ID=chr14_KI270722v1_random,length=194050>
+##contig=<ID=chr14_GL000194v1_random,length=191469>
+##contig=<ID=chr14_KI270723v1_random,length=38115>
+##contig=<ID=chr14_KI270724v1_random,length=39555>
+##contig=<ID=chr14_KI270725v1_random,length=172810>
+##contig=<ID=chr14_KI270726v1_random,length=43739>
+##contig=<ID=chr15,length=101991189>
+##contig=<ID=chr15_KI270727v1_random,length=448248>
+##contig=<ID=chr16,length=90338345>
+##contig=<ID=chr16_KI270728v1_random,length=1872759>
+##contig=<ID=chr17,length=83257441>
+##contig=<ID=chr17_GL000205v2_random,length=185591>
+##contig=<ID=chr17_KI270729v1_random,length=280839>
+##contig=<ID=chr17_KI270730v1_random,length=112551>
+##contig=<ID=chr18,length=80373285>
+##contig=<ID=chr19,length=58617616>
+##contig=<ID=chr1_KI270706v1_random,length=175055>
+##contig=<ID=chr1_KI270707v1_random,length=32032>
+##contig=<ID=chr1_KI270708v1_random,length=127682>
+##contig=<ID=chr1_KI270709v1_random,length=66860>
+##contig=<ID=chr1_KI270710v1_random,length=40176>
+##contig=<ID=chr1_KI270711v1_random,length=42210>
+##contig=<ID=chr1_KI270712v1_random,length=176043>
+##contig=<ID=chr1_KI270713v1_random,length=40745>
+##contig=<ID=chr1_KI270714v1_random,length=41717>
+##contig=<ID=chr2,length=242193529>
+##contig=<ID=chr20,length=64444167>
+##contig=<ID=chr21,length=46709983>
+##contig=<ID=chr22,length=50818468>
+##contig=<ID=chr22_KI270731v1_random,length=150754>
+##contig=<ID=chr22_KI270732v1_random,length=41543>
+##contig=<ID=chr22_KI270733v1_random,length=179772>
+##contig=<ID=chr22_KI270734v1_random,length=165050>
+##contig=<ID=chr22_KI270735v1_random,length=42811>
+##contig=<ID=chr22_KI270736v1_random,length=181920>
+##contig=<ID=chr22_KI270737v1_random,length=103838>
+##contig=<ID=chr22_KI270738v1_random,length=99375>
+##contig=<ID=chr22_KI270739v1_random,length=73985>
+##contig=<ID=chr2_KI270715v1_random,length=161471>
+##contig=<ID=chr2_KI270716v1_random,length=153799>
+##contig=<ID=chr3,length=198295559>
+##contig=<ID=chr3_GL000221v1_random,length=155397>
+##contig=<ID=chr4,length=190214555>
+##contig=<ID=chr4_GL000008v2_random,length=209709>
+##contig=<ID=chr5,length=181538259>
+##contig=<ID=chr5_GL000208v1_random,length=92689>
+##contig=<ID=chr6,length=170805979>
+##contig=<ID=chr7,length=159345973>
+##contig=<ID=chr8,length=145138636>
+##contig=<ID=chr9,length=138394717>
+##contig=<ID=chr9_KI270717v1_random,length=40062>
+##contig=<ID=chr9_KI270718v1_random,length=38054>
+##contig=<ID=chr9_KI270719v1_random,length=176845>
+##contig=<ID=chr9_KI270720v1_random,length=39050>
+##contig=<ID=chr1_KI270762v1_alt,length=354444>
+##contig=<ID=chr1_KI270766v1_alt,length=256271>
+##contig=<ID=chr1_KI270760v1_alt,length=109528>
+##contig=<ID=chr1_KI270765v1_alt,length=185285>
+##contig=<ID=chr1_GL383518v1_alt,length=182439>
+##contig=<ID=chr1_GL383519v1_alt,length=110268>
+##contig=<ID=chr1_GL383520v2_alt,length=366580>
+##contig=<ID=chr1_KI270764v1_alt,length=50258>
+##contig=<ID=chr1_KI270763v1_alt,length=911658>
+##contig=<ID=chr1_KI270759v1_alt,length=425601>
+##contig=<ID=chr1_KI270761v1_alt,length=165834>
+##contig=<ID=chr2_KI270770v1_alt,length=136240>
+##contig=<ID=chr2_KI270773v1_alt,length=70887>
+##contig=<ID=chr2_KI270774v1_alt,length=223625>
+##contig=<ID=chr2_KI270769v1_alt,length=120616>
+##contig=<ID=chr2_GL383521v1_alt,length=143390>
+##contig=<ID=chr2_KI270772v1_alt,length=133041>
+##contig=<ID=chr2_KI270775v1_alt,length=138019>
+##contig=<ID=chr2_KI270771v1_alt,length=110395>
+##contig=<ID=chr2_KI270768v1_alt,length=110099>
+##contig=<ID=chr2_GL582966v2_alt,length=96131>
+##contig=<ID=chr2_GL383522v1_alt,length=123821>
+##contig=<ID=chr2_KI270776v1_alt,length=174166>
+##contig=<ID=chr2_KI270767v1_alt,length=161578>
+##contig=<ID=chr3_JH636055v2_alt,length=173151>
+##contig=<ID=chr3_KI270783v1_alt,length=109187>
+##contig=<ID=chr3_KI270780v1_alt,length=224108>
+##contig=<ID=chr3_GL383526v1_alt,length=180671>
+##contig=<ID=chr3_KI270777v1_alt,length=173649>
+##contig=<ID=chr3_KI270778v1_alt,length=248252>
+##contig=<ID=chr3_KI270781v1_alt,length=113034>
+##contig=<ID=chr3_KI270779v1_alt,length=205312>
+##contig=<ID=chr3_KI270782v1_alt,length=162429>
+##contig=<ID=chr3_KI270784v1_alt,length=184404>
+##contig=<ID=chr4_KI270790v1_alt,length=220246>
+##contig=<ID=chr4_GL383528v1_alt,length=376187>
+##contig=<ID=chr4_KI270787v1_alt,length=111943>
+##contig=<ID=chr4_GL000257v2_alt,length=586476>
+##contig=<ID=chr4_KI270788v1_alt,length=158965>
+##contig=<ID=chr4_GL383527v1_alt,length=164536>
+##contig=<ID=chr4_KI270785v1_alt,length=119912>
+##contig=<ID=chr4_KI270789v1_alt,length=205944>
+##contig=<ID=chr4_KI270786v1_alt,length=244096>
+##contig=<ID=chr5_KI270793v1_alt,length=126136>
+##contig=<ID=chr5_KI270792v1_alt,length=179043>
+##contig=<ID=chr5_KI270791v1_alt,length=195710>
+##contig=<ID=chr5_GL383532v1_alt,length=82728>
+##contig=<ID=chr5_GL949742v1_alt,length=226852>
+##contig=<ID=chr5_KI270794v1_alt,length=164558>
+##contig=<ID=chr5_GL339449v2_alt,length=1612928>
+##contig=<ID=chr5_GL383530v1_alt,length=101241>
+##contig=<ID=chr5_KI270796v1_alt,length=172708>
+##contig=<ID=chr5_GL383531v1_alt,length=173459>
+##contig=<ID=chr5_KI270795v1_alt,length=131892>
+##contig=<ID=chr6_GL000250v2_alt,length=4672374>
+##contig=<ID=chr6_KI270800v1_alt,length=175808>
+##contig=<ID=chr6_KI270799v1_alt,length=152148>
+##contig=<ID=chr6_GL383533v1_alt,length=124736>
+##contig=<ID=chr6_KI270801v1_alt,length=870480>
+##contig=<ID=chr6_KI270802v1_alt,length=75005>
+##contig=<ID=chr6_KB021644v2_alt,length=185823>
+##contig=<ID=chr6_KI270797v1_alt,length=197536>
+##contig=<ID=chr6_KI270798v1_alt,length=271782>
+##contig=<ID=chr7_KI270804v1_alt,length=157952>
+##contig=<ID=chr7_KI270809v1_alt,length=209586>
+##contig=<ID=chr7_KI270806v1_alt,length=158166>
+##contig=<ID=chr7_GL383534v2_alt,length=119183>
+##contig=<ID=chr7_KI270803v1_alt,length=1111570>
+##contig=<ID=chr7_KI270808v1_alt,length=271455>
+##contig=<ID=chr7_KI270807v1_alt,length=126434>
+##contig=<ID=chr7_KI270805v1_alt,length=209988>
+##contig=<ID=chr8_KI270818v1_alt,length=145606>
+##contig=<ID=chr8_KI270812v1_alt,length=282736>
+##contig=<ID=chr8_KI270811v1_alt,length=292436>
+##contig=<ID=chr8_KI270821v1_alt,length=985506>
+##contig=<ID=chr8_KI270813v1_alt,length=300230>
+##contig=<ID=chr8_KI270822v1_alt,length=624492>
+##contig=<ID=chr8_KI270814v1_alt,length=141812>
+##contig=<ID=chr8_KI270810v1_alt,length=374415>
+##contig=<ID=chr8_KI270819v1_alt,length=133535>
+##contig=<ID=chr8_KI270820v1_alt,length=36640>
+##contig=<ID=chr8_KI270817v1_alt,length=158983>
+##contig=<ID=chr8_KI270816v1_alt,length=305841>
+##contig=<ID=chr8_KI270815v1_alt,length=132244>
+##contig=<ID=chr9_GL383539v1_alt,length=162988>
+##contig=<ID=chr9_GL383540v1_alt,length=71551>
+##contig=<ID=chr9_GL383541v1_alt,length=171286>
+##contig=<ID=chr9_GL383542v1_alt,length=60032>
+##contig=<ID=chr9_KI270823v1_alt,length=439082>
+##contig=<ID=chr10_GL383545v1_alt,length=179254>
+##contig=<ID=chr10_KI270824v1_alt,length=181496>
+##contig=<ID=chr10_GL383546v1_alt,length=309802>
+##contig=<ID=chr10_KI270825v1_alt,length=188315>
+##contig=<ID=chr11_KI270832v1_alt,length=210133>
+##contig=<ID=chr11_KI270830v1_alt,length=177092>
+##contig=<ID=chr11_KI270831v1_alt,length=296895>
+##contig=<ID=chr11_KI270829v1_alt,length=204059>
+##contig=<ID=chr11_GL383547v1_alt,length=154407>
+##contig=<ID=chr11_JH159136v1_alt,length=200998>
+##contig=<ID=chr11_JH159137v1_alt,length=191409>
+##contig=<ID=chr11_KI270827v1_alt,length=67707>
+##contig=<ID=chr11_KI270826v1_alt,length=186169>
+##contig=<ID=chr12_GL877875v1_alt,length=167313>
+##contig=<ID=chr12_GL877876v1_alt,length=408271>
+##contig=<ID=chr12_KI270837v1_alt,length=40090>
+##contig=<ID=chr12_GL383549v1_alt,length=120804>
+##contig=<ID=chr12_KI270835v1_alt,length=238139>
+##contig=<ID=chr12_GL383550v2_alt,length=169178>
+##contig=<ID=chr12_GL383552v1_alt,length=138655>
+##contig=<ID=chr12_GL383553v2_alt,length=152874>
+##contig=<ID=chr12_KI270834v1_alt,length=119498>
+##contig=<ID=chr12_GL383551v1_alt,length=184319>
+##contig=<ID=chr12_KI270833v1_alt,length=76061>
+##contig=<ID=chr12_KI270836v1_alt,length=56134>
+##contig=<ID=chr13_KI270840v1_alt,length=191684>
+##contig=<ID=chr13_KI270839v1_alt,length=180306>
+##contig=<ID=chr13_KI270843v1_alt,length=103832>
+##contig=<ID=chr13_KI270841v1_alt,length=169134>
+##contig=<ID=chr13_KI270838v1_alt,length=306913>
+##contig=<ID=chr13_KI270842v1_alt,length=37287>
+##contig=<ID=chr14_KI270844v1_alt,length=322166>
+##contig=<ID=chr14_KI270847v1_alt,length=1511111>
+##contig=<ID=chr14_KI270845v1_alt,length=180703>
+##contig=<ID=chr14_KI270846v1_alt,length=1351393>
+##contig=<ID=chr15_KI270852v1_alt,length=478999>
+##contig=<ID=chr15_KI270851v1_alt,length=263054>
+##contig=<ID=chr15_KI270848v1_alt,length=327382>
+##contig=<ID=chr15_GL383554v1_alt,length=296527>
+##contig=<ID=chr15_KI270849v1_alt,length=244917>
+##contig=<ID=chr15_GL383555v2_alt,length=388773>
+##contig=<ID=chr15_KI270850v1_alt,length=430880>
+##contig=<ID=chr16_KI270854v1_alt,length=134193>
+##contig=<ID=chr16_KI270856v1_alt,length=63982>
+##contig=<ID=chr16_KI270855v1_alt,length=232857>
+##contig=<ID=chr16_KI270853v1_alt,length=2659700>
+##contig=<ID=chr16_GL383556v1_alt,length=192462>
+##contig=<ID=chr16_GL383557v1_alt,length=89672>
+##contig=<ID=chr17_GL383563v3_alt,length=375691>
+##contig=<ID=chr17_KI270862v1_alt,length=391357>
+##contig=<ID=chr17_KI270861v1_alt,length=196688>
+##contig=<ID=chr17_KI270857v1_alt,length=2877074>
+##contig=<ID=chr17_JH159146v1_alt,length=278131>
+##contig=<ID=chr17_JH159147v1_alt,length=70345>
+##contig=<ID=chr17_GL383564v2_alt,length=133151>
+##contig=<ID=chr17_GL000258v2_alt,length=1821992>
+##contig=<ID=chr17_GL383565v1_alt,length=223995>
+##contig=<ID=chr17_KI270858v1_alt,length=235827>
+##contig=<ID=chr17_KI270859v1_alt,length=108763>
+##contig=<ID=chr17_GL383566v1_alt,length=90219>
+##contig=<ID=chr17_KI270860v1_alt,length=178921>
+##contig=<ID=chr18_KI270864v1_alt,length=111737>
+##contig=<ID=chr18_GL383567v1_alt,length=289831>
+##contig=<ID=chr18_GL383570v1_alt,length=164789>
+##contig=<ID=chr18_GL383571v1_alt,length=198278>
+##contig=<ID=chr18_GL383568v1_alt,length=104552>
+##contig=<ID=chr18_GL383569v1_alt,length=167950>
+##contig=<ID=chr18_GL383572v1_alt,length=159547>
+##contig=<ID=chr18_KI270863v1_alt,length=167999>
+##contig=<ID=chr19_KI270868v1_alt,length=61734>
+##contig=<ID=chr19_KI270865v1_alt,length=52969>
+##contig=<ID=chr19_GL383573v1_alt,length=385657>
+##contig=<ID=chr19_GL383575v2_alt,length=170222>
+##contig=<ID=chr19_GL383576v1_alt,length=188024>
+##contig=<ID=chr19_GL383574v1_alt,length=155864>
+##contig=<ID=chr19_KI270866v1_alt,length=43156>
+##contig=<ID=chr19_KI270867v1_alt,length=233762>
+##contig=<ID=chr19_GL949746v1_alt,length=987716>
+##contig=<ID=chr20_GL383577v2_alt,length=128386>
+##contig=<ID=chr20_KI270869v1_alt,length=118774>
+##contig=<ID=chr20_KI270871v1_alt,length=58661>
+##contig=<ID=chr20_KI270870v1_alt,length=183433>
+##contig=<ID=chr21_GL383578v2_alt,length=63917>
+##contig=<ID=chr21_KI270874v1_alt,length=166743>
+##contig=<ID=chr21_KI270873v1_alt,length=143900>
+##contig=<ID=chr21_GL383579v2_alt,length=201197>
+##contig=<ID=chr21_GL383580v2_alt,length=74653>
+##contig=<ID=chr21_GL383581v2_alt,length=116689>
+##contig=<ID=chr21_KI270872v1_alt,length=82692>
+##contig=<ID=chr22_KI270875v1_alt,length=259914>
+##contig=<ID=chr22_KI270878v1_alt,length=186262>
+##contig=<ID=chr22_KI270879v1_alt,length=304135>
+##contig=<ID=chr22_KI270876v1_alt,length=263666>
+##contig=<ID=chr22_KI270877v1_alt,length=101331>
+##contig=<ID=chr22_GL383583v2_alt,length=96924>
+##contig=<ID=chr22_GL383582v2_alt,length=162811>
+##contig=<ID=chrX_KI270880v1_alt,length=284869>
+##contig=<ID=chrX_KI270881v1_alt,length=144206>
+##contig=<ID=chr19_KI270882v1_alt,length=248807>
+##contig=<ID=chr19_KI270883v1_alt,length=170399>
+##contig=<ID=chr19_KI270884v1_alt,length=157053>
+##contig=<ID=chr19_KI270885v1_alt,length=171027>
+##contig=<ID=chr19_KI270886v1_alt,length=204239>
+##contig=<ID=chr19_KI270887v1_alt,length=209512>
+##contig=<ID=chr19_KI270888v1_alt,length=155532>
+##contig=<ID=chr19_KI270889v1_alt,length=170698>
+##contig=<ID=chr19_KI270890v1_alt,length=184499>
+##contig=<ID=chr19_KI270891v1_alt,length=170680>
+##contig=<ID=chr1_KI270892v1_alt,length=162212>
+##contig=<ID=chr2_KI270894v1_alt,length=214158>
+##contig=<ID=chr2_KI270893v1_alt,length=161218>
+##contig=<ID=chr3_KI270895v1_alt,length=162896>
+##contig=<ID=chr4_KI270896v1_alt,length=378547>
+##contig=<ID=chr5_KI270897v1_alt,length=1144418>
+##contig=<ID=chr5_KI270898v1_alt,length=130957>
+##contig=<ID=chr6_GL000251v2_alt,length=4795265>
+##contig=<ID=chr7_KI270899v1_alt,length=190869>
+##contig=<ID=chr8_KI270901v1_alt,length=136959>
+##contig=<ID=chr8_KI270900v1_alt,length=318687>
+##contig=<ID=chr11_KI270902v1_alt,length=106711>
+##contig=<ID=chr11_KI270903v1_alt,length=214625>
+##contig=<ID=chr12_KI270904v1_alt,length=572349>
+##contig=<ID=chr15_KI270906v1_alt,length=196384>
+##contig=<ID=chr15_KI270905v1_alt,length=5161414>
+##contig=<ID=chr17_KI270907v1_alt,length=137721>
+##contig=<ID=chr17_KI270910v1_alt,length=157099>
+##contig=<ID=chr17_KI270909v1_alt,length=325800>
+##contig=<ID=chr17_JH159148v1_alt,length=88070>
+##contig=<ID=chr17_KI270908v1_alt,length=1423190>
+##contig=<ID=chr18_KI270912v1_alt,length=174061>
+##contig=<ID=chr18_KI270911v1_alt,length=157710>
+##contig=<ID=chr19_GL949747v2_alt,length=729520>
+##contig=<ID=chr22_KB663609v1_alt,length=74013>
+##contig=<ID=chrX_KI270913v1_alt,length=274009>
+##contig=<ID=chr19_KI270914v1_alt,length=205194>
+##contig=<ID=chr19_KI270915v1_alt,length=170665>
+##contig=<ID=chr19_KI270916v1_alt,length=184516>
+##contig=<ID=chr19_KI270917v1_alt,length=190932>
+##contig=<ID=chr19_KI270918v1_alt,length=123111>
+##contig=<ID=chr19_KI270919v1_alt,length=170701>
+##contig=<ID=chr19_KI270920v1_alt,length=198005>
+##contig=<ID=chr19_KI270921v1_alt,length=282224>
+##contig=<ID=chr19_KI270922v1_alt,length=187935>
+##contig=<ID=chr19_KI270923v1_alt,length=189352>
+##contig=<ID=chr3_KI270924v1_alt,length=166540>
+##contig=<ID=chr4_KI270925v1_alt,length=555799>
+##contig=<ID=chr6_GL000252v2_alt,length=4604811>
+##contig=<ID=chr8_KI270926v1_alt,length=229282>
+##contig=<ID=chr11_KI270927v1_alt,length=218612>
+##contig=<ID=chr19_GL949748v2_alt,length=1064304>
+##contig=<ID=chr22_KI270928v1_alt,length=176103>
+##contig=<ID=chr19_KI270929v1_alt,length=186203>
+##contig=<ID=chr19_KI270930v1_alt,length=200773>
+##contig=<ID=chr19_KI270931v1_alt,length=170148>
+##contig=<ID=chr19_KI270932v1_alt,length=215732>
+##contig=<ID=chr19_KI270933v1_alt,length=170537>
+##contig=<ID=chr19_GL000209v2_alt,length=177381>
+##contig=<ID=chr3_KI270934v1_alt,length=163458>
+##contig=<ID=chr6_GL000253v2_alt,length=4677643>
+##contig=<ID=chr19_GL949749v2_alt,length=1091841>
+##contig=<ID=chr3_KI270935v1_alt,length=197351>
+##contig=<ID=chr6_GL000254v2_alt,length=4827813>
+##contig=<ID=chr19_GL949750v2_alt,length=1066390>
+##contig=<ID=chr3_KI270936v1_alt,length=164170>
+##contig=<ID=chr6_GL000255v2_alt,length=4606388>
+##contig=<ID=chr19_GL949751v2_alt,length=1002683>
+##contig=<ID=chr3_KI270937v1_alt,length=165607>
+##contig=<ID=chr6_GL000256v2_alt,length=4929269>
+##contig=<ID=chr19_GL949752v1_alt,length=987100>
+##contig=<ID=chr6_KI270758v1_alt,length=76752>
+##contig=<ID=chr19_GL949753v2_alt,length=796479>
+##contig=<ID=chr19_KI270938v1_alt,length=1066800>
+##contig=<ID=chrM,length=16569>
+##contig=<ID=chrUn_KI270302v1,length=2274>
+##contig=<ID=chrUn_KI270304v1,length=2165>
+##contig=<ID=chrUn_KI270303v1,length=1942>
+##contig=<ID=chrUn_KI270305v1,length=1472>
+##contig=<ID=chrUn_KI270322v1,length=21476>
+##contig=<ID=chrUn_KI270320v1,length=4416>
+##contig=<ID=chrUn_KI270310v1,length=1201>
+##contig=<ID=chrUn_KI270316v1,length=1444>
+##contig=<ID=chrUn_KI270315v1,length=2276>
+##contig=<ID=chrUn_KI270312v1,length=998>
+##contig=<ID=chrUn_KI270311v1,length=12399>
+##contig=<ID=chrUn_KI270317v1,length=37690>
+##contig=<ID=chrUn_KI270412v1,length=1179>
+##contig=<ID=chrUn_KI270411v1,length=2646>
+##contig=<ID=chrUn_KI270414v1,length=2489>
+##contig=<ID=chrUn_KI270419v1,length=1029>
+##contig=<ID=chrUn_KI270418v1,length=2145>
+##contig=<ID=chrUn_KI270420v1,length=2321>
+##contig=<ID=chrUn_KI270424v1,length=2140>
+##contig=<ID=chrUn_KI270417v1,length=2043>
+##contig=<ID=chrUn_KI270422v1,length=1445>
+##contig=<ID=chrUn_KI270423v1,length=981>
+##contig=<ID=chrUn_KI270425v1,length=1884>
+##contig=<ID=chrUn_KI270429v1,length=1361>
+##contig=<ID=chrUn_KI270442v1,length=392061>
+##contig=<ID=chrUn_KI270466v1,length=1233>
+##contig=<ID=chrUn_KI270465v1,length=1774>
+##contig=<ID=chrUn_KI270467v1,length=3920>
+##contig=<ID=chrUn_KI270435v1,length=92983>
+##contig=<ID=chrUn_KI270438v1,length=112505>
+##contig=<ID=chrUn_KI270468v1,length=4055>
+##contig=<ID=chrUn_KI270510v1,length=2415>
+##contig=<ID=chrUn_KI270509v1,length=2318>
+##contig=<ID=chrUn_KI270518v1,length=2186>
+##contig=<ID=chrUn_KI270508v1,length=1951>
+##contig=<ID=chrUn_KI270516v1,length=1300>
+##contig=<ID=chrUn_KI270512v1,length=22689>
+##contig=<ID=chrUn_KI270519v1,length=138126>
+##contig=<ID=chrUn_KI270522v1,length=5674>
+##contig=<ID=chrUn_KI270511v1,length=8127>
+##contig=<ID=chrUn_KI270515v1,length=6361>
+##contig=<ID=chrUn_KI270507v1,length=5353>
+##contig=<ID=chrUn_KI270517v1,length=3253>
+##contig=<ID=chrUn_KI270529v1,length=1899>
+##contig=<ID=chrUn_KI270528v1,length=2983>
+##contig=<ID=chrUn_KI270530v1,length=2168>
+##contig=<ID=chrUn_KI270539v1,length=993>
+##contig=<ID=chrUn_KI270538v1,length=91309>
+##contig=<ID=chrUn_KI270544v1,length=1202>
+##contig=<ID=chrUn_KI270548v1,length=1599>
+##contig=<ID=chrUn_KI270583v1,length=1400>
+##contig=<ID=chrUn_KI270587v1,length=2969>
+##contig=<ID=chrUn_KI270580v1,length=1553>
+##contig=<ID=chrUn_KI270581v1,length=7046>
+##contig=<ID=chrUn_KI270579v1,length=31033>
+##contig=<ID=chrUn_KI270589v1,length=44474>
+##contig=<ID=chrUn_KI270590v1,length=4685>
+##contig=<ID=chrUn_KI270584v1,length=4513>
+##contig=<ID=chrUn_KI270582v1,length=6504>
+##contig=<ID=chrUn_KI270588v1,length=6158>
+##contig=<ID=chrUn_KI270593v1,length=3041>
+##contig=<ID=chrUn_KI270591v1,length=5796>
+##contig=<ID=chrUn_KI270330v1,length=1652>
+##contig=<ID=chrUn_KI270329v1,length=1040>
+##contig=<ID=chrUn_KI270334v1,length=1368>
+##contig=<ID=chrUn_KI270333v1,length=2699>
+##contig=<ID=chrUn_KI270335v1,length=1048>
+##contig=<ID=chrUn_KI270338v1,length=1428>
+##contig=<ID=chrUn_KI270340v1,length=1428>
+##contig=<ID=chrUn_KI270336v1,length=1026>
+##contig=<ID=chrUn_KI270337v1,length=1121>
+##contig=<ID=chrUn_KI270363v1,length=1803>
+##contig=<ID=chrUn_KI270364v1,length=2855>
+##contig=<ID=chrUn_KI270362v1,length=3530>
+##contig=<ID=chrUn_KI270366v1,length=8320>
+##contig=<ID=chrUn_KI270378v1,length=1048>
+##contig=<ID=chrUn_KI270379v1,length=1045>
+##contig=<ID=chrUn_KI270389v1,length=1298>
+##contig=<ID=chrUn_KI270390v1,length=2387>
+##contig=<ID=chrUn_KI270387v1,length=1537>
+##contig=<ID=chrUn_KI270395v1,length=1143>
+##contig=<ID=chrUn_KI270396v1,length=1880>
+##contig=<ID=chrUn_KI270388v1,length=1216>
+##contig=<ID=chrUn_KI270394v1,length=970>
+##contig=<ID=chrUn_KI270386v1,length=1788>
+##contig=<ID=chrUn_KI270391v1,length=1484>
+##contig=<ID=chrUn_KI270383v1,length=1750>
+##contig=<ID=chrUn_KI270393v1,length=1308>
+##contig=<ID=chrUn_KI270384v1,length=1658>
+##contig=<ID=chrUn_KI270392v1,length=971>
+##contig=<ID=chrUn_KI270381v1,length=1930>
+##contig=<ID=chrUn_KI270385v1,length=990>
+##contig=<ID=chrUn_KI270382v1,length=4215>
+##contig=<ID=chrUn_KI270376v1,length=1136>
+##contig=<ID=chrUn_KI270374v1,length=2656>
+##contig=<ID=chrUn_KI270372v1,length=1650>
+##contig=<ID=chrUn_KI270373v1,length=1451>
+##contig=<ID=chrUn_KI270375v1,length=2378>
+##contig=<ID=chrUn_KI270371v1,length=2805>
+##contig=<ID=chrUn_KI270448v1,length=7992>
+##contig=<ID=chrUn_KI270521v1,length=7642>
+##contig=<ID=chrUn_GL000195v1,length=182896>
+##contig=<ID=chrUn_GL000219v1,length=179198>
+##contig=<ID=chrUn_GL000220v1,length=161802>
+##contig=<ID=chrUn_GL000224v1,length=179693>
+##contig=<ID=chrUn_KI270741v1,length=157432>
+##contig=<ID=chrUn_GL000226v1,length=15008>
+##contig=<ID=chrUn_GL000213v1,length=164239>
+##contig=<ID=chrUn_KI270743v1,length=210658>
+##contig=<ID=chrUn_KI270744v1,length=168472>
+##contig=<ID=chrUn_KI270745v1,length=41891>
+##contig=<ID=chrUn_KI270746v1,length=66486>
+##contig=<ID=chrUn_KI270747v1,length=198735>
+##contig=<ID=chrUn_KI270748v1,length=93321>
+##contig=<ID=chrUn_KI270749v1,length=158759>
+##contig=<ID=chrUn_KI270750v1,length=148850>
+##contig=<ID=chrUn_KI270751v1,length=150742>
+##contig=<ID=chrUn_KI270752v1,length=27745>
+##contig=<ID=chrUn_KI270753v1,length=62944>
+##contig=<ID=chrUn_KI270754v1,length=40191>
+##contig=<ID=chrUn_KI270755v1,length=36723>
+##contig=<ID=chrUn_KI270756v1,length=79590>
+##contig=<ID=chrUn_KI270757v1,length=71251>
+##contig=<ID=chrUn_GL000214v1,length=137718>
+##contig=<ID=chrUn_KI270742v1,length=186739>
+##contig=<ID=chrUn_GL000216v2,length=176608>
+##contig=<ID=chrUn_GL000218v1,length=161147>
+##contig=<ID=chrX,length=156040895>
+##contig=<ID=chrY,length=57227415>
+##contig=<ID=chrY_KI270740v1_random,length=37240>
+##phasing=none
+##commandline="freebayes --region chrY_KI270740v1_random:0..37240 --bam b_0.bam --fasta-reference /panfs/roc/rissdb/galaxy/genomes/hg38/seq/hg38.fa --vcf ./vcf_output/part_chrY_KI270740v1_random:0..37240.vcf"
+##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of samples with data">
+##INFO=<ID=DP,Number=1,Type=Integer,Description="Total read depth at the locus">
+##INFO=<ID=DPB,Number=1,Type=Float,Description="Total read depth per bp at the locus; bases in reads overlapping / bases in haplotype">
+##INFO=<ID=AC,Number=A,Type=Integer,Description="Total number of alternate alleles in called genotypes">
+##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">
+##INFO=<ID=AF,Number=A,Type=Float,Description="Estimated allele frequency in the range (0,1]">
+##INFO=<ID=RO,Number=1,Type=Integer,Description="Count of full observations of the reference haplotype.">
+##INFO=<ID=AO,Number=A,Type=Integer,Description="Count of full observations of this alternate haplotype.">
+##INFO=<ID=PRO,Number=1,Type=Float,Description="Reference allele observation count, with partial observations recorded fractionally">
+##INFO=<ID=PAO,Number=A,Type=Float,Description="Alternate allele observations, with partial observations recorded fractionally">
+##INFO=<ID=QR,Number=1,Type=Integer,Description="Reference allele quality sum in phred">
+##INFO=<ID=QA,Number=A,Type=Integer,Description="Alternate allele quality sum in phred">
+##INFO=<ID=PQR,Number=1,Type=Float,Description="Reference allele quality sum in phred for partial observations">
+##INFO=<ID=PQA,Number=A,Type=Float,Description="Alternate allele quality sum in phred for partial observations">
+##INFO=<ID=SRF,Number=1,Type=Integer,Description="Number of reference observations on the forward strand">
+##INFO=<ID=SRR,Number=1,Type=Integer,Description="Number of reference observations on the reverse strand">
+##INFO=<ID=SAF,Number=A,Type=Integer,Description="Number of alternate observations on the forward strand">
+##INFO=<ID=SAR,Number=A,Type=Integer,Description="Number of alternate observations on the reverse strand">
+##INFO=<ID=SRP,Number=1,Type=Float,Description="Strand balance probability for the reference allele: Phred-scaled upper-bounds estimate of the probability of observing the deviation between SRF and SRR given E(SRF/SRR) ~ 0.5, derived using Hoeffding's inequality">
+##INFO=<ID=SAP,Number=A,Type=Float,Description="Strand balance probability for the alternate allele: Phred-scaled upper-bounds estimate of the probability of observing the deviation between SAF and SAR given E(SAF/SAR) ~ 0.5, derived using Hoeffding's inequality">
+##INFO=<ID=AB,Number=A,Type=Float,Description="Allele balance at heterozygous sites: a number between 0 and 1 representing the ratio of reads showing the reference allele to all reads, considering only reads from individuals called as heterozygous">
+##INFO=<ID=ABP,Number=A,Type=Float,Description="Allele balance probability at heterozygous sites: Phred-scaled upper-bounds estimate of the probability of observing the deviation between ABR and ABA given E(ABR/ABA) ~ 0.5, derived using Hoeffding's inequality">
+##INFO=<ID=RUN,Number=A,Type=Integer,Description="Run length: the number of consecutive repeats of the alternate allele in the reference genome">
+##INFO=<ID=RPP,Number=A,Type=Float,Description="Read Placement Probability: Phred-scaled upper-bounds estimate of the probability of observing the deviation between RPL and RPR given E(RPL/RPR) ~ 0.5, derived using Hoeffding's inequality">
+##INFO=<ID=RPPR,Number=1,Type=Float,Description="Read Placement Probability for reference observations: Phred-scaled upper-bounds estimate of the probability of observing the deviation between RPL and RPR given E(RPL/RPR) ~ 0.5, derived using Hoeffding's inequality">
+##INFO=<ID=RPL,Number=A,Type=Float,Description="Reads Placed Left: number of reads supporting the alternate balanced to the left (5') of the alternate allele">
+##INFO=<ID=RPR,Number=A,Type=Float,Description="Reads Placed Right: number of reads supporting the alternate balanced to the right (3') of the alternate allele">
+##INFO=<ID=EPP,Number=A,Type=Float,Description="End Placement Probability: Phred-scaled upper-bounds estimate of the probability of observing the deviation between EL and ER given E(EL/ER) ~ 0.5, derived using Hoeffding's inequality">
+##INFO=<ID=EPPR,Number=1,Type=Float,Description="End Placement Probability for reference observations: Phred-scaled upper-bounds estimate of the probability of observing the deviation between EL and ER given E(EL/ER) ~ 0.5, derived using Hoeffding's inequality">
+##INFO=<ID=DPRA,Number=A,Type=Float,Description="Alternate allele depth ratio.  Ratio between depth in samples with each called alternate allele and those without.">
+##INFO=<ID=ODDS,Number=1,Type=Float,Description="The log odds ratio of the best genotype combination to the second-best.">
+##INFO=<ID=GTI,Number=1,Type=Integer,Description="Number of genotyping iterations required to reach convergence or bailout.">
+##INFO=<ID=TYPE,Number=A,Type=String,Description="The type of allele, either snp, mnp, ins, del, or complex.">
+##INFO=<ID=CIGAR,Number=A,Type=String,Description="The extended CIGAR representation of each alternate allele, with the exception that '=' is replaced by 'M' to ease VCF parsing.  Note that INDEL alleles do not have the first matched base (which is provided by default, per the spec) referred to by the CIGAR.">
+##INFO=<ID=NUMALT,Number=1,Type=Integer,Description="Number of unique non-reference alleles in called genotypes at this position.">
+##INFO=<ID=MEANALT,Number=A,Type=Float,Description="Mean number of unique non-reference allele observations per sample with the corresponding alternate alleles.">
+##INFO=<ID=LEN,Number=A,Type=Integer,Description="allele length">
+##INFO=<ID=MQM,Number=A,Type=Float,Description="Mean mapping quality of observed alternate alleles">
+##INFO=<ID=MQMR,Number=1,Type=Float,Description="Mean mapping quality of observed reference alleles">
+##INFO=<ID=PAIRED,Number=A,Type=Float,Description="Proportion of observed alternate alleles which are supported by properly paired read fragments">
+##INFO=<ID=PAIREDR,Number=1,Type=Float,Description="Proportion of observed reference alleles which are supported by properly paired read fragments">
+##INFO=<ID=MIN_DP,Number=1,Type=Integer,Description="Minimum depth in gVCF output block.">
+##INFO=<ID=END,Number=1,Type=Integer,Description="Last position (inclusive) in gVCF output record.">
+##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
+##FORMAT=<ID=GQ,Number=1,Type=Float,Description="Genotype Quality, the Phred-scaled marginal (or unconditional) probability of the called genotype">
+##FORMAT=<ID=GL,Number=G,Type=Float,Description="Genotype Likelihood, log10-scaled likelihoods of the data given the called genotype for each possible genotype generated from the reference and alternate alleles given the sample ploidy">
+##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
+##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Number of observation for each allele">
+##FORMAT=<ID=RO,Number=1,Type=Integer,Description="Reference allele observation count">
+##FORMAT=<ID=QR,Number=1,Type=Integer,Description="Sum of quality of the reference observations">
+##FORMAT=<ID=AO,Number=A,Type=Integer,Description="Alternate allele observation count">
+##FORMAT=<ID=QA,Number=A,Type=Integer,Description="Sum of quality of the alternate observations">
+##FORMAT=<ID=MIN_DP,Number=1,Type=Integer,Description="Minimum depth in gVCF output block.">
+#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	unknown
+chr1	156705422	.	T	C	125181	.	AB=0.318515;ABP=5157.71;AC=1;AF=0.5;AN=2;AO=5739;CIGAR=1X;DP=18018;DPB=18018;DPRA=0;EPP=283.505;EPPR=1125.27;GTI=0;LEN=1;MEANALT=3;MQM=59.7327;MQMR=59.6874;NS=1;NUMALT=1;ODDS=28824;PAIRED=0.984666;PAIREDR=0.981823;PAO=0;PQA=0;PQR=0;PRO=0;QA=208036;QR=445024;RO=12268;RPL=3614;RPP=841.905;RPPR=1072.42;RPR=2125;RUN=1;SAF=3390;SAP=413.044;SAR=2349;SRF=6908;SRP=427.163;SRR=5360;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	0/1:18018:12268,5739:12268:445024:5739:208036:-13208.4,0,-34397.1
+chr12	6561055	.	T	C	14340.8	.	AB=0.235264;ABP=2357.67;AC=1;AF=0.5;AN=2;AO=910;CIGAR=1X;DP=3868;DPB=3868;DPRA=0;EPP=7.21962;EPPR=59.3944;GTI=0;LEN=1;MEANALT=2;MQM=59.9352;MQMR=59.6406;NS=1;NUMALT=1;ODDS=3302.08;PAIRED=0.983516;PAIREDR=0.990186;PAO=0;PQA=0;PQR=0;PRO=0;QA=33224;QR=106496;RO=2955;RPL=107;RPP=1158.94;RPPR=4030.18;RPR=803;RUN=1;SAF=481;SAP=9.46268;SAR=429;SRF=1663;SRP=104.155;SRR=1292;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	0/1:3868:2955,910:2955:106496:910:33224:-1821.72,0,-8360.65
+chr12	110339630	.	C	T	48828.1	.	AB=0.268901;ABP=4224.36;AC=1;AF=0.5;AN=2;AO=2447;CIGAR=1X;DP=9100;DPB=9100;DPRA=0;EPP=710.668;EPPR=1883.3;GTI=0;LEN=1;MEANALT=2;MQM=60;MQMR=60;NS=1;NUMALT=1;ODDS=11243.1;PAIRED=0.985288;PAIREDR=0.980156;PAO=0;PQA=0;PQR=0;PRO=0;QA=90595;QR=244569;RO=6652;RPL=1094;RPP=62.5381;RPPR=155.737;RPR=1353;RUN=1;SAF=1227;SAP=3.05378;SAR=1220;SRF=3354;SRP=4.03401;SRR=3298;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	0/1:9100:6652,2447:6652:244569:2447:90595:-5409.03,0,-19257.6
+chr14	94079142	.	T	C	0	.	AB=0;ABP=0;AC=0;AF=0;AN=2;AO=672;CIGAR=1X;DP=3227;DPB=3227;DPRA=0;EPP=117.219;EPPR=488.229;GTI=0;LEN=1;MEANALT=3;MQM=13.9062;MQMR=8.44728;NS=1;NUMALT=1;ODDS=1413.33;PAIRED=0.995536;PAIREDR=0.994512;PAO=0;PQA=0;PQR=0;PRO=0;QA=24358;QR=92741;RO=2551;RPL=349;RPP=5.1947;RPPR=253.993;RPR=323;RUN=1;SAF=301;SAP=18.844;SAR=371;SRF=1157;SRP=50.8227;SRR=1394;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	0/0:3227:2551,672:2551:92741:672:24358:0,-455.681,-680.616
+chr14	102011985	.	A	T	12962.3	.	AB=0.301267;ABP=734.044;AC=1;AF=0.5;AN=2;AO=642;CIGAR=1X;DP=2131;DPB=2131;DPRA=0;EPP=6.47383;EPPR=23.6897;GTI=0;LEN=1;MEANALT=3;MQM=60;MQMR=60;NS=1;NUMALT=1;ODDS=2984.69;PAIRED=0.995327;PAIREDR=0.98117;PAO=0;PQA=0;PQR=0;PRO=0;QA=22490;QR=51005;RO=1487;RPL=362;RPP=25.7533;RPPR=15.6405;RPR=280;RUN=1;SAF=307;SAP=5.66207;SAR=335;SRF=729;SRP=4.23842;SRR=758;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	0/1:2131:1487,642:1487:51005:642:22490:-1382.22,0,-3947.19
+chr14	102083954	.	C	T	240809	.	AB=0.203741;ABP=65012.9;AC=1;AF=0.5;AN=2;AO=17374;CIGAR=1X;DP=85275;DPB=85275;DPRA=0;EPP=2106.04;EPPR=12892.8;GTI=0;LEN=1;MEANALT=3;MQM=60;MQMR=60;NS=1;NUMALT=1;ODDS=55448.2;PAIRED=0.982387;PAIREDR=0.980402;PAO=0;PQA=0;PQR=0;PRO=0;QA=637599;QR=2489236;RO=67865;RPL=5766;RPP=4268.59;RPPR=13677.6;RPR=11608;RUN=1;SAF=9064;SAP=74.0657;SAR=8310;SRF=35817;SRP=457.538;SRR=32048;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	0/1:85275:67865,17374:67865:2489236:17374:637599:-31686.8,0,-198225
+chr17	82082606	.	C	T	10374.8	.	AB=0.202823;ABP=2937.89;AC=1;AF=0.5;AN=2;AO=776;CIGAR=1X;DP=3826;DPB=3826;DPRA=0;EPP=22.755;EPPR=126.853;GTI=0;LEN=1;MEANALT=2;MQM=60;MQMR=59.9806;NS=1;NUMALT=1;ODDS=2388.89;PAIRED=0.981959;PAIREDR=0.985569;PAO=0;PQA=0;PQR=0;PRO=0;QA=27982;QR=110520;RO=3049;RPL=338;RPP=30.9932;RPPR=253.452;RPR=438;RUN=1;SAF=422;SAP=15.9496;SAR=354;SRF=1759;SRP=159.665;SRR=1290;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	0/1:3826:3049,776:3049:110520:776:27982:-1365.58,0,-8788
+chr19	17205335	.	A	T	0.00158993	.	AB=0.285714;ABP=5.80219;AC=1;AF=0.5;AN=2;AO=2;CIGAR=1X;DP=7;DPB=7;DPRA=0;EPP=3.0103;EPPR=6.91895;GTI=0;LEN=1;MEANALT=1;MQM=60;MQMR=48.2;NS=1;NUMALT=1;ODDS=7.91247;PAIRED=1;PAIREDR=1;PAO=0;PQA=0;PQR=0;PRO=0;QA=28;QR=169;RO=5;RPL=0;RPP=7.35324;RPPR=13.8677;RPR=2;RUN=1;SAF=1;SAP=3.0103;SAR=1;SRF=1;SRP=6.91895;SRR=4;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	0/1:7:5,2:5:169:2:28:-0.55277,0,-10.4001
+chr19	17205444	.	T	C	206.198	.	AB=0;ABP=0;AC=2;AF=1;AN=2;AO=7;CIGAR=1X;DP=7;DPB=7;DPRA=0;EPP=5.80219;EPPR=0;GTI=0;LEN=1;MEANALT=1;MQM=60;MQMR=0;NS=1;NUMALT=1;ODDS=14.3092;PAIRED=0.857143;PAIREDR=0;PAO=0;PQA=0;PQR=0;PRO=0;QA=249;QR=0;RO=0;RPL=2;RPP=5.80219;RPPR=0;RPR=5;RUN=1;SAF=4;SAP=3.32051;SAR=3;SRF=0;SRP=0;SRR=0;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	1/1:7:0,7:0:0:7:249:-22.753,-2.10721,0
+chr19	17205973	.	T	C	12243.8	.	AB=0;ABP=0;AC=2;AF=1;AN=2;AO=406;CIGAR=1X;DP=406;DPB=406;DPRA=0;EPP=14.3276;EPPR=0;GTI=0;LEN=1;MEANALT=1;MQM=58.4015;MQMR=0;NS=1;NUMALT=1;ODDS=567.441;PAIRED=0.985222;PAIREDR=0;PAO=0;PQA=0;PQR=0;PRO=0;QA=14833;QR=0;RO=0;RPL=368;RPP=585.457;RPPR=0;RPR=38;RUN=1;SAF=182;SAP=12.445;SAR=224;SRF=0;SRP=0;SRR=0;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	1/1:406:0,406:0:0:406:14833:-1297.85,-122.218,0
+chr19	18856059	.	C	T	10269.5	.	AB=0.248844;ABP=1306.46;AC=1;AF=0.5;AN=2;AO=592;CIGAR=1X;DP=2379;DPB=2379;DPRA=0;EPP=30.139;EPPR=174.082;GTI=0;LEN=1;MEANALT=2;MQM=60;MQMR=59.9339;NS=1;NUMALT=1;ODDS=2364.65;PAIRED=0.991554;PAIREDR=0.983754;PAO=0;PQA=0;PQR=0;PRO=0;QA=21546;QR=64865;RO=1785;RPL=120;RPP=457.494;RPPR=1048.39;RPR=472;RUN=1;SAF=303;SAP=3.72923;SAR=289;SRF=873;SRP=4.86061;SRR=912;TYPE=snp	GT:DP:AD:RO:QR:AO:QA:GL	0/1:2379:1785,592:1785:64865:592:21546:-1222.54,0,-5112.92
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-results/Additional_Details.tsv	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,21 @@
+#Variant Additional Details Report
+#2018-05-18 15:15:25.120629
+#CRAVAT version: hybrid
+#Analysis done at http://www.cravat.us.
+#Job Id: znylund_20180518_111521
+#Input file: _VCF_BEDintersect_on_data_65_and_data_6_.vcf
+#This report shows analysis results at variant level.
+#hg38 genomic.
+#N/A
+#For more information on CRAVAT, visit http://www.cravat.us.
+
+Input line	ID	Chromosome	Position	Strand	Reference base(s)	Alternate base(s)	Sample ID	HUGO symbol	Sequence ontology	S.O. transcript	S.O. transcript strand	Protein sequence change	S.O. all transcripts	CGC driver class	CGC inheritance	CGC tumor types somatic	CGC tumor types germline	ClinVar disease identifier	ClinVar XRef	COSMIC transcript	COSMIC protein change	COSMIC variant count	ESP6500 AF (European American)	ESP6500 AF (African American)	HGVS Genomic	HGVS Protein	HGVS Protein All	NCI pathway hits	NCI pathway IDs	NCI pathway names	VEST score transcript	VEST p-value	VEST score (missense)	VEST score (frameshift indels)	VEST score (inframe indels)	VEST score (stop-gain)	VEST score (stop-loss)	VEST score (splice site)	All transcripts VEST results
+1	VAR516_unknown	chr1	156705422	+	T	C	unknown	CRABP2	MS	ENST00000368221.1	-	K9E	*ENST00000368221.1:K9E(MS),ENST00000621784.4:K9E(MS),ENST00000368222.7:K9E(MS)							ENST00000368221	p.K9E (large_intestine 1)	1	0	0	NC_000001.10:g.156705422T>C	ENST00000368221.1:p.Lys9Glu	*ENST00000368221.1:p.Lys9Glu,ENST00000621784.4:p.Lys9Glu,ENST00000368222.7:p.Lys9Glu	0			ENST00000368221.1:K9E	0.53061	0.2						*ENST00000368221.1:K9E(0.2:0.53061),ENST00000368222.7:K9E(0.187:0.5543),ENST00000621784.4:K9E(0.186:0.55652)
+2	VAR517_unknown	chr12	6561055	+	T	C	unknown	NOP2	MS	ENST00000616948.4	-	N408S	ENST00000617555.4:N404S(MS),ENST00000545200.5:N404S(MS),ENST00000541778.5:N404S(MS),ENST00000399466.6:N404S(MS),ENST00000322166.9:N408S(MS),ENST00000537442.5:N408S(MS),ENST00000382421.7:N441S(MS),ENST00000620535.4:N441S(MS),*ENST00000616948.4:N408S(MS)										0	0	NC_000012.10:g.6561055T>C	ENST00000616948.4:p.Asn408Ser	ENST00000617555.4:p.Asn404Ser,ENST00000545200.5:p.Asn404Ser,ENST00000541778.5:p.Asn404Ser,ENST00000399466.6:p.Asn404Ser,ENST00000322166.9:p.Asn408Ser,ENST00000537442.5:p.Asn408Ser,ENST00000382421.7:p.Asn441Ser,ENST00000620535.4:p.Asn441Ser,*ENST00000616948.4:p.Asn408Ser	0			ENST00000616948.4:N408S	0.00324	0.958						ENST00000617555.4:N404S(0.954:0.00354),*ENST00000616948.4:N408S(0.958:0.00324),ENST00000541778.5:N404S(0.869:0.01488),ENST00000537442.5:N408S(0.956:0.00344),ENST00000399466.6:N404S(0.951:0.00374),ENST00000545200.5:N404S(0.953:0.00354),ENST00000620535.4:N441S(0.938:0.00536),ENST00000382421.7:N441S(0.938:0.00536),ENST00000322166.9:N408S(0.954:0.00354)
+3	VAR518_unknown	chr12	110339630	+	C	T	unknown	ATP2A2	MS	ENST00000539276.6	+	T557I	ENST00000308664.10:T557I(MS),*ENST00000539276.6:T557I(MS)										0	0	NC_000012.10:g.110339630C>T	ENST00000539276.6:p.Thr557Ile	ENST00000308664.10:p.Thr557Ile,*ENST00000539276.6:p.Thr557Ile	0			ENST00000539276.6:T557I	0.00374	0.951						ENST00000308664.10:T557I(0.822:0.02459),*ENST00000539276.6:T557I(0.951:0.00374)
+4	VAR520_unknown	chr14	102011985	+	A	T	unknown	DYNC1H1	MS	ENST00000360184.8	+	R2243S	*ENST00000360184.8:R2243S(MS)							ENST00000360184	p.R2243S (large_intestine 1)	1	0	0	NC_000014.10:g.102011985A>T	ENST00000360184.8:p.Arg2243Ser	*ENST00000360184.8:p.Arg2243Ser	1	94da5dd8-5521-11e7-8f50-0ac135e8bacf	Lissencephaly gene (LIS1) in neuronal migration and development	ENST00000360184.8:R2243S	0.02307	0.829						*ENST00000360184.8:R2243S(0.829:0.02307)
+5	VAR521_unknown	chr14	102083954	+	C	T	unknown	HSP90AA1	MS	ENST00000334701.11	-	D515N	ENST00000216281.12:D393N(MS),*ENST00000334701.11:D515N(MS)		somatic	NHL				ENST00000334701	p.D515N (large_intestine 1)	1	0	0	NC_000014.10:g.102083954C>T	ENST00000334701.11:p.Asp515Asn	ENST00000216281.12:p.Asp393Asn,*ENST00000334701.11:p.Asp515Asn	15	3814fa62-5521-11e7-8f50-0ac135e8bacf,32ff1916-5521-11e7-8f50-0ac135e8bacf,a8411a5c-5521-11e7-8f50-0ac135e8bacf,541d7e20-5521-11e7-8f50-0ac135e8bacf,98ad85f0-5521-11e7-8f50-0ac135e8bacf,9697501e-5521-11e7-8f50-0ac135e8bacf,e6f69242-5521-11e7-8f50-0ac135e8bacf,603902ca-5521-11e7-8f50-0ac135e8bacf,bb3d7c4a-5521-11e7-8f50-0ac135e8bacf,b1ac7318-5521-11e7-8f50-0ac135e8bacf,cb348d72-5521-11e7-8f50-0ac135e8bacf,945aa686-5521-11e7-8f50-0ac135e8bacf,4c90f780-5521-11e7-8f50-0ac135e8bacf,e4e93610-5521-11e7-8f50-0ac135e8bacf,6f7a316e-5521-11e7-8f50-0ac135e8bacf	Validated targets of C-MYC transcriptional activation@VEGFR1 specific signals@IL2 signaling events mediated by PI3K@Signaling events mediated by HDAC Class II@Integrin-linked kinase signaling@Integrins in angiogenesis@Class I PI3K signaling events mediated by Akt@Regulation of Telomerase@Glucocorticoid receptor regulatory network@Hypoxic and oxygen homeostasis regulation of HIF-1-alpha@ErbB receptor signaling network@LKB1 signaling events@Signaling events mediated by VEGFR1 and VEGFR2@Class I PI3K signaling events@Regulation of Androgen receptor activity	ENST00000216281.12:D393N	0.02014	0.84						ENST00000334701.11:D515N(0.749:0.04989),*ENST00000216281.12:D393N(0.84:0.02014)
+6	VAR522_unknown	chr17	82082606	+	C	T	unknown	FASN	MS	ENST00000306749.3	-	S1947N	ENST00000634990.1:S1945N(MS),*ENST00000306749.3:S1947N(MS)							ENST00000306749	p.S1947N (large_intestine 1)	1	0	0	NC_000017.10:g.82082606C>T	ENST00000306749.3:p.Ser1947Asn	ENST00000634990.1:p.Ser1945Asn,*ENST00000306749.3:p.Ser1947Asn	2	34a994cc-5521-11e7-8f50-0ac135e8bacf,812903c2-5521-11e7-8f50-0ac135e8bacf	Validated transcriptional targets of deltaNp63 isoforms@p73 transcription factor network	ENST00000634990.1:S1945N	0.18611	0.501						ENST00000306749.3:S1947N(0.493:0.19016),*ENST00000634990.1:S1945N(0.501:0.18611)
+7	VAR523_unknown	chr19	17205335	+	A	T	unknown	MYO9B	MS	ENST00000594824.5	+	K1688M	ENST00000397274.6:K1688M(MS),ENST00000595618.5:K1688M(MS),*ENST00000594824.5:K1688M(MS)										0	0	NC_000019.10:g.17205335A>T	ENST00000594824.5:p.Lys1688Met	ENST00000397274.6:p.Lys1688Met,ENST00000595618.5:p.Lys1688Met,*ENST00000594824.5:p.Lys1688Met	1	60f3521c-5521-11e7-8f50-0ac135e8bacf	Regulation of RhoA activity	ENST00000397274.6:K1688M	0.20028	0.473						ENST00000594824.5:K1688M(0.464:0.20464),*ENST00000397274.6:K1688M(0.473:0.20028),ENST00000595618.5:K1688M(0.469:0.20231)
+9	VAR525_unknown	chr19	17205973	+	T	C	unknown	MYO9B	MS	ENST00000594824.5	+	V1693A	ENST00000397274.6:V1693A(MS),ENST00000595618.5:V1693A(MS),*ENST00000594824.5:V1693A(MS)							ENST00000319396	p.V1693A (thyroid 2)	2	0.399857	0.645631	NC_000019.10:g.17205973T>C	ENST00000594824.5:p.Val1693Ala	ENST00000397274.6:p.Val1693Ala,ENST00000595618.5:p.Val1693Ala,*ENST00000594824.5:p.Val1693Ala	1	60f3521c-5521-11e7-8f50-0ac135e8bacf	Regulation of RhoA activity	ENST00000397274.6:V1693A	0.95254	0.045						ENST00000594824.5:V1693A(0.025:0.98158),*ENST00000397274.6:V1693A(0.045:0.95254),ENST00000595618.5:V1693A(0.042:0.95749)
+10	VAR526_unknown	chr19	18856059	+	C	T	unknown	UPF1	MS	ENST00000599848.5	+	A571V	ENST00000262803.9:A560V(MS),*ENST00000599848.5:A571V(MS)							ENST00000262803	p.A560V (large_intestine 1)	1	0	0	NC_000019.10:g.18856059C>T	ENST00000599848.5:p.Ala571Val	ENST00000262803.9:p.Ala560Val,*ENST00000599848.5:p.Ala571Val	0			ENST00000262803.9:A560V	0.09372	0.662						ENST00000599848.5:A571V(0.643:0.10292),*ENST00000262803.9:A560V(0.662:0.09372)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-results/Gene_Level_Analysis.tsv	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,21 @@
+#Gene Level Annotation Report
+#2018-05-18 15:18:04.023450
+#CRAVAT version: hybrid
+#Analysis done at http://www.cravat.us.
+#Job Id: znylund_20180518_111800
+#Input file: _VCF_BEDintersect_on_data_65_and_data_6_.vcf
+#This report shows analysis results at gene level.
+#The composite p-value (Stouffer's combined p-value) and composite FDR of a gene show how probable it is to get the same p-value distribution for the gene as that obtained from the input variants by chance.
+#hg38 genomic.
+#N/A
+#For more information on CRAVAT, visit http://www.cravat.us.
+
+HUGO symbol	Number of variants	Sequence ontology	CGC driver class	CGC inheritance	CGC tumor types somatic	CGC tumor types germline	ClinVar disease identifier	ClinVar XRef	Occurrences in COSMIC	COSMIC gene count (tissue)	Number of samples with gene mutated	CHASM gene score	CHASM gene p-value	CHASM gene FDR	VEST gene score (non-silent)	VEST gene p-value	VEST gene FDR	Protein 3D gene	Has a mutation in a TCGA Mutation Cluster	NCI pathway hits	NCI pathway IDs	NCI pathway names	TARGET	CGL driver class
+CRABP2	1	MS							37	upper_aerodigestive_tract(3);large_intestine(9);stomach(4);soft_tissue(3);endometrium(4);lung(3);liver(2);skin(4);NS(1);prostate(1);bone(1);kidney(1);breast(1)	1				0.2	0.53061	0.65	../MuPIT_Interactive?gm=chr1:156705422		0				
+NOP2	1	MS							133	large_intestine(22);endometrium(8);lung(8);skin(20);kidney(5);thyroid(1);cervix(2);central_nervous_system(3);oesophagus(4);NS(2);upper_aerodigestive_tract(5);stomach(8);soft_tissue(1);urinary_tract(4);breast(12);prostate(5);pituitary(1);pancreas(5);adrenal_gland(1);haematopoietic_and_lymphoid_tissue(2);ovary(5);liver(9)	1				0.958	0.00324	0.05	../MuPIT_Interactive?gm=chr12:6561055		0				
+ATP2A2	1	MS					C0022595	OMIM:124200	200	large_intestine(31);endometrium(12);lung(7);skin(43);autonomic_ganglia(1);kidney(9);thyroid(3);cervix(2);testis(1);oesophagus(4);NS(2);upper_aerodigestive_tract(6);biliary_tract(6);stomach(14);soft_tissue(2);urinary_tract(8);breast(7);prostate(8);pancreas(6);small_intestine(2);haematopoietic_and_lymphoid_tissue(5);ovary(3);bone(2);liver(16)	1				0.951	0.00374	0.05	../MuPIT_Interactive?gm=chr12:110339630		0				
+DYNC1H1	1	MS					C1834690	OMIM:158600	955	large_intestine(151);pleura(1);endometrium(79);lung(62);skin(151);autonomic_ganglia(1);kidney(27);thyroid(8);cervix(13);testis(1);central_nervous_system(12);oesophagus(28);NS(19);upper_aerodigestive_tract(31);biliary_tract(6);stomach(60);soft_tissue(13);urinary_tract(25);breast(50);prostate(38);pancreas(18);adrenal_gland(3);meninges(1);small_intestine(3);haematopoietic_and_lymphoid_tissue(37);ovary(20);bone(4);liver(93)	1				0.829	0.02307	0.1	../MuPIT_Interactive?gm=chr14:102011985		1	94da5dd8-5521-11e7-8f50-0ac135e8bacf	Lissencephaly gene (LIS1) in neuronal migration and development		
+HSP90AA1	1	MS		somatic	NHL				174	large_intestine(19);endometrium(9);lung(9);skin(25);kidney(12);thyroid(2);cervix(4);central_nervous_system(2);oesophagus(9);NS(5);biliary_tract(2);stomach(16);soft_tissue(5);urinary_tract(15);liver(11);prostate(3);pancreas(1);salivary_gland(1);haematopoietic_and_lymphoid_tissue(5);ovary(8);bone(1);breast(10)	1				0.84	0.02014	0.1	../MuPIT_Interactive?gm=chr14:102083954		15	3814fa62-5521-11e7-8f50-0ac135e8bacf,32ff1916-5521-11e7-8f50-0ac135e8bacf,a8411a5c-5521-11e7-8f50-0ac135e8bacf,541d7e20-5521-11e7-8f50-0ac135e8bacf,98ad85f0-5521-11e7-8f50-0ac135e8bacf,9697501e-5521-11e7-8f50-0ac135e8bacf,e6f69242-5521-11e7-8f50-0ac135e8bacf,603902ca-5521-11e7-8f50-0ac135e8bacf,bb3d7c4a-5521-11e7-8f50-0ac135e8bacf,b1ac7318-5521-11e7-8f50-0ac135e8bacf,cb348d72-5521-11e7-8f50-0ac135e8bacf,945aa686-5521-11e7-8f50-0ac135e8bacf,4c90f780-5521-11e7-8f50-0ac135e8bacf,e4e93610-5521-11e7-8f50-0ac135e8bacf,6f7a316e-5521-11e7-8f50-0ac135e8bacf	Validated targets of C-MYC transcriptional activation@VEGFR1 specific signals@IL2 signaling events mediated by PI3K@Signaling events mediated by HDAC Class II@Integrin-linked kinase signaling@Integrins in angiogenesis@Class I PI3K signaling events mediated by Akt@Regulation of Telomerase@Glucocorticoid receptor regulatory network@Hypoxic and oxygen homeostasis regulation of HIF-1-alpha@ErbB receptor signaling network@LKB1 signaling events@Signaling events mediated by VEGFR1 and VEGFR2@Class I PI3K signaling events@Regulation of Androgen receptor activity		
+FASN	1	MS							621	large_intestine(163);endometrium(22);lung(19);skin(82);autonomic_ganglia(1);kidney(9);thyroid(7);cervix(9);central_nervous_system(7);genital_tract(1);oesophagus(24);NS(13);upper_aerodigestive_tract(21);biliary_tract(12);stomach(39);soft_tissue(9);urinary_tract(2);liver(79);prostate(20);pancreas(14);adrenal_gland(2);salivary_gland(3);small_intestine(4);haematopoietic_and_lymphoid_tissue(14);ovary(3);bone(5);breast(37)	1				0.501	0.18611	0.25	../MuPIT_Interactive?gm=chr17:82082606		2	34a994cc-5521-11e7-8f50-0ac135e8bacf,812903c2-5521-11e7-8f50-0ac135e8bacf	Validated transcriptional targets of deltaNp63 isoforms@p73 transcription factor network		
+MYO9B	2	MS					C1857847	OMIM:609753	424	large_intestine(96);endometrium(33);lung(17);skin(57);kidney(12);thyroid(9);cervix(4);central_nervous_system(9);oesophagus(22);NS(8);upper_aerodigestive_tract(22);biliary_tract(9);stomach(24);soft_tissue(10);urinary_tract(8);breast(17);prostate(14);pancreas(15);adrenal_gland(4);haematopoietic_and_lymphoid_tissue(8);ovary(1);bone(4);liver(21)	1				0.473	0.721215732958585	1	../MuPIT_Interactive?gm=chr19:17205335,chr19:17205973		1	60f3521c-5521-11e7-8f50-0ac135e8bacf	Regulation of RhoA activity		
+UPF1	1	MS							267	large_intestine(57);endometrium(18);lung(13);skin(45);meninges(1);kidney(9);thyroid(3);cervix(4);central_nervous_system(7);oesophagus(5);NS(4);upper_aerodigestive_tract(10);biliary_tract(2);stomach(15);soft_tissue(6);urinary_tract(12);breast(11);prostate(7);pancreas(7);haematopoietic_and_lymphoid_tissue(10);ovary(4);bone(2);liver(15)	1				0.662	0.09372	0.15	../MuPIT_Interactive?gm=chr19:18856059						
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-results/Input_Errors.Result.tsv	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,12 @@
+#Input Errors Report
+#2018-05-18 15:18:04.022947
+#CRAVAT version: hybrid
+#Analysis done at http://www.cravat.us.
+#Job Id: znylund_20180518_111800
+#Input file: _VCF_BEDintersect_on_data_65_and_data_6_.vcf
+#This report shows errors that occurred in the input.
+#Input coordinate: hg38 genomic.
+#CHASM classifier: N/A
+#For more information on CRAVAT, visit http://www.cravat.us.
+
+Input line number$%$Input line UID$%$Gene$%$Error$%$Input Line
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-results/Variant_Non-coding.Result.tsv	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,13 @@
+#Non-coding Variant Report
+#2018-05-18 15:18:04.020642
+#CRAVAT version: hybrid
+#Analysis done at http://www.cravat.us.
+#Job Id: znylund_20180518_111800
+#Input file: _VCF_BEDintersect_on_data_65_and_data_6_.vcf
+#This report shows analysis results at variant level.
+#hg38 genomic.
+#N/A
+#For more information on CRAVAT, visit http://www.cravat.us.
+
+Input line	ID	Chromosome	Position	Strand	Reference base(s)	Alternate base(s)	Sample ID	HUGO symbol	Sequence ontology	Protein sequence change	ClinVar	COSMIC ID	COSMIC variant count (tissue)	Number of samples with variant	dbSNP	ESP6500 AF (average)	gnomAD AF Total	gnomAD AF African	gnomAD AF American	gnomAD AF Ashkenazi Jewish	gnomAD AF East Asian	gnomAD AF Finnish	gnomAD AF Non-Finnish European	gnomAD AF Other	gnomAD AF South Asian	GWAS NHLBI Key (GRASP)	GWAS PMID (GRASP)	GWAS Phenotype (GRASP)	Protein 3D variant	In TCGA Mutation Cluster	ncRNA Class	ncRNA Name	Pseudogene	Pseudogene Transcript	Repeat Class	Repeat Family	Repeat Name	TARGET	1000 Genomes AF	UTR/Intron	UTR/Intron Gene	UTR/Intron All Transcript	Phred	VCF filters	Zygosity	Alternate reads	Total reads	Variant allele frequency	VEST p-value	VEST FDR	CGL driver class
+8	VAR524_unknown	chr19	17205444	+	T	C	unknown	Non-Coding						1	rs2305763	0.0	0.510502431118	0.684095610205	0.693317422434	0.337748344371	0.795930949445	0.435243553009	0.393043827905	0.449691991786															0.629792	intron	MYO9B	ENST00000595618.5(intron),ENST00000594824.5(intron),ENST00000397274.6(intron)	206.198	.	hom	14	7	2.0			
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-results/Variant_Result.tsv	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,21 @@
+#Variant Report
+#2018-05-18 15:15:25.119179
+#CRAVAT version: hybrid
+#Analysis done at http://www.cravat.us.
+#Job Id: znylund_20180518_111521
+#Input file: _VCF_BEDintersect_on_data_65_and_data_6_.vcf
+#This report shows analysis results at variant level.
+#hg38 genomic.
+#N/A
+#For more information on CRAVAT, visit http://www.cravat.us.
+
+Input line	ID	Chromosome	Position	Strand	Reference base(s)	Alternate base(s)	Sample ID	HUGO symbol	Sequence ontology	Protein sequence change	ClinVar	COSMIC ID	COSMIC variant count (tissue)	Number of samples with variant	dbSNP	ESP6500 AF (average)	gnomAD AF Total	gnomAD AF African	gnomAD AF American	gnomAD AF Ashkenazi Jewish	gnomAD AF East Asian	gnomAD AF Finnish	gnomAD AF Non-Finnish European	gnomAD AF Other	gnomAD AF South Asian	GWAS NHLBI Key (GRASP)	GWAS PMID (GRASP)	GWAS Phenotype (GRASP)	Protein 3D variant	In TCGA Mutation Cluster	ncRNA Class	ncRNA Name	Pseudogene	Pseudogene Transcript	Repeat Class	Repeat Family	Repeat Name	TARGET	1000 Genomes AF	UTR/Intron	UTR/Intron Gene	UTR/Intron All Transcript	Phred	VCF filters	Zygosity	Alternate reads	Total reads	Variant allele frequency	VEST p-value	VEST FDR	CGL driver class
+1	VAR516_unknown	chr1	156705422	+	T	C	unknown	CRABP2	MS	K9E		COSM1984142	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr1:156705422										0				125181	.	het	5739	18018	0.318514818515	0.53061		
+2	VAR517_unknown	chr12	6561055	+	T	C	unknown	NOP2	MS	N408S				1		0.0													../MuPIT_Interactive?gm=chr12:6561055										0				14340.8	.	het	910	3868	0.235263702172	0.00324		
+3	VAR518_unknown	chr12	110339630	+	C	T	unknown	ATP2A2	MS	T557I				1		0.0													../MuPIT_Interactive?gm=chr12:110339630										0				48828.1	.	het	2447	9100	0.268901098901	0.00374		
+4	VAR520_unknown	chr14	102011985	+	A	T	unknown	DYNC1H1	MS	R2243S		COSM2262213	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr14:102011985										0				12962.3	.	het	642	2131	0.301267010793	0.02307		
+5	VAR521_unknown	chr14	102083954	+	C	T	unknown	HSP90AA1	MS	D515N		COSM2262393	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr14:102083954										0				240809	.	het	17374	85275	0.203740838464	0.02014		
+6	VAR522_unknown	chr17	82082606	+	C	T	unknown	FASN	MS	S1947N		COSM4648107	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr17:82082606										0				10374.8	.	het	776	3826	0.202822791427	0.18611		
+7	VAR523_unknown	chr19	17205335	+	A	T	unknown	MYO9B	MS	K1688M				1		0.0													../MuPIT_Interactive?gm=chr19:17205335										0				0.00158993	.	het	2	7	0.285714285714	0.20028		
+9	VAR525_unknown	chr19	17205973	+	T	C	unknown	MYO9B	MS	V1693A		COSM438878	thyroid(2)	1	rs7248508	0.522744	0.526958747465	0.685404424473	0.728029336735	0.352247807018	0.776672496721	0.453231381586	0.406255640183	0.486462728551	0.596900776808	190609063506732,203395363506733,206865653506734,208819603506735,224846277709335,224792027709336	19060906,20339536,20686565,20881960,22484627,22479202	LDL cholesterol(0.0152),HDL cholesterol(0.0279),Triglycerides(0.0141),Height(0.0104),Obesity with early age of onset (age >2)(0.0471),Adiponectin levels(0.0294)	../MuPIT_Interactive?gm=chr19:17205973										0.631589				12243.8	.	hom	812	406	2.0	0.95254		
+10	VAR526_unknown	chr19	18856059	+	C	T	unknown	UPF1	MS	A571V		COSM3100527	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr19:18856059										0				10269.5	.	het	592	2379	0.248844052123	0.09372		
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/test-results/combined_variants.tsv	Fri May 18 13:25:29 2018 -0400
@@ -0,0 +1,21 @@
+#Variant Additional Details Report
+#2018-05-18 15:15:25.120629
+#CRAVAT version: hybrid
+#Analysis done at http://www.cravat.us.
+#Job Id: znylund_20180518_111521
+#Input file: _VCF_BEDintersect_on_data_65_and_data_6_.vcf
+#This report shows analysis results at variant level.
+#hg38 genomic.
+#N/A
+#For more information on CRAVAT, visit http://www.cravat.us.
+
+Input line	ID	Chromosome	Position	Strand	Reference base(s)	Alternate base(s)	Sample ID	HUGO symbol	Sequence ontology	S.O. transcript	S.O. transcript strand	Reference peptide	Variant peptide	Protein sequence change	S.O. all transcripts	CGC driver class	CGC inheritance	CGC tumor types somatic	CGC tumor types germline	ClinVar disease identifier	ClinVar XRef	COSMIC transcript	COSMIC protein change	COSMIC variant count	ESP6500 AF (European American)	ESP6500 AF (African American)	HGVS Genomic	HGVS Protein	HGVS Protein All	NCI pathway hits	NCI pathway IDs	NCI pathway names	VEST score transcript	VEST p-value	VEST score (missense)	VEST score (frameshift indels)	VEST score (inframe indels)	VEST score (stop-gain)	VEST score (stop-loss)	VEST score (splice site)	All transcripts VEST results	ClinVar	COSMIC ID	COSMIC variant count (tissue)	Number of samples with variant	dbSNP	ESP6500 AF (average)	gnomAD AF Total	gnomAD AF African	gnomAD AF American	gnomAD AF Ashkenazi Jewish	gnomAD AF East Asian	gnomAD AF Finnish	gnomAD AF Non-Finnish European	gnomAD AF Other	gnomAD AF South Asian	GWAS NHLBI Key (GRASP)	GWAS PMID (GRASP)	GWAS Phenotype (GRASP)	Protein 3D variant	In TCGA Mutation Cluster	ncRNA Class	ncRNA Name	Pseudogene	Pseudogene Transcript	Repeat Class	Repeat Family	Repeat Name	TARGET	1000 Genomes AF	UTR/Intron	UTR/Intron Gene	UTR/Intron All Transcript	Phred	VCF filters	Zygosity	Alternate reads	Total reads	Variant allele frequency	VEST FDR	CGL driver class
+1	VAR516_unknown	chr1	156705422	+	T	C	unknown	CRABP2	MS	ENST00000368221.1	-	MPNFSGNWKIIR	MPNFSGNWEIIR	K9E	*ENST00000368221.1:K9E(MS),ENST00000621784.4:K9E(MS),ENST00000368222.7:K9E(MS)							ENST00000368221	p.K9E (large_intestine 1)	1	0	0	NC_000001.10:g.156705422T>C	ENST00000368221.1:p.Lys9Glu	*ENST00000368221.1:p.Lys9Glu,ENST00000621784.4:p.Lys9Glu,ENST00000368222.7:p.Lys9Glu	0			ENST00000368221.1:K9E	0.53061	0.2						*ENST00000368221.1:K9E(0.2:0.53061),ENST00000368222.7:K9E(0.187:0.5543),ENST00000621784.4:K9E(0.186:0.55652)		COSM1984142	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr1:156705422										0				125181	.	het	5739	18018	0.318514818515		
+2	VAR517_unknown	chr12	6561055	+	T	C	unknown	NOP2	MS	ENST00000616948.4	-	NTGVILANDANAER	STGVILANDANAER	N408S	ENST00000617555.4:N404S(MS),ENST00000545200.5:N404S(MS),ENST00000541778.5:N404S(MS),ENST00000399466.6:N404S(MS),ENST00000322166.9:N408S(MS),ENST00000537442.5:N408S(MS),ENST00000382421.7:N441S(MS),ENST00000620535.4:N441S(MS),*ENST00000616948.4:N408S(MS)										0	0	NC_000012.10:g.6561055T>C	ENST00000616948.4:p.Asn408Ser	ENST00000617555.4:p.Asn404Ser,ENST00000545200.5:p.Asn404Ser,ENST00000541778.5:p.Asn404Ser,ENST00000399466.6:p.Asn404Ser,ENST00000322166.9:p.Asn408Ser,ENST00000537442.5:p.Asn408Ser,ENST00000382421.7:p.Asn441Ser,ENST00000620535.4:p.Asn441Ser,*ENST00000616948.4:p.Asn408Ser	0			ENST00000616948.4:N408S	0.00324	0.958						ENST00000617555.4:N404S(0.954:0.00354),*ENST00000616948.4:N408S(0.958:0.00324),ENST00000541778.5:N404S(0.869:0.01488),ENST00000537442.5:N408S(0.956:0.00344),ENST00000399466.6:N404S(0.951:0.00374),ENST00000545200.5:N404S(0.953:0.00354),ENST00000620535.4:N441S(0.938:0.00536),ENST00000382421.7:N441S(0.938:0.00536),ENST00000322166.9:N408S(0.954:0.00354)				1		0.0													../MuPIT_Interactive?gm=chr12:6561055										0				14340.8	.	het	910	3868	0.235263702172		
+3	VAR518_unknown	chr12	110339630	+	C	T	unknown	ATP2A2	MS	ENST00000539276.6	+	EWGSGSDTLR	EWGSGSDILR	T557I	ENST00000308664.10:T557I(MS),*ENST00000539276.6:T557I(MS)										0	0	NC_000012.10:g.110339630C>T	ENST00000539276.6:p.Thr557Ile	ENST00000308664.10:p.Thr557Ile,*ENST00000539276.6:p.Thr557Ile	0			ENST00000539276.6:T557I	0.00374	0.951						ENST00000308664.10:T557I(0.822:0.02459),*ENST00000539276.6:T557I(0.951:0.00374)				1		0.0													../MuPIT_Interactive?gm=chr12:110339630										0				48828.1	.	het	2447	9100	0.268901098901		
+4	VAR520_unknown	chr14	102011985	+	A	T	unknown	DYNC1H1	MS	ENST00000360184.8	+	ALERLEGVEGVAHIIDPK	ALESLEGVEGVAHIIDPK	R2243S	*ENST00000360184.8:R2243S(MS)							ENST00000360184	p.R2243S (large_intestine 1)	1	0	0	NC_000014.10:g.102011985A>T	ENST00000360184.8:p.Arg2243Ser	*ENST00000360184.8:p.Arg2243Ser	1	94da5dd8-5521-11e7-8f50-0ac135e8bacf	Lissencephaly gene (LIS1) in neuronal migration and development	ENST00000360184.8:R2243S	0.02307	0.829						*ENST00000360184.8:R2243S(0.829:0.02307)		COSM2262213	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr14:102011985										0				12962.3	.	het	642	2131	0.301267010793		
+5	VAR521_unknown	chr14	102083954	+	C	T	unknown	HSP90AA1	MS	ENST00000334701.11	-	GVVDSEDLPLNISR	GVVDSENLPLNISR	D515N	ENST00000216281.12:D393N(MS),*ENST00000334701.11:D515N(MS)		somatic	NHL				ENST00000334701	p.D515N (large_intestine 1)	1	0	0	NC_000014.10:g.102083954C>T	ENST00000334701.11:p.Asp515Asn	ENST00000216281.12:p.Asp393Asn,*ENST00000334701.11:p.Asp515Asn	15	3814fa62-5521-11e7-8f50-0ac135e8bacf,32ff1916-5521-11e7-8f50-0ac135e8bacf,a8411a5c-5521-11e7-8f50-0ac135e8bacf,541d7e20-5521-11e7-8f50-0ac135e8bacf,98ad85f0-5521-11e7-8f50-0ac135e8bacf,9697501e-5521-11e7-8f50-0ac135e8bacf,e6f69242-5521-11e7-8f50-0ac135e8bacf,603902ca-5521-11e7-8f50-0ac135e8bacf,bb3d7c4a-5521-11e7-8f50-0ac135e8bacf,b1ac7318-5521-11e7-8f50-0ac135e8bacf,cb348d72-5521-11e7-8f50-0ac135e8bacf,945aa686-5521-11e7-8f50-0ac135e8bacf,4c90f780-5521-11e7-8f50-0ac135e8bacf,e4e93610-5521-11e7-8f50-0ac135e8bacf,6f7a316e-5521-11e7-8f50-0ac135e8bacf	Validated targets of C-MYC transcriptional activation@VEGFR1 specific signals@IL2 signaling events mediated by PI3K@Signaling events mediated by HDAC Class II@Integrin-linked kinase signaling@Integrins in angiogenesis@Class I PI3K signaling events mediated by Akt@Regulation of Telomerase@Glucocorticoid receptor regulatory network@Hypoxic and oxygen homeostasis regulation of HIF-1-alpha@ErbB receptor signaling network@LKB1 signaling events@Signaling events mediated by VEGFR1 and VEGFR2@Class I PI3K signaling events@Regulation of Androgen receptor activity	ENST00000216281.12:D393N	0.02014	0.84						ENST00000334701.11:D515N(0.749:0.04989),*ENST00000216281.12:D393N(0.84:0.02014)		COSM2262393	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr14:102083954										0				240809	.	het	17374	85275	0.203740838464		
+6	VAR522_unknown	chr17	82082606	+	C	T	unknown	FASN	MS	ENST00000306749.3	-	QGVQVQVSTSNISSLEGAR	QGVQVQVSTSNINSLEGAR	S1947N	ENST00000634990.1:S1945N(MS),*ENST00000306749.3:S1947N(MS)							ENST00000306749	p.S1947N (large_intestine 1)	1	0	0	NC_000017.10:g.82082606C>T	ENST00000306749.3:p.Ser1947Asn	ENST00000634990.1:p.Ser1945Asn,*ENST00000306749.3:p.Ser1947Asn	2	34a994cc-5521-11e7-8f50-0ac135e8bacf,812903c2-5521-11e7-8f50-0ac135e8bacf	Validated transcriptional targets of deltaNp63 isoforms@p73 transcription factor network	ENST00000634990.1:S1945N	0.18611	0.501						ENST00000306749.3:S1947N(0.493:0.19016),*ENST00000634990.1:S1945N(0.501:0.18611)		COSM4648107	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr17:82082606										0				10374.8	.	het	776	3826	0.202822791427		
+7	VAR523_unknown	chr19	17205335	+	A	T	unknown	MYO9B	MS	ENST00000594824.5	+	IQSHCSYTYGRKGEPGVEPGHFGVCVDSLTSDK	IQSHCSYTYGRMGEPGAEPGHFGVCVDSLTSDK	K1688M	ENST00000397274.6:K1688M(MS),ENST00000595618.5:K1688M(MS),*ENST00000594824.5:K1688M(MS)										0	0	NC_000019.10:g.17205335A>T	ENST00000594824.5:p.Lys1688Met	ENST00000397274.6:p.Lys1688Met,ENST00000595618.5:p.Lys1688Met,*ENST00000594824.5:p.Lys1688Met	1	60f3521c-5521-11e7-8f50-0ac135e8bacf	Regulation of RhoA activity	ENST00000397274.6:K1688M	0.20028	0.473						ENST00000594824.5:K1688M(0.464:0.20464),*ENST00000397274.6:K1688M(0.473:0.20028),ENST00000595618.5:K1688M(0.469:0.20231)				1		0.0													../MuPIT_Interactive?gm=chr19:17205335										0				0.00158993	.	het	2	7	0.285714285714		
+9	VAR525_unknown	chr19	17205973	+	T	C	unknown	MYO9B	MS	ENST00000594824.5	+	IQSHCSYTYGRKGEPGVEPGHFGVCVDSLTSDK	IQSHCSYTYGRMGEPGAEPGHFGVCVDSLTSDK	V1693A	ENST00000397274.6:V1693A(MS),ENST00000595618.5:V1693A(MS),*ENST00000594824.5:V1693A(MS)							ENST00000319396	p.V1693A (thyroid 2)	2	0.399857	0.645631	NC_000019.10:g.17205973T>C	ENST00000594824.5:p.Val1693Ala	ENST00000397274.6:p.Val1693Ala,ENST00000595618.5:p.Val1693Ala,*ENST00000594824.5:p.Val1693Ala	1	60f3521c-5521-11e7-8f50-0ac135e8bacf	Regulation of RhoA activity	ENST00000397274.6:V1693A	0.95254	0.045						ENST00000594824.5:V1693A(0.025:0.98158),*ENST00000397274.6:V1693A(0.045:0.95254),ENST00000595618.5:V1693A(0.042:0.95749)		COSM438878	thyroid(2)	1	rs7248508	0.522744	0.526958747465	0.685404424473	0.728029336735	0.352247807018	0.776672496721	0.453231381586	0.406255640183	0.486462728551	0.596900776808	190609063506732,203395363506733,206865653506734,208819603506735,224846277709335,224792027709336	19060906,20339536,20686565,20881960,22484627,22479202	LDL cholesterol(0.0152),HDL cholesterol(0.0279),Triglycerides(0.0141),Height(0.0104),Obesity with early age of onset (age >2)(0.0471),Adiponectin levels(0.0294)	../MuPIT_Interactive?gm=chr19:17205973										0.631589				12243.8	.	hom	812	406	2.0		
+10	VAR526_unknown	chr19	18856059	+	C	T	unknown	UPF1	MS	ENST00000599848.5	+	EAIDSPVSFLALHNQIR	EAIDSPVSFLVLHNQIR	A571V	ENST00000262803.9:A560V(MS),*ENST00000599848.5:A571V(MS)							ENST00000262803	p.A560V (large_intestine 1)	1	0	0	NC_000019.10:g.18856059C>T	ENST00000599848.5:p.Ala571Val	ENST00000262803.9:p.Ala560Val,*ENST00000599848.5:p.Ala571Val	0			ENST00000262803.9:A560V	0.09372	0.662						ENST00000599848.5:A571V(0.643:0.10292),*ENST00000262803.9:A560V(0.662:0.09372)		COSM3100527	large_intestine(1)	1		0.0													../MuPIT_Interactive?gm=chr19:18856059										0				10269.5	.	het	592	2379	0.248844052123