Mercurial > repos > galaxyp > lfq_protein_quant
view quantitation.r @ 0:bb199421f731 draft default tip
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/lfq_protein_quant commit 26ff08776f90f96646598a19cfcf57d42aa4a43b
author | galaxyp |
---|---|
date | Tue, 02 Oct 2018 16:30:33 -0400 |
parents | |
children |
line wrap: on
line source
################################# library(tidyverse) library(furrr) library(lme4) library(MSnbase) library(MSqRob) ##Import and preprocess data ############################ MSnSet2df = function(msnset){ ## Converts Msnset to a tidy dataframe ## Always creates feature and vector column so these shouldn't be defined by user. ## convenient for downstream analysis steps. if(any(c("sample", "feature", "expression") %in% c(colnames(fData(msnset)),colnames(pData(msnset))))){ stop("Column names in the \"fData\" or \"pData\" slot of the \"msnset\" object cannot be named \"sample\", \"feature\" or \"expression\". Please rename these columns before running the analysis.") } dt <- as.data.frame(Biobase::exprs(msnset)) %>% mutate(feature = rownames(.)) %>% gather(sample, expression, - feature, na.rm=TRUE) dt <- fData(msnset) %>% mutate(feature = rownames(.)) %>% left_join(dt,. , by = 'feature') dt <- pData(msnset) %>% mutate(sample = rownames(.)) %>% left_join(dt,. , by = 'sample') as_data_frame(dt) } ## robust summarisation do_robust_summaristion = function(msnset, group_var = Proteins, keep_fData_cols = NULL, nIter = 20, sum_fun = summarizeRobust){ ## TODO use funture_map instead of mutate to speed up ## Uses assumption that featureNames and sampleNames exist in every msnset ## Can also be used for multiple rounds of normalization, e.g. first from PSMs to peptides, then from peptides to proteins system.time({## Time how long it takes group_var <- enquo(group_var) ;#group_var = quo(Proteins) ## Make tidy dataframe from Msnset df <- MSnSet2df(msnset) ## Do summarisision according defined groups dt <- filter(df, !is.na(expression)) %>% group_by(!!group_var) %>% mutate(expression = sum_fun(expression, feature, sample, nIter = nIter)) %>% dplyr::select(!!group_var, sample, expression) %>% ## collapse to one value per group distinct ## Construct an Msnset object from dataframe dt_exprs <- spread(dt, sample, expression) %>% ungroup exprs_data <- dplyr::select(dt_exprs, - !!group_var) %>% as.matrix rownames(exprs_data) <- as.character(pull(dt_exprs, !!group_var)) fd <- dplyr::select(dt_exprs,!!group_var) ##Select the group variable and all variables you want to keep if (!is.null(keep_fData_cols)){ fd_ext <- dplyr::select(df, !!group_var, one_of(keep_fData_cols)) %>% distinct if(nrow(fd)!=nrow(fd_ext)){ stop("Values in the \"group_var\" column can only correspond to a single value in the \"keep_fData_cols\" column.") } fd <- left_join(fd,fd_ext) } fd <- as.data.frame(fd) rownames(fd) <- as.character(pull(fd, !!group_var)) out <- MSnSet(exprs_data, fData = AnnotatedDataFrame(fd) , pData = pData(msnset)[colnames(exprs_data),,drop = FALSE]) }) %>% print out } summarizeRobust <- function(expression, feature, sample, nIter=100,...) { ## Assumes that intensities mx are already log-transformed ## characters are faster to construct and work with then factors feature <- as.character(feature) ##If there is only one 1 peptide for all samples return expression of that peptide if (length(unique(feature)) == 1L) return(expression) sample <- as.character(sample) ## modelmatrix breaks on factors with 1 level so make vector of ones (will be intercept) if (length(unique(sample)) == 1L) sample = rep(1,length(sample)) ## sum contrast on peptide level so sample effect will be mean over all peptides instead of reference level X = model.matrix(~ -1 + sample + feature,contrasts.arg = list(feature = 'contr.sum')) ## MasS::rlm breaks on singulare values. ## check with base lm if singular values are present. ## if so, these coefficients will be zero, remove this collumn from model matrix ## rinse and repeat on reduced modelmatrx till no singular values are present repeat { fit = .lm.fit(X,expression) id = fit$coefficients != 0 X = X[ , id, drop =FALSE] if (!any(!id)) break } ## Last step is always rlm fit = MASS::rlm(X,expression,maxit = nIter,...) ## Only return the estimated effects effects as summarised values sampleid = seq_along(unique(sample)) return(X[,sampleid,drop = FALSE] %*% fit$coefficients[sampleid]) } ## mixed models ############### setGeneric ( name= "getBetaB", def=function(model,...){standardGeneric("getBetaB")} ) .getBetaBMermod = function(model) { betaB <- c(as.vector(getME(model,"beta")),as.vector(getME(model,"b"))) names(betaB) <- c(colnames(getME(model,"X")),rownames(getME(model,"Zt"))) betaB } setMethod("getBetaB", "lmerMod", .getBetaBMermod) .getBetaBGlm = function(model) model$coefficients setGeneric ( name= "getVcovBetaBUnscaled", def=function(model,...){standardGeneric("getVcovBetaBUnscaled")} ) setMethod("getBetaB", "glm", .getBetaBGlm) .getVcovBetaBUnscaledMermod = function(model){ ## TODO speed up (see code GAM4) p <- ncol(getME(model,"X")) q <- nrow(getME(model,"Zt")) Ct <- rbind2(t(getME(model,"X")),getME(model,"Zt")) Ginv <- solve(tcrossprod(getME(model,"Lambda"))+Diagonal(q,1e-18)) vcovInv <- tcrossprod(Ct) vcovInv[((p+1):(q+p)),((p+1):(q+p))] <- vcovInv[((p+1):(q+p)),((p+1):(q+p))]+Ginv solve(vcovInv) } setMethod("getVcovBetaBUnscaled", "lmerMod", .getVcovBetaBUnscaledMermod) .getVcovBetaBUnscaledGlm = function(model) ## cov.scaled is scaled with the dispersion, "cov.scaled" is without the dispersion! ## MSqRob::getSigma is needed because regular "sigma" function can return "NaN" when sigma is very small! ## This might cause contrasts that can be estimated using summary() to be NA with our approach! summary(model)$cov.scaled/MSqRob::getSigma(model)^2 setMethod("getVcovBetaBUnscaled", "glm", .getVcovBetaBUnscaledGlm) ## Estimate pvalues contrasts contrast_helper = function(formula, msnset, contrast = NULL){ ## Gives back the coefficients you can use to make contrasts with given the formula and dataset ## If a factor variable is specified (that is present in the formula) all the possible contrasts ## within this variable are returned contrast <- enquo(contrast) ;#contrast = quo(condition) df <- MSnSet2df(msnset) all_vars <- formula %>% terms %>% delete.response %>% all.vars names(all_vars) <- all_vars df[,all_vars] <- map2_dfr(all_vars,df[,all_vars],paste0) coefficients <- c("(Intercept)", df %>% dplyr::select(all_vars) %>% unlist %>% unique %>% as.character) if (contrast != ~NULL) { c <- pull(df,!! contrast) %>% unique %>% sort %>% as.factor comp <- combn(c,2,simplify = FALSE) ## condIds = map(comp,~which( coefficients %in% .x)) ## L = rep(0,length(coefficients)) ## L = sapply(condIds,function(x){L[x]=c(-1,1);L}) ## rownames(L) = coefficients ## colnames(L) = map_chr(comp, ~paste(.x,collapse = '-')) condIds <- map(comp, ~which(coefficients %in% .x)) L <- rep(0,nlevels(c)) L <- sapply(comp,function(x){L[x]=c(-1,1);L}) rownames(L) <- levels(c) colnames(L) <- map_chr(comp, ~paste(rev(.x),collapse = '-')) L } else coefficients } setGeneric ( name= "getXLevels", def=function(model,...){standardGeneric("getXLevels")} ) .getXLevelsGlm = function(model) map2(names(model$xlevels), model$xlevels, paste0) %>% unlist setMethod("getXLevels", "glm", .getXLevelsGlm) .getXLevelsMermod = function(model) getME(model,"flist") %>% map(levels) %>% unlist %>% unname setMethod("getXLevels", "lmerMod", .getXLevelsMermod) contEst <- function(model, contrasts, var, df, lfc = 0){ #TODO only contrast of random effect possible and not between fixed regression terms betaB <- getBetaB(model) vcov <- getVcovBetaBUnscaled(model) coefficients <- names(betaB) id <- coefficients %in% rownames(contrasts) coefficients <- coefficients[id] vcov <- vcov[id,id] betaB <- betaB[id] xlevels <- getXLevels(model) id <- !apply(contrasts,2,function(x){any(x[!(rownames(contrasts) %in% xlevels)] !=0)}) contrasts <- contrasts[coefficients, id, drop = FALSE] ## If no contrasts could be found, terminate if (is.null(colnames(contrasts))) return(new_tibble(list())) se <- sqrt(diag(t(contrasts)%*%vcov%*%contrasts)*var) logFC <- (t(contrasts)%*%betaB)[,1] ### Addition to allow testing against another log FC (lfc) ### See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654802/ lfc <- abs(lfc) aest <- abs(logFC) Tval <- setNames(rep(0, length(logFC)),names(se)) tstat.right <- (aest - lfc)/se tstat.left <- (aest + lfc)/se pval <- pt(tstat.right, df = df, lower.tail = FALSE) + pt(tstat.left, df = df, lower.tail = FALSE) tstat.right <- pmax(tstat.right, 0) fc.up <- (logFC >= lfc) fc.up[is.na(fc.up)] <- FALSE fc.down <- (logFC < -lfc) fc.down[is.na(fc.down)] <- FALSE Tval[fc.up] <- tstat.right[fc.up] Tval[fc.down] <- -tstat.right[fc.down] Tval[is.na(logFC)] <- NA new_tibble(list(contrast = colnames(contrasts), logFC = logFC, se = se, t = Tval, df = rep(df, length(se)), pvalue = pval)) } do_lmerfit = function(df, form, nIter = 10, tol = 1e-6, control = lmerControl(calc.derivs = FALSE)){ fit <- lmer(form, data = df, control = control) ##Initialize SSE res <- resid(fit) ## sseOld=sum(res^2) sseOld <- fit@devcomp$cmp['pwrss'] while (nIter > 0){ nIter = nIter-1 fit@frame$`(weights)` <- MASS::psi.huber(res/(mad(res))) fit <- refit(fit) res <- resid(fit) ## sse=sum(res^2) sse <- fit@devcomp$cmp['pwrss'] if(abs(sseOld-sse)/sseOld <= tol) break sseOld <- sse } return(fit) } calculate_df = function(df, model, vars){ ## Get all the variables in the formula that are not defined in vars form <- attributes(model@frame)$formula vars_formula <- all.vars(form) vars_drop <- vars_formula[!vars_formula %in% vars] ## Sum of number of columns -1 of Zt mtrix of each random effect that does not involve a variable in vars_drop mq <- getME(model,'q_i') id <- !map_lgl(names(mq),~{any(stringr::str_detect(.x,vars_drop))}) p <- sum(mq[id]) - sum(id) ## Sum of fixed effect parameters that do not involve a variable in vars_drop mx <- getME(model,'X') id <- !map_lgl(colnames(mx),~{any(stringr::str_detect(.x,vars_drop))}) p <- p + sum(id) ## n is number of sample because 1 protein defined per sample n <- n_distinct(df$sample) n-p } do_mm = function(formulas, msnset, group_vars = feature,type_df = 'traceHat' , contrasts = NULL, lfc = 0, p.adjust.method = "BH", max_iter = 20L , squeeze_variance = TRUE , control = lmerControl(calc.derivs = FALSE) ## choose parallel = plan(sequential) if you don't want parallelisation ## , parallel_plan = plan(cluster, workers = makeClusterPSOCK(availableCores())) , parallel = TRUE, cores = availableCores() ){ if(!(type_df %in% c("conservative", "traceHat"))) stop("Invalid input `type_df`.") system.time({## can take a while if (parallel){ cl <- makeClusterPSOCK(cores) plan(cluster, workers = cl) } else { plan(sequential)} ## future::plan(parallel_plan,gc = TRUE) formulas <- map(c(formulas), ~update(.,expression ~ . )) group_vars <- enquo(group_vars) # group_var = quo(protein) df <- MSnSet2df(msnset) ## Glm adds variable name to levels in catogorical (eg for contrast) ## lme4 doesnt do this for random effect, so add beforehand ## Ludger needs this for Hurdle df = formulas %>% map(lme4:::findbars) %>% unlist %>% map_chr(all.vars) %>% unique %>% purrr::reduce(~{mutate_at(.x,.y,funs(paste0(.y,.)))}, .init=df) cat("Fitting mixed models\n") ## select only columns needed for fitting df_prot <- df %>% group_by_at(vars(!!group_vars)) %>% nest %>% mutate(model = furrr::future_map(data,~{ for (form in formulas){ fit = try(do_lmerfit(.x, form, nIter = max_iter,control = control)) if (class(fit) == "lmerMod") return(fit) } fit })) ## Return also failed ones afterward df_prot_failed <- filter(df_prot, map_lgl(model,~{class(.x) != "lmerMod"})) df_prot <- filter(df_prot, map_lgl(model, ~{class(.x)=="lmerMod"})) if(nrow(df_prot) == 0) {print("No models could be fitted"); return(df_prot_failed)} df_prot <- mutate(df_prot , formula = map(model,~{attributes(.@frame)$formula}) ## get trace hat df for squeezeVar , df = map_dbl(model, ~getDf(.x)) , sigma = map_dbl(model,~{MSqRob::getSigma(.x)})) %>% ## Squeeze variance bind_cols(as_data_frame(MSqRob::squeezeVarRob(.$sigma^2, .$df, robust = TRUE))) %>% ## mutate(var_protein = ifelse(squeeze_variance,var.post,sigma^2), mutate(var_protein = if (squeeze_variance) var.post else sigma^2, df_post = df + df.prior , df_protein = if (type_df == "conservative") ## Calculate df on protein level, assumption is that there is only one protein value/run, map2_dbl(data, model,~calculate_df(.x,.y, vars = colnames(pData(msnset)))) else if (type_df == "traceHat") ## Alternative: MSqRob implementation with trace(Hat): if(squeeze_variance) df_post else df ) ## Calculate fold changes and p values for contrast cat("Estimating p-values contrasts\n") df_prot <- df_prot %>% mutate(contrasts = furrr::future_pmap(list(model = model, contrasts = list(contrasts), var = var_protein, df = df_protein, lfc = lfc), contEst)) %>% ## Calculate qvalues BH select_at(vars(!!group_vars, contrasts)) %>% unnest %>% group_by(contrast) %>% mutate(qvalue = p.adjust(pvalue, method = p.adjust.method)) %>% group_by_at(vars(!!group_vars)) %>% nest(.key = contrasts) %>% left_join(df_prot,.) } ) %>% print if (parallel) stopCluster(cl) bind_rows(df_prot,df_prot_failed) } read_moff = function(moff,meta){ print('START READING MOFF DATA') set = readMSnSet2(moff, ecol = -c(1,2),fnames = 'peptide', sep = '\t',stringsAsFactors = FALSE) colnames(fData(set)) = c('peptide','protein') pd = read_tsv(meta) %>% column_to_rownames('sample') %>% as.data.frame ## fix msnbase bug 1 ## if there is only 1 sample. Msnbase doesn't name it if (length(sampleNames(set) ==1)) sampleNames(set) = rownames(pd) pData(set) = pd ## fix msnbase bug 2 ## bug in msnbase in summarisation (samplenames should be alphabetically) sample_order = order(sampleNames(set)) set = MSnSet(exprs(set)[,sample_order,drop = FALSE] , fData = AnnotatedDataFrame(fData(set)) , pData = AnnotatedDataFrame(pData(set)[sample_order,,drop = FALSE])) print('END READING MOFF DATA') set } preprocess = function(set){ print('START PREPROCESSING') if (ncol(set) == 1){ exprs(set)[0 == (exprs(set))] <- NA set = log(set, base = 2) ## keep smallest unique groups groups2 <- smallestUniqueGroups(fData(set)$protein,split = ',') sel <- fData(set)$protein %in% groups2 set <- set[sel,] } else { ## normalisation exprs(set)[0 == (exprs(set))] <- NA set <- normalize(set, 'vsn') ## keep smallest unique groups groups2 <- smallestUniqueGroups(fData(set)$protein,split = ',') sel <- fData(set)$protein %in% groups2 set <- set[sel,] ## remove peptides with less then 2 observations sel <- rowSums(!is.na(exprs(set))) >= 2 set <- set[sel] } print('END PREPROCESSING') set } summarise = function(set){ print('START SUMMARISATION') ## Summarisation if (ncol(set) == 1){ set = combineFeatures(set,fun="median", groupBy = fData(set)$protein,cv = FALSE) } else { ## set = combineFeatures(set,fun="robust", groupBy = fData(set)$protein,cv = FALSE) set = do_robust_summaristion(set,protein) } exprs(set) %>% as.data.frame %>% rownames_to_column('protein') %>% write_tsv('summarised_proteins.tsv') print('END SUMMARISATION') set } quantify = function(set, cpu = 0){ print('START QUANTITATION') if ((cpu == 0) | is.na(cpu)) cpu = availableCores() print(cpu) form = colnames(pData(set)) %>% paste0('(1|',.,')',collapse='+') %>% paste('~',.) %>% as.formula contrasts <- contrast_helper(form, set, condition) res = do_mm(formulas = form, set, group_vars = c(protein) , contrasts = contrasts,type_df = 'traceHat', parallel = TRUE,cores = cpu) %>% filter(!map_lgl(contrasts, is.null)) %>% transmute(protein, contrasts) %>% unnest %>% transmute(protein , comparison = str_replace_all(contrast, 'condition', '') , logFC,pvalue,qvalue) %>% write_tsv('quantitation.tsv') print('END QUANTITATION') } args = commandArgs(trailingOnly=TRUE) moff = args[1] meta = args[2] summarise_only = args[3] cpu = strtoi(args[4]) res = read_moff(moff, meta) %>% preprocess %>% summarise if (summarise_only != 1) quantify(res, cpu)