# HG changeset patch
# User galaxyp
# Date 1563613265 14400
# Node ID 8bac3cc5c5de0c388c0f5b95e9d027fd6c970a4f
# Parent d4b6c9eae6358d89cf8fdf9ecee917fa3e6c38a9
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/maxquant commit ab4e4f1817080cbe8a031a82cb180610ff140847
diff -r d4b6c9eae635 -r 8bac3cc5c5de LICENSE
--- a/LICENSE Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,11 +0,0 @@
---2012-09-19 08:46:18-- http://www.apache.org/licenses/LICENSE-2.0.txt
-Resolving www.apache.org... 140.211.11.131, 192.87.106.229, 2001:610:1:80bc:192:87:106:229
-Connecting to www.apache.org|140.211.11.131|:80... connected.
-HTTP request sent, awaiting response... 200 OK
-Length: 11358 (11K) [text/plain]
-Saving to: “LICENSE-2.0.txt”
-
- 0K .......... . 100% 200K=0.06s
-
-2012-09-19 08:46:18 (200 KB/s) - “LICENSE-2.0.txt” saved [11358/11358]
-
diff -r d4b6c9eae635 -r 8bac3cc5c5de README.md
--- a/README.md Fri May 10 17:22:51 2013 -0400
+++ b/README.md Sat Jul 20 05:01:05 2019 -0400
@@ -1,34 +1,27 @@
-Tool wrapper for MaxQuant.
+GalaxyP - MaxQuant
+==================
-MaxQuant is a Windows only program and so you will likely need to
-deploy this tool to run on a remote Windows system via the LWR
-(https://lwr.readthedocs.org).
+* Home:
+* Tool ID: `maxquant`
+* Tool Type: `default`
-The sample mods file maxquant_mods.loc.sample corresponds to the
-default modifications MaxQuant is configured with. The Galaxy-P
-project uses a MaxQuant that has been extended with all of Unimod. To
-modify MaxQuant in this fashion replace MaxQuant's modifications.xml
-file with the extended_modifications.xml distributed with this tool
-and configure Galaxy with the maxquant_mods.loc.sample.extended loc
-file.# Obtaining Tools
-Repositories for all Galaxy-P tools can be found at
-https:/bitbucket.org/galaxyp/.
+Description
+-----------
+
+Wrapper for the MaxQuant version available in conda.
+
-# Contact
-
-Please send suggestions for improvements and bug reports to
-jmchilton@gmail.com.
-
-# License
+Updating
+--------
-All Galaxy-P tools are licensed under the Apache License Version 2.0
-unless otherwise documented.
-
-# Tool Versioning
+MaxQuant often changes the layout of its parameters file.
+So changes to the code are likely to be necessary when
+updating to a new version of MaxQuant. The init.py script
+can be used to initialize the tool with a new list of
+modifications or enzymes. From the tool dir run:
-Galaxy-P tools will have versions of the form X.Y.Z. Versions
-differing only after the second decimal should be completely
-compatible with each other. Breaking changes should result in an
-increment of the number before and/or after the first decimal. All
-tools of version less than 1.0.0 should be considered beta.
+./init.py -m MODIFICATIONS.XML -e ENZYMES.XML
+
+The location of these xml files usually is:
+ANACONDA_DIR/bin/conf/
\ No newline at end of file
diff -r d4b6c9eae635 -r 8bac3cc5c5de README_GALAXYP.md
--- a/README_GALAXYP.md Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,22 +0,0 @@
-# Obtaining Tools
-
-Repositories for all Galaxy-P tools can be found at
-https:/bitbucket.org/galaxyp/.
-
-# Contact
-
-Please send suggestions for improvements and bug reports to
-jmchilton@gmail.com.
-
-# License
-
-All Galaxy-P tools are licensed under the Apache License Version 2.0
-unless otherwise documented.
-
-# Tool Versioning
-
-Galaxy-P tools will have versions of the form X.Y.Z. Versions
-differing only after the second decimal should be completely
-compatible with each other. Breaking changes should result in an
-increment of the number before and/or after the first decimal. All
-tools of version less than 1.0.0 should be considered beta.
diff -r d4b6c9eae635 -r 8bac3cc5c5de README_REPO.md
--- a/README_REPO.md Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,13 +0,0 @@
-Tool wrapper for MaxQuant.
-
-MaxQuant is a Windows only program and so you will likely need to
-deploy this tool to run on a remote Windows system via the LWR
-(https://lwr.readthedocs.org).
-
-The sample mods file maxquant_mods.loc.sample corresponds to the
-default modifications MaxQuant is configured with. The Galaxy-P
-project uses a MaxQuant that has been extended with all of Unimod. To
-modify MaxQuant in this fashion replace MaxQuant's modifications.xml
-file with the extended_modifications.xml distributed with this tool
-and configure Galaxy with the maxquant_mods.loc.sample.extended loc
-file.
\ No newline at end of file
diff -r d4b6c9eae635 -r 8bac3cc5c5de augment_maxquant_mods.py
--- a/augment_maxquant_mods.py Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,166 +0,0 @@
-#!/usr/bin/env python
-"""
-Usage:
- python augment_maxquant_mods.py
-
-Assuming Unimod XML file (unimod.xml) and stock MaxQuant modifications
-file (modifications.xml) are in this same directory, this script will
-create a new MaxQuant modifications file (extended_modifications.xml)
-with an a new modification for each unimod entry. These new entires
-will be suffixed with [Unimod] to distinguish them from existing
-MaxQuant entries. This file should be copied to
-\bin\conf\modifications.xml
-
-"""
-import xml.etree.ElementTree as ET
-import re
-
-FAKE_DATE = "2012-06-11T21:21:24.4946343+02:00"
-
-POSITION_MAP = {
- "Anywhere": "anywhere",
- "Any N-term": "anyNterm",
- "Any C-term": "anyCterm",
- "Protein N-term": "proteinNterm",
- "Protein C-term": "proteinCterm",
-}
-
-unimod_tree = ET.parse('unimod.xml')
-unimod_ns = '{http://www.unimod.org/xmlns/schema/unimod_2}'
-unimod_modifications_el = unimod_tree.getroot().find('%smodifications' % unimod_ns)
-mq_tree = ET.parse("modifications.xml")
-mq_root = mq_tree.getroot()
-
-
-def to_label(title, site):
- return "%s (%s) [Unimod]" % (title, site)
-
-
-def copy_modification(unimod_modification):
- if unimod_modification.hidden:
- return False
- if unimod_modification.delta_el is None:
- return False
- comp_array = unimod_modification.composition_array
- for aa, count in comp_array:
- if len(aa) > 1 and aa not in COMP_REPLACES.keys():
- # Complex stuff like Hep, that I cannot translate into MaxQuant.
- return False
- return True
-
-
-COMP_REPLACES = {
- "15N": "Nx",
- "13C": "Cx",
- "18O": "Ox",
- "2H": "Hx",
-}
-
-## HEP?
-
-
-def convert_composition(unimod_composition):
- """
- Convert Unimod representation of composition to MaxQuant
- """
- composition = unimod_composition
- for key, value in COMP_REPLACES.iteritems():
- composition = composition.replace(key, value)
- print composition
- return composition
-
-
-def populate_modification(modification, unimod_modification):
- """
- Copy unimod entry ``unimod_modification`` to MaxQuant entry ``modification``.
- """
- attrib = modification.attrib
- attrib["create_date"] = FAKE_DATE
- attrib["last_modified_date"] = FAKE_DATE
- attrib["reporterCorrectionM1"] = str(0)
- attrib["reporterCorrectionM2"] = str(0)
- attrib["reporterCorrectionP1"] = str(0)
- attrib["reporterCorrectionP2"] = str(0)
- attrib["user"] = "build_mods_script"
- label = unimod_modification.label
- attrib["title"] = label
- attrib["description"] = label
- attrib["composition"] = convert_composition(unimod_modification.raw_composition)
- unimod_position = unimod_modification.position
- maxquant_position = POSITION_MAP[unimod_position]
- assert maxquant_position != None
- position_el = ET.SubElement(modification, "position")
- position_el.text = maxquant_position
- modification_site_el = ET.SubElement(modification, "modification_site")
- modification_site_el.attrib["index"] = "0"
- unimod_site = unimod_modification.site
- modification_site_el.attrib["site"] = "-" if len(unimod_site) > 1 else unimod_site
- type_el = ET.SubElement(modification, "type")
- type_el.text = "standard"
- return modification
-
-
-class UnimodModification:
-
- def __init__(self, modification, specificity):
- self.modification = modification
- self.specificity = specificity
-
- @property
- def title(self):
- return self.modification.attrib["title"]
-
- @property
- def site(self):
- return self.specificity.attrib["site"]
-
- @property
- def label(self):
- return "%s (%s) [Unimod]" % (self.title, self.site)
-
- @property
- def delta_el(self):
- return self.modification.find("%sdelta" % unimod_ns)
-
- @property
- def raw_composition(self):
- return self.delta_el.attrib["composition"]
-
- @property
- def composition_array(self):
- raw_composition = self.raw_composition
- aa_and_counts = re.split("\s+", raw_composition)
- comp_array = []
- for aa_and_count in aa_and_counts:
- match = re.match(r"(\w+)(\((-?\d+)\))?", aa_and_count)
- aa = match.group(1)
- count = match.group(3) or 1
- comp_array.append((aa, count))
- return comp_array
-
- @property
- def position(self):
- return self.specificity.attrib["position"]
-
- @property
- def hidden(self):
- return self.specificity.attrib["hidden"] == "true"
-
-unimod_modifications = []
-for mod in unimod_modifications_el.findall('%smod' % unimod_ns):
- for specificity in mod.findall('%sspecificity' % unimod_ns):
- unimod_modifications.append(UnimodModification(mod, specificity))
-
-max_index = 0
-for modification in mq_root.getchildren():
- index = int(modification.attrib["index"])
- max_index = max(max_index, index)
-
-for unimod_modification in unimod_modifications:
- if copy_modification(unimod_modification):
- print unimod_modification.composition_array
- max_index += 1
- modification = ET.SubElement(mq_root, "modification", attrib={"index": str(max_index)})
- populate_modification(modification, unimod_modification)
-
-mq_tree.write("extended_modifications.xml")
diff -r d4b6c9eae635 -r 8bac3cc5c5de build_mods_loc.py
--- a/build_mods_loc.py Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,17 +0,0 @@
-#!/usr/bin/env python
-
-import xml.etree.ElementTree as ET
-from os.path import exists
-
-mods_path = "extended_modifications.xml"
-
-if not exists(mods_path):
- mods_path = "modifications.xml"
-
-tree = ET.parse(mods_path)
-modifications_el = tree.getroot()
-
-with open("maxquant_mods.loc", "w") as output:
- for mod in modifications_el.getchildren():
- if mod.find("type").text.strip() == "standard":
- output.write("%s\n" % mod.attrib["title"])
diff -r d4b6c9eae635 -r 8bac3cc5c5de build_proteases_loc.py
--- a/build_proteases_loc.py Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,14 +0,0 @@
-#!/usr/bin/env python
-
-import xml.etree.ElementTree as ET
-from os.path import exists
-
-proteases_path = "proteases.xml"
-
-tree = ET.parse(proteases_path)
-proteases_el = tree.getroot()
-
-with open("maxquant_proteases.loc", "w") as output:
- for protease in proteases_el.getchildren():
- output.write("%s\n" % protease.attrib["name"])
-
diff -r d4b6c9eae635 -r 8bac3cc5c5de extended_modifications.xml
--- a/extended_modifications.xml Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,2579 +0,0 @@
-
-
- notCterm
-
-
-
-
-
-
- standard
-
-
- proteinNterm
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- standard
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anyNterm
-
- standard
-
-
- anyNterm
-
- standard
-
-
- anywhere
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- standard
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anyCterm
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- notCterm
-
-
-
-
-
-
-
-
-
-
-
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-anywherestandardproteinNtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardproteinCtermstandardanyCtermstandardanyNtermstandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanyCtermstandardanyCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinCtermstandardproteinCtermstandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanyNtermstandardanyNtermstandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanyCtermstandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyCtermstandardanywherestandardanyNtermstandardanywherestandardanywherestandardproteinNtermstandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardproteinNtermstandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanyCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardproteinNtermstandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyCtermstandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyCtermstandardanyNtermstandardanywherestandardproteinNtermstandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyCtermstandardanywherestandardanywherestandardanyCtermstandardanywherestandardproteinCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardproteinNtermstandardanywherestandardproteinNtermstandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanyNtermstandardproteinNtermstandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyCtermstandardanywherestandardproteinNtermstandardanywherestandardproteinCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinCtermstandardanywherestandardanywherestandardproteinNtermstandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinCtermstandardanywherestandardanywherestandardanywherestandardproteinCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinCtermstandardanywherestandardanywherestandardproteinCtermstandardanywherestandardproteinCtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardanywherestandardproteinNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardproteinNtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardproteinNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardproteinNtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanyCtermstandardanywherestandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardproteinNtermstandardproteinNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanyCtermstandardanyNtermstandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardanywherestandardanywherestandardanyNtermstandardanywherestandardproteinNtermstandardanywherestandardanywherestandardanywherestandard
\ No newline at end of file
diff -r d4b6c9eae635 -r 8bac3cc5c5de init.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/init.py Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,74 @@
+#!/usr/bin/env python3
+"""Initialize MaxQuant tool for use with a new version of
+modifications/enzymes.xml.
+
+TODO: Append function: only add modifications that are not
+already present, add modification entries to conda maxquant
+
+Authors: Damian Glaetzer
+
+Usage: init.py [-a] [-m MODS_FILE] [-e ENZYMES_FILE]
+FILES are the modifications/enzymes.xml of MaxQuant, located at
+/pkgs/maxquant-/bin/conf/.
+(for conda installations)
+
+Updates modification parameters in macros.xml.
+"""
+
+import argparse
+import re
+import xml.etree.ElementTree as ET
+from xml.dom import minidom
+
+
+def build_list(node, name, mod_list, append=False):
+ """Build the modifications list in macros.xml"""
+ node.clear()
+ node.tag = 'xml'
+ node.set('name', name)
+ for m in mod_list:
+ ET.SubElement(node, 'expand', attrib={'macro': 'mod_option',
+ 'value': m})
+
+
+parser = argparse.ArgumentParser()
+parser.add_argument("-m", "--modifications",
+ help="modifications.xml of maxquant")
+parser.add_argument("-e", "--enzymes",
+ help="enzymes.xml of maxquant")
+args = parser.parse_args()
+
+if args.modifications:
+ mods_root = ET.parse(args.modifications).getroot()
+
+ mods = mods_root.findall('modification')
+ standard_mods = []
+ label_mods = []
+ for m in mods:
+ if (m.findtext('type') == 'Standard'
+ or m.findtext('type') == 'AaSubstitution'):
+ standard_mods.append(m.get('title'))
+ elif m.findtext('type') == 'Label':
+ label_mods.append(m.get('title'))
+
+if args.enzymes:
+ enzymes_root = ET.parse(args.enzymes).getroot()
+
+ enzymes = enzymes_root.findall('enzyme')
+ enzymes_list = [e.get('title') for e in enzymes]
+
+macros_root = ET.parse('./macros.xml').getroot()
+for child in macros_root:
+ if child.get('name') == 'modification' and args.modifications:
+ build_list(child, 'modification', standard_mods)
+ elif child.get('name') == 'label' and args.modifications:
+ build_list(child, 'label', label_mods)
+ elif child.get('name') == 'proteases' and args.enzymes:
+ build_list(child, 'proteases', enzymes_list)
+
+rough_string = ET.tostring(macros_root, 'utf-8')
+reparsed = minidom.parseString(rough_string)
+pretty = reparsed.toprettyxml(indent=" ")
+even_prettier = re.sub(r"\n\s+\n", r"\n", pretty)
+with open('./macros.xml', 'w') as f:
+ print(even_prettier, file=f)
diff -r d4b6c9eae635 -r 8bac3cc5c5de macros.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/macros.xml Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,485 @@
+
+
+ 1.6.3.4
+ [^\w\-\s\.]
+
+
+ '@NAME@' in output_opts['output']
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff -r d4b6c9eae635 -r 8bac3cc5c5de maxquant.xml
--- a/maxquant.xml Fri May 10 17:22:51 2013 -0400
+++ b/maxquant.xml Sat Jul 20 05:01:05 2019 -0400
@@ -1,331 +1,364 @@
-
-
-
-
- maxquant
- windows
-
-
- ##Describe inputs
-#set $type = str($analysis_type.type)
-#if $type == "single"
-#set $groups = [$analysis_type]
-#elif $type == "multi_same"
-#set $groups = $analysis_type.groups
-#end if
-#for $i, $group in enumerate($groups)
-num:${str(i + 1)}
-#for $input in $group.inputs
-name:${input.display_name}
-path:${input}
-#end for
-#end for
-
-
- maxquant_wrapper.py
- --input_groups=$inputs_config
- --database="${database}"
- --database_name="${database.name}"
- --protease=$analysis_type.protease
- --first_search_tol=$analysis_type.first_search_tol
- --main_search_tol=$analysis_type.main_search_tol
- --max_missed_cleavages=$analysis_type.max_missed_cleavages
- --max_n_mods=$analysis_type.max_n_mods
- --variable_mods="${analysis_type.variable_modifications or ''}"
- #if $analysis_type.advanced_group_parameters.specify
- --do_mass_filtering=$analysis_type.advanced_group_parameters.do_mass_filtering
- --max_charge=$analysis_type.advanced_group_parameters.max_charge
+
+
+ macros.xml
+
+
+ maxquant
+ python
+
+ '$log'
#end if
- #if $site_quantification.specify
- --site_quant_mode=$site_quantification.site_quant_mode
- --use_norm_ratios_for_occupancy=$site_quantification.use_norm_ratios_for_occupancy
- #end if
- #set $identification_type = str($identification.options_type)
- #if $identification_type != "none"
- --protein_fdr=$identification.protein_fdr
- --peptide_fdr=$identification.peptide_fdr
- --site_fdr=$identification.site_fdr
- #if $identification_type != "simple"
- --peptide_pep=$identification.peptide_pep
- #end if
- #end if
- #if $misc.specify
- --re_quantify="$misc.re_quantify"
+ #if 'output_all' in $output_opts.output
+ && tar -zcf '$output_all' ./combined/txt
#end if
- --fixed_mods="${fixed_modifications or ''}"
- --output_protein_groups=$output_protein_groups
- --output_peptides=$output_peptides
- --output_evidence=$output_evidence
- --output_parameters=$output_parameters
- --output_msms=$output_msms
- --output_mqpar=$output_mqpar
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+ ]]>
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ datatypes)
+- Optional files:
+ - Tabular file with experimental design template:
+ - Currently four columns are needed: Name, Fraction, Experiment and PTM. The headers must have this exact naming. Name and Fraction are abitrary strings, Experiment is an integer, PTM is either True or False.
+
+ ::
+
+ Name Fraction Experiment PTM
+ File1 1 E1 False
+ File2 2 E1 False
+ File3 3 E1 False
+ ...
+ ...
+
+**Parameter Options**
+
+- Quantification options
+ - label based:
+ - for two channels: choose options from light and heavy sections, for three channels choose options from light, medium and heavy sections
+ - label-free
+
+**Output files**
+
+Different output file options are available, most of them are part of the MaxQuant txt directory.
+ ]]>
+
+
+ @article{cox2008maxquant,
+ title={MaxQuant enables high peptide identification rates, individualized
+ ppb-range mass accuracies and proteome-wide protein quantification},
+ author={Cox, J{\"u}rgen and Mann, Matthias},
+ journal={Nature biotechnology},
+ volume={26},
+ number={12},
+ pages={1367},
+ year={2008},
+ publisher={Nature Publishing Group}
+ }
+
+
+ @article{tyanova2016maxquant,
+ title={The MaxQuant computational platform for mass
+ spectrometry-based shotgun proteomics},
+ author={Tyanova, Stefka and Temu, Tikira and Cox, J{\"u}rgen},
+ journal={Nature protocols},
+ volume={11},
+ number={12},
+ pages={2301},
+ year={2016},
+ publisher={Nature Publishing Group}
+ }
+
+
diff -r d4b6c9eae635 -r 8bac3cc5c5de maxquant_mods.loc
--- a/maxquant_mods.loc Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1234 +0,0 @@
-Acetyl (K)
-Acetyl (Protein N-term)
-Carbamidomethyl (C)
-Oxidation (M)
-Phospho (STY)
-GlyGly (K)
-Methyl (KR)
-Dimethyl (KR)
-Trimethyl (K)
-Pro5
-Pro6
-Glu->pyro-Glu
-Gln->pyro-Glu
-OHexNAc
-QQTGG (K)
-Deamidation (N)
-Deamidation 18O (N)
-Deamidation (NQ)
-Ala->Arg
-Ala->Asn
-Ala->Asp
-Ala->Cys
-Ala->Gln
-Ala->Glu
-Ala->Gly
-Ala->His
-Ala->Xle
-Ala->Lys
-Ala->Met
-Ala->Phe
-Ala->Pro
-Ala->Ser
-Ala->Thr
-Ala->Trp
-Ala->Tyr
-Ala->Val
-Arg->Ala
-Arg->Asn
-Arg->Asp
-Arg->Cys
-Arg->Gln
-Arg->Glu
-Arg->Gly
-Arg->His
-Arg->Lys
-Arg->Met
-Arg->Phe
-Arg->Pro
-Arg->Ser
-Arg->Thr
-Arg->Trp
-Arg->Tyr
-Arg->Val
-Arg->Xle
-Asn->Ala
-Asn->Arg
-Asn->Asp
-Asn->Cys
-Asn->Gln
-Asn->Glu
-Asn->Gly
-Asn->His
-Asn->Lys
-Asn->Met
-Asn->Phe
-Asn->Pro
-Asn->Ser
-Asn->Thr
-Asn->Trp
-Asn->Tyr
-Asn->Val
-Asn->Xle
-Asp->Ala
-Asp->Arg
-Asp->Asn
-Asp->Cys
-Asp->Gln
-Asp->Glu
-Asp->Gly
-Asp->His
-Asp->Lys
-Asp->Met
-Asp->Phe
-Asp->Pro
-Asp->Ser
-Asp->Thr
-Asp->Trp
-Asp->Tyr
-Asp->Val
-Asp->Xle
-Cys->Ala
-Cys->Arg
-Cys->Asn
-Cys->Asp
-Cys->Gln
-Cys->Glu
-Cys->Gly
-Cys->His
-Cys->Lys
-Cys->Met
-Cys->Phe
-Cys->Pro
-Cys->Ser
-Cys->Thr
-Cys->Trp
-Cys->Tyr
-Cys->Val
-Cys->Xle
-Gln->Ala
-Gln->Arg
-Gln->Asn
-Gln->Asp
-Gln->Cys
-Gln->Glu
-Gln->Gly
-Gln->His
-Gln->Lys
-Gln->Met
-Gln->Phe
-Gln->Pro
-Gln->Ser
-Gln->Thr
-Gln->Trp
-Gln->Tyr
-Gln->Val
-Gln->Xle
-Glu->Ala
-Glu->Arg
-Glu->Asn
-Glu->Asp
-Glu->Cys
-Glu->Gln
-Glu->Gly
-Glu->His
-Glu->Lys
-Glu->Met
-Glu->Phe
-Glu->Pro
-Glu->Ser
-Glu->Thr
-Glu->Trp
-Glu->Tyr
-Glu->Val
-Glu->Xle
-Gly->Ala
-Gly->Arg
-Gly->Asn
-Gly->Asp
-Gly->Cys
-Gly->Gln
-Gly->Glu
-Gly->His
-Gly->Lys
-Gly->Met
-Gly->Phe
-Gly->Pro
-Gly->Ser
-Gly->Thr
-Gly->Trp
-Gly->Tyr
-Gly->Val
-Gly->Xle
-His->Ala
-His->Arg
-His->Asn
-His->Asp
-His->Cys
-His->Gln
-His->Glu
-His->Gly
-His->Lys
-His->Met
-His->Phe
-His->Pro
-His->Ser
-His->Thr
-His->Trp
-His->Tyr
-His->Val
-His->Xle
-Lys->Ala
-Lys->Arg
-Lys->Asn
-Lys->Asp
-Lys->Cys
-Lys->Gln
-Lys->Glu
-Lys->Gly
-Lys->His
-Lys->Met
-Lys->Phe
-Lys->Pro
-Lys->Ser
-Lys->Thr
-Lys->Trp
-Lys->Tyr
-Lys->Val
-Lys->Xle
-Met->Ala
-Met->Arg
-Met->Asn
-Met->Asp
-Met->Cys
-Met->Gln
-Met->Glu
-Met->Gly
-Met->His
-Met->Lys
-Met->Phe
-Met->Pro
-Met->Ser
-Met->Thr
-Met->Trp
-Met->Tyr
-Met->Val
-Met->Xle
-Phe->Ala
-Phe->Arg
-Phe->Asn
-Phe->Asp
-Phe->Cys
-Phe->Gln
-Phe->Glu
-Phe->Gly
-Phe->His
-Phe->Lys
-Phe->Met
-Phe->Pro
-Phe->Ser
-Phe->Thr
-Phe->Trp
-Phe->Tyr
-Phe->Val
-Phe->Xle
-Pro->Ala
-Pro->Arg
-Pro->Asn
-Pro->Asp
-Pro->Cys
-Pro->Gln
-Pro->Glu
-Pro->Gly
-Pro->His
-Pro->Lys
-Pro->Met
-Pro->Phe
-Pro->Ser
-Pro->Thr
-Pro->Trp
-Pro->Tyr
-Pro->Val
-Pro->Xle
-Ser->Ala
-Ser->Arg
-Ser->Asn
-Ser->Asp
-Ser->Cys
-Ser->Gln
-Ser->Glu
-Ser->Gly
-Ser->His
-Ser->Lys
-Ser->Met
-Ser->Phe
-Ser->Pro
-Ser->Thr
-Ser->Trp
-Ser->Tyr
-Ser->Val
-Ser->Xle
-Thr->Ala
-Thr->Arg
-Thr->Asn
-Thr->Asp
-Thr->Cys
-Thr->Gln
-Thr->Glu
-Thr->Gly
-Thr->His
-Thr->Lys
-Thr->Met
-Thr->Phe
-Thr->Pro
-Thr->Ser
-Thr->Trp
-Thr->Tyr
-Thr->Val
-Thr->Xle
-Trp->Ala
-Trp->Arg
-Trp->Asn
-Trp->Asp
-Trp->Cys
-Trp->Gln
-Trp->Glu
-Trp->Gly
-Trp->His
-Trp->Lys
-Trp->Met
-Trp->Phe
-Trp->Pro
-Trp->Ser
-Trp->Thr
-Trp->Tyr
-Trp->Val
-Trp->Xle
-Tyr->Ala
-Tyr->Arg
-Tyr->Asn
-Tyr->Asp
-Tyr->Cys
-Tyr->Gln
-Tyr->Glu
-Tyr->Gly
-Tyr->His
-Tyr->Lys
-Tyr->Met
-Tyr->Phe
-Tyr->Pro
-Tyr->Ser
-Tyr->Thr
-Tyr->Trp
-Tyr->Val
-Tyr->Xle
-Val->Ala
-Val->Arg
-Val->Asn
-Val->Asp
-Val->Cys
-Val->Gln
-Val->Glu
-Val->Gly
-Val->His
-Val->Lys
-Val->Met
-Val->Phe
-Val->Pro
-Val->Ser
-Val->Thr
-Val->Trp
-Val->Tyr
-Val->Xle
-Xle->Ala
-Xle->Arg
-Xle->Asn
-Xle->Asp
-Xle->Cys
-Xle->Gln
-Xle->Glu
-Xle->Gly
-Xle->His
-Xle->Lys
-Xle->Met
-Xle->Phe
-Xle->Pro
-Xle->Ser
-Xle->Thr
-Xle->Trp
-Xle->Tyr
-Xle->Val
-CamCys->Ala
-CamCys->Arg
-CamCys->Asn
-CamCys->Asp
-CamCys->Gln
-CamCys->Glu
-CamCys->Gly
-CamCys->His
-CamCys->Lys
-CamCys->Met
-CamCys->Phe
-CamCys->Pro
-CamCys->Ser
-CamCys->Thr
-CamCys->Trp
-CamCys->Tyr
-CamCys->Val
-CamCys->Xle
-Ala->CamCys
-Arg->CamCys
-Asn->CamCys
-Asp->CamCys
-Gln->CamCys
-Glu->CamCys
-Gly->CamCys
-His->CamCys
-Lys->CamCys
-Met->CamCys
-Phe->CamCys
-Pro->CamCys
-Ser->CamCys
-Thr->CamCys
-Trp->CamCys
-Tyr->CamCys
-Val->CamCys
-Xle->CamCys
-Acetyl (T) [Unimod]
-Acetyl (N-term) [Unimod]
-Acetyl (S) [Unimod]
-Acetyl (C) [Unimod]
-Acetyl (N-term) [Unimod]
-Acetyl (K) [Unimod]
-Acetyl (Y) [Unimod]
-Acetyl (H) [Unimod]
-Amidated (C-term) [Unimod]
-Amidated (C-term) [Unimod]
-Biotin (N-term) [Unimod]
-Biotin (K) [Unimod]
-Carbamidomethyl (D) [Unimod]
-Carbamidomethyl (H) [Unimod]
-Carbamidomethyl (N-term) [Unimod]
-Carbamidomethyl (K) [Unimod]
-Carbamidomethyl (C) [Unimod]
-Carbamidomethyl (E) [Unimod]
-Carbamyl (C) [Unimod]
-Carbamyl (R) [Unimod]
-Carbamyl (N-term) [Unimod]
-Carbamyl (K) [Unimod]
-Carbamyl (M) [Unimod]
-Carboxymethyl (N-term) [Unimod]
-Carboxymethyl (K) [Unimod]
-Carboxymethyl (C) [Unimod]
-Carboxymethyl (W) [Unimod]
-Deamidated (R) [Unimod]
-Deamidated (N) [Unimod]
-Deamidated (Q) [Unimod]
-Deamidated (F) [Unimod]
-ICAT-G (C) [Unimod]
-ICAT-G:2H(8) (C) [Unimod]
-Met->Hse (M) [Unimod]
-Met->Hsl (M) [Unimod]
-ICAT-D:2H(8) (C) [Unimod]
-ICAT-D (C) [Unimod]
-NIPCAM (C) [Unimod]
-PEO-Iodoacetyl-LC-Biotin (C) [Unimod]
-Phospho (R) [Unimod]
-Phospho (C) [Unimod]
-Phospho (D) [Unimod]
-Phospho (Y) [Unimod]
-Phospho (H) [Unimod]
-Phospho (T) [Unimod]
-Phospho (S) [Unimod]
-Dehydrated (D) [Unimod]
-Dehydrated (Y) [Unimod]
-Dehydrated (T) [Unimod]
-Dehydrated (S) [Unimod]
-Dehydrated (N) [Unimod]
-Dehydrated (Q) [Unimod]
-Dehydrated (C) [Unimod]
-Propionamide (C) [Unimod]
-Pyridylacetyl (N-term) [Unimod]
-Pyridylacetyl (K) [Unimod]
-Pyro-carbamidomethyl (C) [Unimod]
-Glu->pyro-Glu (E) [Unimod]
-Gln->pyro-Glu (Q) [Unimod]
-SMA (N-term) [Unimod]
-SMA (K) [Unimod]
-Pyridylethyl (C) [Unimod]
-Methyl (T) [Unimod]
-Methyl (S) [Unimod]
-Methyl (N-term) [Unimod]
-Methyl (E) [Unimod]
-Methyl (D) [Unimod]
-Methyl (C-term) [Unimod]
-Methyl (L) [Unimod]
-Methyl (I) [Unimod]
-Methyl (R) [Unimod]
-Methyl (N-term) [Unimod]
-Methyl (Q) [Unimod]
-Methyl (N) [Unimod]
-Methyl (K) [Unimod]
-Methyl (H) [Unimod]
-Methyl (C) [Unimod]
-Oxidation (W) [Unimod]
-Oxidation (H) [Unimod]
-Oxidation (C) [Unimod]
-Oxidation (M) [Unimod]
-Oxidation (R) [Unimod]
-Oxidation (Y) [Unimod]
-Oxidation (F) [Unimod]
-Oxidation (P) [Unimod]
-Oxidation (N) [Unimod]
-Oxidation (K) [Unimod]
-Oxidation (D) [Unimod]
-Oxidation (G) [Unimod]
-Dimethyl (N) [Unimod]
-Dimethyl (N-term) [Unimod]
-Dimethyl (R) [Unimod]
-Dimethyl (K) [Unimod]
-Dimethyl (P) [Unimod]
-Trimethyl (A) [Unimod]
-Trimethyl (R) [Unimod]
-Trimethyl (K) [Unimod]
-Methylthio (C) [Unimod]
-Methylthio (N) [Unimod]
-Methylthio (D) [Unimod]
-Sulfo (Y) [Unimod]
-Sulfo (T) [Unimod]
-Sulfo (S) [Unimod]
-Sulfo (C) [Unimod]
-Lipoyl (K) [Unimod]
-Farnesyl (C) [Unimod]
-Myristoyl (C) [Unimod]
-Myristoyl (K) [Unimod]
-Myristoyl (G) [Unimod]
-PyridoxalPhosphate (K) [Unimod]
-Palmitoyl (T) [Unimod]
-Palmitoyl (S) [Unimod]
-Palmitoyl (K) [Unimod]
-Palmitoyl (C) [Unimod]
-Palmitoyl (N-term) [Unimod]
-GeranylGeranyl (C) [Unimod]
-Phosphopantetheine (S) [Unimod]
-FAD (Y) [Unimod]
-FAD (H) [Unimod]
-FAD (C) [Unimod]
-Tripalmitate (C) [Unimod]
-Guanidinyl (K) [Unimod]
-HNE (K) [Unimod]
-HNE (H) [Unimod]
-HNE (C) [Unimod]
-Glucuronyl (N-term) [Unimod]
-Glucuronyl (S) [Unimod]
-Glutathione (C) [Unimod]
-Acetyl:2H(3) (N-term) [Unimod]
-Acetyl:2H(3) (K) [Unimod]
-Propionyl (N-term) [Unimod]
-Propionyl (K) [Unimod]
-Propionyl:13C(3) (N-term) [Unimod]
-Propionyl:13C(3) (K) [Unimod]
-GIST-Quat (N-term) [Unimod]
-GIST-Quat (K) [Unimod]
-GIST-Quat:2H(3) (N-term) [Unimod]
-GIST-Quat:2H(3) (K) [Unimod]
-GIST-Quat:2H(6) (N-term) [Unimod]
-GIST-Quat:2H(6) (K) [Unimod]
-GIST-Quat:2H(9) (N-term) [Unimod]
-GIST-Quat:2H(9) (K) [Unimod]
-Succinyl (N-term) [Unimod]
-Succinyl (N-term) [Unimod]
-Succinyl (K) [Unimod]
-Succinyl:2H(4) (N-term) [Unimod]
-Succinyl:2H(4) (K) [Unimod]
-Succinyl:13C(4) (N-term) [Unimod]
-Succinyl:13C(4) (K) [Unimod]
-probiotinhydrazide (P) [Unimod]
-Pro->pyro-Glu (P) [Unimod]
-His->Asn (H) [Unimod]
-His->Asp (H) [Unimod]
-Trp->Hydroxykynurenin (W) [Unimod]
-Delta:H(4)C(3) (K) [Unimod]
-Delta:H(4)C(3) (H) [Unimod]
-Delta:H(4)C(2) (K) [Unimod]
-Delta:H(4)C(2) (H) [Unimod]
-Cys->Dha (C) [Unimod]
-Arg->GluSA (R) [Unimod]
-Trioxidation (C) [Unimod]
-Iminobiotin (N-term) [Unimod]
-Iminobiotin (K) [Unimod]
-ESP (N-term) [Unimod]
-ESP (K) [Unimod]
-ESP:2H(10) (N-term) [Unimod]
-ESP:2H(10) (K) [Unimod]
-NHS-LC-Biotin (N-term) [Unimod]
-NHS-LC-Biotin (K) [Unimod]
-EDT-maleimide-PEO-biotin (T) [Unimod]
-EDT-maleimide-PEO-biotin (S) [Unimod]
-IMID (K) [Unimod]
-IMID:2H(4) (K) [Unimod]
-Lysbiotinhydrazide (K) [Unimod]
-Propionamide:2H(3) (C) [Unimod]
-Nitro (Y) [Unimod]
-Nitro (W) [Unimod]
-ICAT-C (C) [Unimod]
-Delta:H(2)C(2) (K) [Unimod]
-Delta:H(2)C(2) (H) [Unimod]
-Trp->Kynurenin (W) [Unimod]
-Lys->Allysine (K) [Unimod]
-ICAT-C:13C(9) (C) [Unimod]
-FormylMet (N-term) [Unimod]
-Nethylmaleimide (C) [Unimod]
-OxLysBiotinRed (K) [Unimod]
-IBTP (C) [Unimod]
-OxLysBiotin (K) [Unimod]
-OxProBiotinRed (P) [Unimod]
-OxProBiotin (P) [Unimod]
-OxArgBiotin (R) [Unimod]
-OxArgBiotinRed (R) [Unimod]
-EDT-iodoacetyl-PEO-biotin (T) [Unimod]
-EDT-iodoacetyl-PEO-biotin (S) [Unimod]
-GlyGly (T) [Unimod]
-GlyGly (S) [Unimod]
-GlyGly (C) [Unimod]
-GlyGly (K) [Unimod]
-Formyl (N-term) [Unimod]
-Formyl (T) [Unimod]
-Formyl (K) [Unimod]
-Formyl (N-term) [Unimod]
-Formyl (S) [Unimod]
-Cation:K (C-term) [Unimod]
-Cation:K (E) [Unimod]
-Cation:K (D) [Unimod]
-Thioacyl (N-term) [Unimod]
-Thioacyl (K) [Unimod]
-Fluoro (W) [Unimod]
-Fluoro (F) [Unimod]
-Fluoro (Y) [Unimod]
-Fluorescein (C) [Unimod]
-Iodo (H) [Unimod]
-Iodo (Y) [Unimod]
-Diiodo (Y) [Unimod]
-Triiodo (Y) [Unimod]
-Myristoleyl (G) [Unimod]
-Pro->Pyrrolidinone (P) [Unimod]
-Myristoyl+Delta:H(-4) (G) [Unimod]
-Benzoyl (N-term) [Unimod]
-Benzoyl (K) [Unimod]
-Dansyl (N-term) [Unimod]
-Dansyl (K) [Unimod]
-a-type-ion (C-term) [Unimod]
-Amidine (N-term) [Unimod]
-Amidine (K) [Unimod]
-NBS:13C(6) (W) [Unimod]
-Methyl:2H(3)13C(1) (R) [Unimod]
-Dimethyl:2H(6)13C(2) (R) [Unimod]
-NBS (W) [Unimod]
-Delta:H(1)O(-1)18O(1) (N) [Unimod]
-QAT (C) [Unimod]
-BHT (H) [Unimod]
-BHT (K) [Unimod]
-BHT (C) [Unimod]
-Delta:H(4)C(2)O(-1)S(1) (S) [Unimod]
-DAET (T) [Unimod]
-DAET (S) [Unimod]
-Pro->Pyrrolidone (P) [Unimod]
-Label:13C(9) (Y) [Unimod]
-Label:13C(9) (F) [Unimod]
-Label:13C(9)+Phospho (Y) [Unimod]
-Label:13C(6) (I) [Unimod]
-Label:13C(6) (L) [Unimod]
-Label:13C(6) (K) [Unimod]
-Label:13C(6) (R) [Unimod]
-HPG (R) [Unimod]
-2HPG (R) [Unimod]
-QAT:2H(3) (C) [Unimod]
-Label:18O(2) (C-term) [Unimod]
-AccQTag (N-term) [Unimod]
-AccQTag (K) [Unimod]
-Dimethyl:2H(4) (N-term) [Unimod]
-Dimethyl:2H(4) (N-term) [Unimod]
-Dimethyl:2H(4) (K) [Unimod]
-EQAT (C) [Unimod]
-EQAT:2H(5) (C) [Unimod]
-Ethanedithiol (T) [Unimod]
-Ethanedithiol (S) [Unimod]
-NEIAA:2H(5) (Y) [Unimod]
-NEIAA:2H(5) (C) [Unimod]
-Delta:H(6)C(6)O(1) (K) [Unimod]
-Delta:H(4)C(3)O(1) (K) [Unimod]
-Delta:H(4)C(3)O(1) (H) [Unimod]
-Delta:H(4)C(3)O(1) (C) [Unimod]
-Delta:H(2)C(3) (K) [Unimod]
-Delta:H(4)C(6) (K) [Unimod]
-Delta:H(8)C(6)O(2) (K) [Unimod]
-ADP-Ribosyl (E) [Unimod]
-ADP-Ribosyl (S) [Unimod]
-ADP-Ribosyl (N) [Unimod]
-ADP-Ribosyl (C) [Unimod]
-ADP-Ribosyl (R) [Unimod]
-NEIAA (Y) [Unimod]
-NEIAA (C) [Unimod]
-iTRAQ4plex (Y) [Unimod]
-iTRAQ4plex (N-term) [Unimod]
-iTRAQ4plex (K) [Unimod]
-Crotonaldehyde (K) [Unimod]
-Crotonaldehyde (H) [Unimod]
-Crotonaldehyde (C) [Unimod]
-Amino (Y) [Unimod]
-Argbiotinhydrazide (R) [Unimod]
-Label:18O(1) (Y) [Unimod]
-Label:18O(1) (T) [Unimod]
-Label:18O(1) (S) [Unimod]
-Label:18O(1) (C-term) [Unimod]
-Label:13C(6)15N(2) (K) [Unimod]
-Thiophospho (Y) [Unimod]
-Thiophospho (T) [Unimod]
-Thiophospho (S) [Unimod]
-SPITC (K) [Unimod]
-SPITC (N-term) [Unimod]
-Cytopiloyne (Y) [Unimod]
-Cytopiloyne (S) [Unimod]
-Cytopiloyne (R) [Unimod]
-Cytopiloyne (P) [Unimod]
-Cytopiloyne (N-term) [Unimod]
-Cytopiloyne (K) [Unimod]
-Cytopiloyne (C) [Unimod]
-Cytopiloyne+water (Y) [Unimod]
-Cytopiloyne+water (T) [Unimod]
-Cytopiloyne+water (S) [Unimod]
-Cytopiloyne+water (R) [Unimod]
-Cytopiloyne+water (N-term) [Unimod]
-Cytopiloyne+water (K) [Unimod]
-Cytopiloyne+water (C) [Unimod]
-Label:13C(6)15N(4) (R) [Unimod]
-Label:13C(9)15N(1) (F) [Unimod]
-Label:2H(3) (L) [Unimod]
-Label:13C(5)15N(1) (V) [Unimod]
-PET (T) [Unimod]
-PET (S) [Unimod]
-CAF (N-term) [Unimod]
-Xlink:SSD (K) [Unimod]
-Nitrosyl (C) [Unimod]
-AEBS (Y) [Unimod]
-AEBS (S) [Unimod]
-AEBS (N-term) [Unimod]
-AEBS (K) [Unimod]
-AEBS (H) [Unimod]
-Ethanolyl (C) [Unimod]
-HMVK (C) [Unimod]
-Ethyl (N-term) [Unimod]
-Ethyl (K) [Unimod]
-Ethyl (E) [Unimod]
-Ethyl (N-term) [Unimod]
-CoenzymeA (C) [Unimod]
-Methyl+Deamidated (Q) [Unimod]
-Methyl+Deamidated (N) [Unimod]
-Delta:H(5)C(2) (P) [Unimod]
-Methyl:2H(2) (K) [Unimod]
-SulfanilicAcid (E) [Unimod]
-SulfanilicAcid (D) [Unimod]
-SulfanilicAcid (C-term) [Unimod]
-SulfanilicAcid:13C(6) (E) [Unimod]
-SulfanilicAcid:13C(6) (D) [Unimod]
-SulfanilicAcid:13C(6) (C-term) [Unimod]
-Biotin-PEO-Amine (D) [Unimod]
-Biotin-PEO-Amine (C-term) [Unimod]
-Biotin-PEO-Amine (E) [Unimod]
-Trp->Oxolactone (W) [Unimod]
-Biotin-HPDP (C) [Unimod]
-IodoU-AMP (Y) [Unimod]
-IodoU-AMP (W) [Unimod]
-IodoU-AMP (F) [Unimod]
-CAMthiopropanoyl (N-term) [Unimod]
-CAMthiopropanoyl (K) [Unimod]
-IED-Biotin (C) [Unimod]
-Methyl:2H(3) (E) [Unimod]
-Methyl:2H(3) (D) [Unimod]
-Methyl:2H(3) (C-term) [Unimod]
-Carboxy (E) [Unimod]
-Carboxy (D) [Unimod]
-Carboxy (K) [Unimod]
-Carboxy (W) [Unimod]
-Carboxy (M) [Unimod]
-Bromobimane (C) [Unimod]
-Menadione (K) [Unimod]
-Menadione (C) [Unimod]
-DeStreak (C) [Unimod]
-Cysteinyl (C) [Unimod]
-Lys-loss (K) [Unimod]
-Nmethylmaleimide (K) [Unimod]
-Nmethylmaleimide (C) [Unimod]
-CyDye-Cy3 (C) [Unimod]
-DimethylpyrroleAdduct (K) [Unimod]
-Delta:H(2)C(5) (K) [Unimod]
-Delta:H(2)C(3)O(1) (K) [Unimod]
-Delta:H(2)C(3)O(1) (R) [Unimod]
-Nethylmaleimide+water (K) [Unimod]
-Nethylmaleimide+water (C) [Unimod]
-Methyl+Acetyl:2H(3) (K) [Unimod]
-Xlink:B10621 (C) [Unimod]
-DTBP (N-term) [Unimod]
-DTBP (K) [Unimod]
-DTBP (R) [Unimod]
-DTBP (Q) [Unimod]
-DTBP (N) [Unimod]
-FP-Biotin (T) [Unimod]
-FP-Biotin (Y) [Unimod]
-FP-Biotin (S) [Unimod]
-Thiophos-S-S-biotin (Y) [Unimod]
-Thiophos-S-S-biotin (T) [Unimod]
-Thiophos-S-S-biotin (S) [Unimod]
-Can-FP-biotin (T) [Unimod]
-Can-FP-biotin (Y) [Unimod]
-Can-FP-biotin (S) [Unimod]
-HNE+Delta:H(2) (K) [Unimod]
-HNE+Delta:H(2) (H) [Unimod]
-HNE+Delta:H(2) (C) [Unimod]
-Thrbiotinhydrazide (T) [Unimod]
-Methylamine (T) [Unimod]
-Methylamine (S) [Unimod]
-Diisopropylphosphate (Y) [Unimod]
-Diisopropylphosphate (T) [Unimod]
-Diisopropylphosphate (S) [Unimod]
-Isopropylphospho (Y) [Unimod]
-Isopropylphospho (T) [Unimod]
-Isopropylphospho (S) [Unimod]
-ICPL:13C(6) (N-term) [Unimod]
-ICPL:13C(6) (N-term) [Unimod]
-ICPL:13C(6) (K) [Unimod]
-ICPL (N-term) [Unimod]
-ICPL (K) [Unimod]
-ICPL (N-term) [Unimod]
-Deamidated:18O(1) (Q) [Unimod]
-Deamidated:18O(1) (N) [Unimod]
-Arg->Orn (R) [Unimod]
-Dehydro (C) [Unimod]
-Diphthamide (H) [Unimod]
-Hydroxyfarnesyl (C) [Unimod]
-Diacylglycerol (C) [Unimod]
-Carboxyethyl (K) [Unimod]
-Hypusine (K) [Unimod]
-Retinylidene (K) [Unimod]
-Lys->AminoadipicAcid (K) [Unimod]
-Cys->PyruvicAcid (C) [Unimod]
-Ammonia-loss (C) [Unimod]
-Ammonia-loss (S) [Unimod]
-Ammonia-loss (T) [Unimod]
-Ammonia-loss (N) [Unimod]
-Phycocyanobilin (C) [Unimod]
-Phycoerythrobilin (C) [Unimod]
-Phytochromobilin (C) [Unimod]
-Quinone (W) [Unimod]
-Quinone (Y) [Unimod]
-GPIanchor (C-term) [Unimod]
-PhosphoribosyldephosphoCoA (S) [Unimod]
-GlycerylPE (E) [Unimod]
-Triiodothyronine (Y) [Unimod]
-Thyroxine (Y) [Unimod]
-Tyr->Dha (Y) [Unimod]
-Didehydro (S) [Unimod]
-Didehydro (Y) [Unimod]
-Didehydro (T) [Unimod]
-Didehydro (K) [Unimod]
-Cys->Oxoalanine (C) [Unimod]
-Ser->LacticAcid (S) [Unimod]
-GluGlu (E) [Unimod]
-GluGlu (C-term) [Unimod]
-Phosphoadenosine (H) [Unimod]
-Phosphoadenosine (T) [Unimod]
-Phosphoadenosine (K) [Unimod]
-Phosphoadenosine (Y) [Unimod]
-Glu (E) [Unimod]
-Glu (C-term) [Unimod]
-Hydroxycinnamyl (C) [Unimod]
-Glycosyl (P) [Unimod]
-FMNH (H) [Unimod]
-FMNH (C) [Unimod]
-Archaeol (C) [Unimod]
-Phenylisocyanate (N-term) [Unimod]
-Phenylisocyanate:2H(5) (N-term) [Unimod]
-Phosphoguanosine (H) [Unimod]
-Phosphoguanosine (K) [Unimod]
-Hydroxymethyl (N) [Unimod]
-Dipyrrolylmethanemethyl (C) [Unimod]
-PhosphoUridine (H) [Unimod]
-PhosphoUridine (Y) [Unimod]
-Glycerophospho (S) [Unimod]
-Carboxy->Thiocarboxy (G) [Unimod]
-Sulfide (C) [Unimod]
-PyruvicAcidIminyl (K) [Unimod]
-PyruvicAcidIminyl (V) [Unimod]
-PyruvicAcidIminyl (C) [Unimod]
-Dioxidation (Y) [Unimod]
-Dioxidation (W) [Unimod]
-Dioxidation (F) [Unimod]
-Dioxidation (M) [Unimod]
-Dioxidation (R) [Unimod]
-Dioxidation (K) [Unimod]
-Dioxidation (P) [Unimod]
-Dioxidation (C) [Unimod]
-Octanoyl (T) [Unimod]
-Octanoyl (S) [Unimod]
-Palmitoleyl (C) [Unimod]
-Cholesterol (C-term) [Unimod]
-Didehydroretinylidene (K) [Unimod]
-CHDH (D) [Unimod]
-Methylpyrroline (K) [Unimod]
-MicrocinC7 (C-term) [Unimod]
-Cyano (C) [Unimod]
-Amidino (C) [Unimod]
-FMN (S) [Unimod]
-FMN (T) [Unimod]
-FMNC (C) [Unimod]
-Hydroxytrimethyl (K) [Unimod]
-Deoxy (T) [Unimod]
-Deoxy (D) [Unimod]
-Deoxy (S) [Unimod]
-Microcin (C-term) [Unimod]
-Decanoyl (T) [Unimod]
-Decanoyl (S) [Unimod]
-GluGluGlu (C-term) [Unimod]
-GluGluGlu (E) [Unimod]
-GluGluGluGlu (C-term) [Unimod]
-GluGluGluGlu (E) [Unimod]
-HexN (W) [Unimod]
-HexN (T) [Unimod]
-HexN (N) [Unimod]
-HexN (K) [Unimod]
-Xlink:DMP-s (N-term) [Unimod]
-Xlink:DMP-s (K) [Unimod]
-Xlink:DMP (N-term) [Unimod]
-Xlink:DMP (K) [Unimod]
-NDA (N-term) [Unimod]
-NDA (K) [Unimod]
-SPITC:13C(6) (N-term) [Unimod]
-SPITC:13C(6) (K) [Unimod]
-TMAB:2H(9) (N-term) [Unimod]
-TMAB:2H(9) (K) [Unimod]
-TMAB (N-term) [Unimod]
-TMAB (K) [Unimod]
-FTC (S) [Unimod]
-FTC (R) [Unimod]
-FTC (P) [Unimod]
-FTC (K) [Unimod]
-FTC (C) [Unimod]
-AEC-MAEC (T) [Unimod]
-AEC-MAEC (S) [Unimod]
-BADGE (C) [Unimod]
-Label:2H(4) (K) [Unimod]
-CyDye-Cy5 (C) [Unimod]
-DHP (C) [Unimod]
-BHTOH (H) [Unimod]
-BHTOH (C) [Unimod]
-BHTOH (K) [Unimod]
-Nmethylmaleimide+water (C) [Unimod]
-PyMIC (N-term) [Unimod]
-LG-lactam-K (N-term) [Unimod]
-LG-lactam-K (K) [Unimod]
-BisANS (K) [Unimod]
-Piperidine (N-term) [Unimod]
-Piperidine (K) [Unimod]
-Diethyl (N-term) [Unimod]
-Diethyl (K) [Unimod]
-LG-Hlactam-K (N-term) [Unimod]
-LG-Hlactam-K (K) [Unimod]
-Dimethyl:2H(4)13C(2) (N-term) [Unimod]
-Dimethyl:2H(4)13C(2) (K) [Unimod]
-C8-QAT (N-term) [Unimod]
-C8-QAT (K) [Unimod]
-LG-lactam-R (R) [Unimod]
-CLIP_TRAQ_1 (N-term) [Unimod]
-CLIP_TRAQ_1 (K) [Unimod]
-CLIP_TRAQ_1 (Y) [Unimod]
-CLIP_TRAQ_2 (N-term) [Unimod]
-CLIP_TRAQ_2 (K) [Unimod]
-CLIP_TRAQ_2 (Y) [Unimod]
-LG-Hlactam-R (R) [Unimod]
-Maleimide-PEO2-Biotin (C) [Unimod]
-Sulfo-NHS-LC-LC-Biotin (N-term) [Unimod]
-Sulfo-NHS-LC-LC-Biotin (K) [Unimod]
-FNEM (C) [Unimod]
-PropylNAGthiazoline (C) [Unimod]
-Dethiomethyl (M) [Unimod]
-iTRAQ4plex114 (Y) [Unimod]
-iTRAQ4plex114 (N-term) [Unimod]
-iTRAQ4plex114 (K) [Unimod]
-iTRAQ4plex115 (Y) [Unimod]
-iTRAQ4plex115 (N-term) [Unimod]
-iTRAQ4plex115 (K) [Unimod]
-LeuArgGlyGly (K) [Unimod]
-CLIP_TRAQ_3 (Y) [Unimod]
-CLIP_TRAQ_3 (N-term) [Unimod]
-CLIP_TRAQ_3 (K) [Unimod]
-CLIP_TRAQ_4 (N-term) [Unimod]
-CLIP_TRAQ_4 (K) [Unimod]
-CLIP_TRAQ_4 (Y) [Unimod]
-15dB-biotin (C) [Unimod]
-PGA1-biotin (C) [Unimod]
-Ala->Ser (A) [Unimod]
-Ala->Thr (A) [Unimod]
-Ala->Asp (A) [Unimod]
-Ala->Pro (A) [Unimod]
-Ala->Gly (A) [Unimod]
-Ala->Glu (A) [Unimod]
-Ala->Val (A) [Unimod]
-Cys->Phe (C) [Unimod]
-Cys->Ser (C) [Unimod]
-Cys->Trp (C) [Unimod]
-Cys->Tyr (C) [Unimod]
-Cys->Arg (C) [Unimod]
-Cys->Gly (C) [Unimod]
-Asp->Ala (D) [Unimod]
-Asp->His (D) [Unimod]
-Asp->Asn (D) [Unimod]
-Asp->Gly (D) [Unimod]
-Asp->Tyr (D) [Unimod]
-Asp->Glu (D) [Unimod]
-Asp->Val (D) [Unimod]
-Glu->Ala (E) [Unimod]
-Glu->Gln (E) [Unimod]
-Glu->Asp (E) [Unimod]
-Glu->Lys (E) [Unimod]
-Glu->Gly (E) [Unimod]
-Glu->Val (E) [Unimod]
-Phe->Ser (F) [Unimod]
-Phe->Cys (F) [Unimod]
-Phe->Ile (F) [Unimod]
-Phe->Tyr (F) [Unimod]
-Phe->Val (F) [Unimod]
-Gly->Ala (G) [Unimod]
-Gly->Ser (G) [Unimod]
-Gly->Trp (G) [Unimod]
-Gly->Glu (G) [Unimod]
-Gly->Val (G) [Unimod]
-Gly->Asp (G) [Unimod]
-Gly->Cys (G) [Unimod]
-Gly->Arg (G) [Unimod]
-dNIC (N-term) [Unimod]
-His->Pro (H) [Unimod]
-His->Tyr (H) [Unimod]
-His->Gln (H) [Unimod]
-NIC (N-term) [Unimod]
-His->Arg (H) [Unimod]
-His->Leu (H) [Unimod]
-Ile->Phe (I) [Unimod]
-Ile->Ser (I) [Unimod]
-Ile->Thr (I) [Unimod]
-Ile->Asn (I) [Unimod]
-Ile->Lys (I) [Unimod]
-Ile->Val (I) [Unimod]
-Ile->Met (I) [Unimod]
-Ile->Arg (I) [Unimod]
-Lys->Thr (K) [Unimod]
-Lys->Asn (K) [Unimod]
-Lys->Glu (K) [Unimod]
-Lys->Gln (K) [Unimod]
-Lys->Met (K) [Unimod]
-Lys->Arg (K) [Unimod]
-Lys->Ile (K) [Unimod]
-Leu->Ser (L) [Unimod]
-Leu->Phe (L) [Unimod]
-Leu->Trp (L) [Unimod]
-Leu->Pro (L) [Unimod]
-Leu->Val (L) [Unimod]
-Leu->His (L) [Unimod]
-Leu->Gln (L) [Unimod]
-Leu->Met (L) [Unimod]
-Leu->Arg (L) [Unimod]
-Met->Thr (M) [Unimod]
-Met->Arg (M) [Unimod]
-Met->Ile (M) [Unimod]
-Met->Lys (M) [Unimod]
-Met->Leu (M) [Unimod]
-Met->Val (M) [Unimod]
-Asn->Ser (N) [Unimod]
-Asn->Thr (N) [Unimod]
-Asn->Lys (N) [Unimod]
-Asn->Tyr (N) [Unimod]
-Asn->His (N) [Unimod]
-Asn->Asp (N) [Unimod]
-Asn->Ile (N) [Unimod]
-Pro->Ser (P) [Unimod]
-Pro->Ala (P) [Unimod]
-Pro->His (P) [Unimod]
-Pro->Gln (P) [Unimod]
-Pro->Thr (P) [Unimod]
-Pro->Arg (P) [Unimod]
-Pro->Leu (P) [Unimod]
-Gln->Pro (Q) [Unimod]
-Gln->Lys (Q) [Unimod]
-Gln->Glu (Q) [Unimod]
-Gln->His (Q) [Unimod]
-Gln->Arg (Q) [Unimod]
-Gln->Leu (Q) [Unimod]
-Arg->Ser (R) [Unimod]
-Arg->Trp (R) [Unimod]
-Arg->Thr (R) [Unimod]
-Arg->Pro (R) [Unimod]
-Arg->Lys (R) [Unimod]
-Arg->His (R) [Unimod]
-Arg->Gln (R) [Unimod]
-Arg->Met (R) [Unimod]
-Arg->Cys (R) [Unimod]
-Arg->Ile (R) [Unimod]
-Arg->Gly (R) [Unimod]
-Ser->Phe (S) [Unimod]
-Ser->Ala (S) [Unimod]
-Ser->Trp (S) [Unimod]
-Ser->Thr (S) [Unimod]
-Ser->Asn (S) [Unimod]
-Ser->Pro (S) [Unimod]
-Ser->Tyr (S) [Unimod]
-Ser->Cys (S) [Unimod]
-Ser->Arg (S) [Unimod]
-Ser->Ile (S) [Unimod]
-Ser->Gly (S) [Unimod]
-Thr->Ser (T) [Unimod]
-Thr->Ala (T) [Unimod]
-Thr->Asn (T) [Unimod]
-Thr->Lys (T) [Unimod]
-Thr->Pro (T) [Unimod]
-Thr->Met (T) [Unimod]
-Thr->Ile (T) [Unimod]
-Thr->Arg (T) [Unimod]
-Val->Phe (V) [Unimod]
-Val->Ala (V) [Unimod]
-Val->Glu (V) [Unimod]
-Val->Met (V) [Unimod]
-Val->Asp (V) [Unimod]
-Val->Ile (V) [Unimod]
-Val->Gly (V) [Unimod]
-Trp->Ser (W) [Unimod]
-Trp->Cys (W) [Unimod]
-Trp->Arg (W) [Unimod]
-Trp->Gly (W) [Unimod]
-Trp->Leu (W) [Unimod]
-Tyr->Phe (Y) [Unimod]
-Tyr->Ser (Y) [Unimod]
-Tyr->Asn (Y) [Unimod]
-Tyr->His (Y) [Unimod]
-Tyr->Asp (Y) [Unimod]
-Tyr->Cys (Y) [Unimod]
-NA-LNO2 (C) [Unimod]
-NA-LNO2 (H) [Unimod]
-NA-OA-NO2 (C) [Unimod]
-NA-OA-NO2 (H) [Unimod]
-ICPL:2H(4) (N-term) [Unimod]
-ICPL:2H(4) (N-term) [Unimod]
-ICPL:2H(4) (K) [Unimod]
-iTRAQ8plex (Y) [Unimod]
-iTRAQ8plex (N-term) [Unimod]
-iTRAQ8plex (K) [Unimod]
-Label:13C(6)15N(1) (I) [Unimod]
-Label:13C(6)15N(1) (L) [Unimod]
-Label:2H(9)13C(6)15N(2) (K) [Unimod]
-HNE-Delta:H(2)O (K) [Unimod]
-HNE-Delta:H(2)O (H) [Unimod]
-HNE-Delta:H(2)O (C) [Unimod]
-4-ONE (K) [Unimod]
-4-ONE (H) [Unimod]
-4-ONE (C) [Unimod]
-O-Dimethylphosphate (Y) [Unimod]
-O-Dimethylphosphate (T) [Unimod]
-O-Dimethylphosphate (S) [Unimod]
-O-Methylphosphate (Y) [Unimod]
-O-Methylphosphate (T) [Unimod]
-O-Methylphosphate (S) [Unimod]
-O-Diethylphosphate (Y) [Unimod]
-O-Diethylphosphate (T) [Unimod]
-O-Diethylphosphate (S) [Unimod]
-O-Ethylphosphate (Y) [Unimod]
-O-Ethylphosphate (T) [Unimod]
-O-Ethylphosphate (S) [Unimod]
-O-pinacolylmethylphosphonate (Y) [Unimod]
-O-pinacolylmethylphosphonate (T) [Unimod]
-O-pinacolylmethylphosphonate (S) [Unimod]
-Methylphosphonate (Y) [Unimod]
-Methylphosphonate (T) [Unimod]
-Methylphosphonate (S) [Unimod]
-O-Isopropylmethylphosphonate (Y) [Unimod]
-O-Isopropylmethylphosphonate (T) [Unimod]
-O-Isopropylmethylphosphonate (S) [Unimod]
-iTRAQ8plex:13C(6)15N(2) (Y) [Unimod]
-iTRAQ8plex:13C(6)15N(2) (N-term) [Unimod]
-iTRAQ8plex:13C(6)15N(2) (K) [Unimod]
-DTT_ST (S) [Unimod]
-DTT_ST (T) [Unimod]
-Ethanolamine (D) [Unimod]
-Ethanolamine (C-term) [Unimod]
-Ethanolamine (E) [Unimod]
-TMT6plex (K) [Unimod]
-TMT6plex (N-term) [Unimod]
-DTT_C (C) [Unimod]
-TMT2plex (N-term) [Unimod]
-TMT2plex (K) [Unimod]
-TMT (N-term) [Unimod]
-TMT (K) [Unimod]
-ExacTagThiol (C) [Unimod]
-ExacTagAmine (K) [Unimod]
-NO_SMX_SEMD (C) [Unimod]
-4-ONE+Delta:H(-2)O(-1) (K) [Unimod]
-4-ONE+Delta:H(-2)O(-1) (H) [Unimod]
-4-ONE+Delta:H(-2)O(-1) (C) [Unimod]
-NO_SMX_SMCT (C) [Unimod]
-NO_SMX_SIMD (C) [Unimod]
-Malonyl (C) [Unimod]
-Malonyl (S) [Unimod]
-3sulfo (N-term) [Unimod]
-trifluoro (L) [Unimod]
-TNBS (N-term) [Unimod]
-TNBS (K) [Unimod]
-Biotin-phenacyl (C) [Unimod]
-Biotin-phenacyl (H) [Unimod]
-Biotin-phenacyl (S) [Unimod]
-DTT_C:2H(6) (C) [Unimod]
-lapachenole (C) [Unimod]
-Label:13C(5) (P) [Unimod]
-maleimide (K) [Unimod]
-maleimide (C) [Unimod]
-DTT_ST:2H(6) (T) [Unimod]
-DTT_ST:2H(6) (S) [Unimod]
-Met-loss (M) [Unimod]
-Met-loss+Acetyl (M) [Unimod]
-Menadione-HQ (K) [Unimod]
-Menadione-HQ (C) [Unimod]
-Carboxymethyl:13C(2) (C) [Unimod]
-NEM:2H(5) (C) [Unimod]
-Gly-loss+Amide (G) [Unimod]
-TMPP-Ac (N-term) [Unimod]
-Label:13C(6)+GlyGly (K) [Unimod]
-Arg->Npo (R) [Unimod]
-Label:2H(4)+Acetyl (K) [Unimod]
-Pentylamine (Q) [Unimod]
-PentylamineBiotin (Q) [Unimod]
-Dihydroxyimidazolidine (R) [Unimod]
-DFDNB (Q) [Unimod]
-DFDNB (N) [Unimod]
-DFDNB (R) [Unimod]
-DFDNB (K) [Unimod]
-Cy3b-maleimide (C) [Unimod]
-AEC-MAEC:2H(4) (S) [Unimod]
-AEC-MAEC:2H(4) (T) [Unimod]
-BMOE (C) [Unimod]
-Biotin-PEO4-hydrazide (C-term) [Unimod]
-Label:13C(6)+Acetyl (K) [Unimod]
-Label:13C(6)15N(2)+Acetyl (K) [Unimod]
-EQIGG (K) [Unimod]
-cGMP (C) [Unimod]
-cGMP+RMP-loss (C) [Unimod]
-Arg2PG (R) [Unimod]
-Label:2H(4)+GlyGly (K) [Unimod]
-Label:13C(8)15N(2) (R) [Unimod]
-Label:13C(1)2H(3) (M) [Unimod]
-ZGB (K) [Unimod]
-ZGB (N-term) [Unimod]
-MG-H1 (R) [Unimod]
-G-H1 (R) [Unimod]
-Label:13C(6)15N(2)+GlyGly (K) [Unimod]
-ICPL:13C(6)2H(4) (N-term) [Unimod]
-ICPL:13C(6)2H(4) (K) [Unimod]
-ICPL:13C(6)2H(4) (N-term) [Unimod]
-QQQTGG (K) [Unimod]
-QEQTGG (K) [Unimod]
-Bodipy (C) [Unimod]
diff -r d4b6c9eae635 -r 8bac3cc5c5de maxquant_mods.loc.sample
--- a/maxquant_mods.loc.sample Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,396 +0,0 @@
-Oxidation (M)
-Acetyl (Protein N-term)
-Acetyl (K)
-Ala->Arg
-Ala->Asn
-Ala->Asp
-Ala->CamCys
-Ala->Cys
-Ala->Gln
-Ala->Glu
-Ala->Gly
-Ala->His
-Ala->Lys
-Ala->Met
-Ala->Phe
-Ala->Pro
-Ala->Ser
-Ala->Thr
-Ala->Trp
-Ala->Tyr
-Ala->Val
-Ala->Xle
-Arg->Ala
-Arg->Asn
-Arg->Asp
-Arg->CamCys
-Arg->Cys
-Arg->Gln
-Arg->Glu
-Arg->Gly
-Arg->His
-Arg->Lys
-Arg->Met
-Arg->Phe
-Arg->Pro
-Arg->Ser
-Arg->Thr
-Arg->Trp
-Arg->Tyr
-Arg->Val
-Arg->Xle
-Asn->Ala
-Asn->Arg
-Asn->Asp
-Asn->CamCys
-Asn->Cys
-Asn->Gln
-Asn->Glu
-Asn->Gly
-Asn->His
-Asn->Lys
-Asn->Met
-Asn->Phe
-Asn->Pro
-Asn->Ser
-Asn->Thr
-Asn->Trp
-Asn->Tyr
-Asn->Val
-Asn->Xle
-Asp->Ala
-Asp->Arg
-Asp->Asn
-Asp->CamCys
-Asp->Cys
-Asp->Gln
-Asp->Glu
-Asp->Gly
-Asp->His
-Asp->Lys
-Asp->Met
-Asp->Phe
-Asp->Pro
-Asp->Ser
-Asp->Thr
-Asp->Trp
-Asp->Tyr
-Asp->Val
-Asp->Xle
-CamCys->Ala
-CamCys->Arg
-CamCys->Asn
-CamCys->Asp
-CamCys->Gln
-CamCys->Glu
-CamCys->Gly
-CamCys->His
-CamCys->Lys
-CamCys->Met
-CamCys->Phe
-CamCys->Pro
-CamCys->Ser
-CamCys->Thr
-CamCys->Trp
-CamCys->Tyr
-CamCys->Val
-CamCys->Xle
-Carbamidomethyl (C)
-Cys->Ala
-Cys->Arg
-Cys->Asn
-Cys->Asp
-Cys->Gln
-Cys->Glu
-Cys->Gly
-Cys->His
-Cys->Lys
-Cys->Met
-Cys->Phe
-Cys->Pro
-Cys->Ser
-Cys->Thr
-Cys->Trp
-Cys->Tyr
-Cys->Val
-Cys->Xle
-Deamidation (N)
-Deamidation (NQ)
-Deamidation 18O (N)
-Dimethyl (KR)
-Gln->Ala
-Gln->Arg
-Gln->Asn
-Gln->Asp
-Gln->CamCys
-Gln->Cys
-Gln->Glu
-Gln->Gly
-Gln->His
-Gln->Lys
-Gln->Met
-Gln->Phe
-Gln->Pro
-Gln->pyro-Glu
-Gln->Ser
-Gln->Thr
-Gln->Trp
-Gln->Tyr
-Gln->Val
-Gln->Xle
-Glu->Ala
-Glu->Arg
-Glu->Asn
-Glu->Asp
-Glu->CamCys
-Glu->Cys
-Glu->Gln
-Glu->Gly
-Glu->His
-Glu->Lys
-Glu->Met
-Glu->Phe
-Glu->Pro
-Glu->pyro-Glu
-Glu->Ser
-Glu->Thr
-Glu->Trp
-Glu->Tyr
-Glu->Val
-Glu->Xle
-Gly->Ala
-Gly->Arg
-Gly->Asn
-Gly->Asp
-Gly->CamCys
-Gly->Cys
-Gly->Gln
-Gly->Glu
-Gly->His
-Gly->Lys
-Gly->Met
-Gly->Phe
-Gly->Pro
-Gly->Ser
-Gly->Thr
-Gly->Trp
-Gly->Tyr
-Gly->Val
-Gly->Xle
-GlyGly (K)
-His->Ala
-His->Arg
-His->Asn
-His->Asp
-His->CamCys
-His->Cys
-His->Gln
-His->Glu
-His->Gly
-His->Lys
-His->Met
-His->Phe
-His->Pro
-His->Ser
-His->Thr
-His->Trp
-His->Tyr
-His->Val
-His->Xle
-Lys->Ala
-Lys->Arg
-Lys->Asn
-Lys->Asp
-Lys->CamCys
-Lys->Cys
-Lys->Gln
-Lys->Glu
-Lys->Gly
-Lys->His
-Lys->Met
-Lys->Phe
-Lys->Pro
-Lys->Ser
-Lys->Thr
-Lys->Trp
-Lys->Tyr
-Lys->Val
-Lys->Xle
-Met->Ala
-Met->Arg
-Met->Asn
-Met->Asp
-Met->CamCys
-Met->Cys
-Met->Gln
-Met->Glu
-Met->Gly
-Met->His
-Met->Lys
-Met->Phe
-Met->Pro
-Met->Ser
-Met->Thr
-Met->Trp
-Met->Tyr
-Met->Val
-Met->Xle
-Methyl (KR)
-OHexNAc
-Phe->Ala
-Phe->Arg
-Phe->Asn
-Phe->Asp
-Phe->CamCys
-Phe->Cys
-Phe->Gln
-Phe->Glu
-Phe->Gly
-Phe->His
-Phe->Lys
-Phe->Met
-Phe->Pro
-Phe->Ser
-Phe->Thr
-Phe->Trp
-Phe->Tyr
-Phe->Val
-Phe->Xle
-Phospho (STY)
-Pro->Ala
-Pro->Arg
-Pro->Asn
-Pro->Asp
-Pro->CamCys
-Pro->Cys
-Pro->Gln
-Pro->Glu
-Pro->Gly
-Pro->His
-Pro->Lys
-Pro->Met
-Pro->Phe
-Pro->Ser
-Pro->Thr
-Pro->Trp
-Pro->Tyr
-Pro->Val
-Pro->Xle
-Pro5
-Pro6
-QQTGG (K)
-Ser->Ala
-Ser->Arg
-Ser->Asn
-Ser->Asp
-Ser->CamCys
-Ser->Cys
-Ser->Gln
-Ser->Glu
-Ser->Gly
-Ser->His
-Ser->Lys
-Ser->Met
-Ser->Phe
-Ser->Pro
-Ser->Thr
-Ser->Trp
-Ser->Tyr
-Ser->Val
-Ser->Xle
-Thr->Ala
-Thr->Arg
-Thr->Asn
-Thr->Asp
-Thr->CamCys
-Thr->Cys
-Thr->Gln
-Thr->Glu
-Thr->Gly
-Thr->His
-Thr->Lys
-Thr->Met
-Thr->Phe
-Thr->Pro
-Thr->Ser
-Thr->Trp
-Thr->Tyr
-Thr->Val
-Thr->Xle
-Trimethyl (K)
-Trp->Ala
-Trp->Arg
-Trp->Asn
-Trp->Asp
-Trp->CamCys
-Trp->Cys
-Trp->Gln
-Trp->Glu
-Trp->Gly
-Trp->His
-Trp->Lys
-Trp->Met
-Trp->Phe
-Trp->Pro
-Trp->Ser
-Trp->Thr
-Trp->Tyr
-Trp->Val
-Trp->Xle
-Tyr->Ala
-Tyr->Arg
-Tyr->Asn
-Tyr->Asp
-Tyr->CamCys
-Tyr->Cys
-Tyr->Gln
-Tyr->Glu
-Tyr->Gly
-Tyr->His
-Tyr->Lys
-Tyr->Met
-Tyr->Phe
-Tyr->Pro
-Tyr->Ser
-Tyr->Thr
-Tyr->Trp
-Tyr->Val
-Tyr->Xle
-Val->Ala
-Val->Arg
-Val->Asn
-Val->Asp
-Val->CamCys
-Val->Cys
-Val->Gln
-Val->Glu
-Val->Gly
-Val->His
-Val->Lys
-Val->Met
-Val->Phe
-Val->Pro
-Val->Ser
-Val->Thr
-Val->Trp
-Val->Tyr
-Val->Xle
-Xle->Ala
-Xle->Arg
-Xle->Asn
-Xle->Asp
-Xle->CamCys
-Xle->Cys
-Xle->Gln
-Xle->Glu
-Xle->Gly
-Xle->His
-Xle->Lys
-Xle->Met
-Xle->Phe
-Xle->Pro
-Xle->Ser
-Xle->Thr
-Xle->Trp
-Xle->Tyr
-Xle->Val
diff -r d4b6c9eae635 -r 8bac3cc5c5de maxquant_mods.loc.sample.default
--- a/maxquant_mods.loc.sample.default Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,396 +0,0 @@
-Oxidation (M)
-Acetyl (Protein N-term)
-Acetyl (K)
-Ala->Arg
-Ala->Asn
-Ala->Asp
-Ala->CamCys
-Ala->Cys
-Ala->Gln
-Ala->Glu
-Ala->Gly
-Ala->His
-Ala->Lys
-Ala->Met
-Ala->Phe
-Ala->Pro
-Ala->Ser
-Ala->Thr
-Ala->Trp
-Ala->Tyr
-Ala->Val
-Ala->Xle
-Arg->Ala
-Arg->Asn
-Arg->Asp
-Arg->CamCys
-Arg->Cys
-Arg->Gln
-Arg->Glu
-Arg->Gly
-Arg->His
-Arg->Lys
-Arg->Met
-Arg->Phe
-Arg->Pro
-Arg->Ser
-Arg->Thr
-Arg->Trp
-Arg->Tyr
-Arg->Val
-Arg->Xle
-Asn->Ala
-Asn->Arg
-Asn->Asp
-Asn->CamCys
-Asn->Cys
-Asn->Gln
-Asn->Glu
-Asn->Gly
-Asn->His
-Asn->Lys
-Asn->Met
-Asn->Phe
-Asn->Pro
-Asn->Ser
-Asn->Thr
-Asn->Trp
-Asn->Tyr
-Asn->Val
-Asn->Xle
-Asp->Ala
-Asp->Arg
-Asp->Asn
-Asp->CamCys
-Asp->Cys
-Asp->Gln
-Asp->Glu
-Asp->Gly
-Asp->His
-Asp->Lys
-Asp->Met
-Asp->Phe
-Asp->Pro
-Asp->Ser
-Asp->Thr
-Asp->Trp
-Asp->Tyr
-Asp->Val
-Asp->Xle
-CamCys->Ala
-CamCys->Arg
-CamCys->Asn
-CamCys->Asp
-CamCys->Gln
-CamCys->Glu
-CamCys->Gly
-CamCys->His
-CamCys->Lys
-CamCys->Met
-CamCys->Phe
-CamCys->Pro
-CamCys->Ser
-CamCys->Thr
-CamCys->Trp
-CamCys->Tyr
-CamCys->Val
-CamCys->Xle
-Carbamidomethyl (C)
-Cys->Ala
-Cys->Arg
-Cys->Asn
-Cys->Asp
-Cys->Gln
-Cys->Glu
-Cys->Gly
-Cys->His
-Cys->Lys
-Cys->Met
-Cys->Phe
-Cys->Pro
-Cys->Ser
-Cys->Thr
-Cys->Trp
-Cys->Tyr
-Cys->Val
-Cys->Xle
-Deamidation (N)
-Deamidation (NQ)
-Deamidation 18O (N)
-Dimethyl (KR)
-Gln->Ala
-Gln->Arg
-Gln->Asn
-Gln->Asp
-Gln->CamCys
-Gln->Cys
-Gln->Glu
-Gln->Gly
-Gln->His
-Gln->Lys
-Gln->Met
-Gln->Phe
-Gln->Pro
-Gln->pyro-Glu
-Gln->Ser
-Gln->Thr
-Gln->Trp
-Gln->Tyr
-Gln->Val
-Gln->Xle
-Glu->Ala
-Glu->Arg
-Glu->Asn
-Glu->Asp
-Glu->CamCys
-Glu->Cys
-Glu->Gln
-Glu->Gly
-Glu->His
-Glu->Lys
-Glu->Met
-Glu->Phe
-Glu->Pro
-Glu->pyro-Glu
-Glu->Ser
-Glu->Thr
-Glu->Trp
-Glu->Tyr
-Glu->Val
-Glu->Xle
-Gly->Ala
-Gly->Arg
-Gly->Asn
-Gly->Asp
-Gly->CamCys
-Gly->Cys
-Gly->Gln
-Gly->Glu
-Gly->His
-Gly->Lys
-Gly->Met
-Gly->Phe
-Gly->Pro
-Gly->Ser
-Gly->Thr
-Gly->Trp
-Gly->Tyr
-Gly->Val
-Gly->Xle
-GlyGly (K)
-His->Ala
-His->Arg
-His->Asn
-His->Asp
-His->CamCys
-His->Cys
-His->Gln
-His->Glu
-His->Gly
-His->Lys
-His->Met
-His->Phe
-His->Pro
-His->Ser
-His->Thr
-His->Trp
-His->Tyr
-His->Val
-His->Xle
-Lys->Ala
-Lys->Arg
-Lys->Asn
-Lys->Asp
-Lys->CamCys
-Lys->Cys
-Lys->Gln
-Lys->Glu
-Lys->Gly
-Lys->His
-Lys->Met
-Lys->Phe
-Lys->Pro
-Lys->Ser
-Lys->Thr
-Lys->Trp
-Lys->Tyr
-Lys->Val
-Lys->Xle
-Met->Ala
-Met->Arg
-Met->Asn
-Met->Asp
-Met->CamCys
-Met->Cys
-Met->Gln
-Met->Glu
-Met->Gly
-Met->His
-Met->Lys
-Met->Phe
-Met->Pro
-Met->Ser
-Met->Thr
-Met->Trp
-Met->Tyr
-Met->Val
-Met->Xle
-Methyl (KR)
-OHexNAc
-Phe->Ala
-Phe->Arg
-Phe->Asn
-Phe->Asp
-Phe->CamCys
-Phe->Cys
-Phe->Gln
-Phe->Glu
-Phe->Gly
-Phe->His
-Phe->Lys
-Phe->Met
-Phe->Pro
-Phe->Ser
-Phe->Thr
-Phe->Trp
-Phe->Tyr
-Phe->Val
-Phe->Xle
-Phospho (STY)
-Pro->Ala
-Pro->Arg
-Pro->Asn
-Pro->Asp
-Pro->CamCys
-Pro->Cys
-Pro->Gln
-Pro->Glu
-Pro->Gly
-Pro->His
-Pro->Lys
-Pro->Met
-Pro->Phe
-Pro->Ser
-Pro->Thr
-Pro->Trp
-Pro->Tyr
-Pro->Val
-Pro->Xle
-Pro5
-Pro6
-QQTGG (K)
-Ser->Ala
-Ser->Arg
-Ser->Asn
-Ser->Asp
-Ser->CamCys
-Ser->Cys
-Ser->Gln
-Ser->Glu
-Ser->Gly
-Ser->His
-Ser->Lys
-Ser->Met
-Ser->Phe
-Ser->Pro
-Ser->Thr
-Ser->Trp
-Ser->Tyr
-Ser->Val
-Ser->Xle
-Thr->Ala
-Thr->Arg
-Thr->Asn
-Thr->Asp
-Thr->CamCys
-Thr->Cys
-Thr->Gln
-Thr->Glu
-Thr->Gly
-Thr->His
-Thr->Lys
-Thr->Met
-Thr->Phe
-Thr->Pro
-Thr->Ser
-Thr->Trp
-Thr->Tyr
-Thr->Val
-Thr->Xle
-Trimethyl (K)
-Trp->Ala
-Trp->Arg
-Trp->Asn
-Trp->Asp
-Trp->CamCys
-Trp->Cys
-Trp->Gln
-Trp->Glu
-Trp->Gly
-Trp->His
-Trp->Lys
-Trp->Met
-Trp->Phe
-Trp->Pro
-Trp->Ser
-Trp->Thr
-Trp->Tyr
-Trp->Val
-Trp->Xle
-Tyr->Ala
-Tyr->Arg
-Tyr->Asn
-Tyr->Asp
-Tyr->CamCys
-Tyr->Cys
-Tyr->Gln
-Tyr->Glu
-Tyr->Gly
-Tyr->His
-Tyr->Lys
-Tyr->Met
-Tyr->Phe
-Tyr->Pro
-Tyr->Ser
-Tyr->Thr
-Tyr->Trp
-Tyr->Val
-Tyr->Xle
-Val->Ala
-Val->Arg
-Val->Asn
-Val->Asp
-Val->CamCys
-Val->Cys
-Val->Gln
-Val->Glu
-Val->Gly
-Val->His
-Val->Lys
-Val->Met
-Val->Phe
-Val->Pro
-Val->Ser
-Val->Thr
-Val->Trp
-Val->Tyr
-Val->Xle
-Xle->Ala
-Xle->Arg
-Xle->Asn
-Xle->Asp
-Xle->CamCys
-Xle->Cys
-Xle->Gln
-Xle->Glu
-Xle->Gly
-Xle->His
-Xle->Lys
-Xle->Met
-Xle->Phe
-Xle->Pro
-Xle->Ser
-Xle->Thr
-Xle->Trp
-Xle->Tyr
-Xle->Val
diff -r d4b6c9eae635 -r 8bac3cc5c5de maxquant_mods.loc.sample.extended
--- a/maxquant_mods.loc.sample.extended Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1308 +0,0 @@
-Acetyl (K)
-Acetyl (Protein N-term)
-Carbamidomethyl (C)
-Oxidation (M)
-Phospho (STY)
-Arg6
-Arg10
-Lys4
-Lys6
-Lys8
-GlyGly (K)
-Methyl (KR)
-Dimethyl (KR)
-Trimethyl (K)
-Pro5
-Pro6
-Glu->pyro-Glu
-Gln->pyro-Glu
-OHexNAc
-DimethLys0
-DimethNter0
-DimethLys4
-DimethNter4
-DimethLys8
-DimethNter8
-18O
-ICAT-0
-ICAT-9
-ICPL-Lys0
-ICPL-Nter0
-ICPL-Lys4
-ICPL-Nter4
-ICPL-Lys6
-ICPL-Nter6
-ICPL-Lys10
-ICPL-Nter10
-mTRAQ-Lys0
-mTRAQ-Nter0
-mTRAQ-Lys4
-mTRAQ-Nter4
-mTRAQ-Lys8
-mTRAQ-Nter8
-DimethLys2
-DimethNter2
-DimethLys6
-DimethNter6
-QQTGG (K)
-Deamidation (N)
-Deamidation 18O (N)
-iTRAQ4plex-Nter114
-iTRAQ4plex-Nter115
-iTRAQ4plex-Nter116
-iTRAQ4plex-Nter117
-iTRAQ4plex-Lys114
-iTRAQ4plex-Lys115
-iTRAQ4plex-Lys116
-iTRAQ4plex-Lys117
-iTRAQ8plex-Nter113
-iTRAQ8plex-Nter114
-iTRAQ8plex-Nter115
-iTRAQ8plex-Nter116
-iTRAQ8plex-Nter117
-iTRAQ8plex-Nter118
-iTRAQ8plex-Nter119
-iTRAQ8plex-Nter121
-iTRAQ8plex-Lys113
-iTRAQ8plex-Lys114
-iTRAQ8plex-Lys115
-iTRAQ8plex-Lys116
-iTRAQ8plex-Lys117
-iTRAQ8plex-Lys118
-iTRAQ8plex-Lys119
-iTRAQ8plex-Lys121
-TMT2plex-Nter126
-TMT2plex-Nter127
-TMT2plex-Lys126
-TMT2plex-Lys127
-TMT6plex-Nter126
-TMT6plex-Nter127
-TMT6plex-Nter128
-TMT6plex-Nter129
-TMT6plex-Nter130
-TMT6plex-Nter131
-TMT6plex-Lys126
-TMT6plex-Lys127
-TMT6plex-Lys128
-TMT6plex-Lys129
-TMT6plex-Lys130
-TMT6plex-Lys131
-Deamidation (NQ)
-Ala->Arg
-Ala->Asn
-Ala->Asp
-Ala->Cys
-Ala->Gln
-Ala->Glu
-Ala->Gly
-Ala->His
-Ala->Xle
-Ala->Lys
-Ala->Met
-Ala->Phe
-Ala->Pro
-Ala->Ser
-Ala->Thr
-Ala->Trp
-Ala->Tyr
-Ala->Val
-Arg->Ala
-Arg->Asn
-Arg->Asp
-Arg->Cys
-Arg->Gln
-Arg->Glu
-Arg->Gly
-Arg->His
-Arg->Lys
-Arg->Met
-Arg->Phe
-Arg->Pro
-Arg->Ser
-Arg->Thr
-Arg->Trp
-Arg->Tyr
-Arg->Val
-Arg->Xle
-Asn->Ala
-Asn->Arg
-Asn->Asp
-Asn->Cys
-Asn->Gln
-Asn->Glu
-Asn->Gly
-Asn->His
-Asn->Lys
-Asn->Met
-Asn->Phe
-Asn->Pro
-Asn->Ser
-Asn->Thr
-Asn->Trp
-Asn->Tyr
-Asn->Val
-Asn->Xle
-Asp->Ala
-Asp->Arg
-Asp->Asn
-Asp->Cys
-Asp->Gln
-Asp->Glu
-Asp->Gly
-Asp->His
-Asp->Lys
-Asp->Met
-Asp->Phe
-Asp->Pro
-Asp->Ser
-Asp->Thr
-Asp->Trp
-Asp->Tyr
-Asp->Val
-Asp->Xle
-Cys->Ala
-Cys->Arg
-Cys->Asn
-Cys->Asp
-Cys->Gln
-Cys->Glu
-Cys->Gly
-Cys->His
-Cys->Lys
-Cys->Met
-Cys->Phe
-Cys->Pro
-Cys->Ser
-Cys->Thr
-Cys->Trp
-Cys->Tyr
-Cys->Val
-Cys->Xle
-Gln->Ala
-Gln->Arg
-Gln->Asn
-Gln->Asp
-Gln->Cys
-Gln->Glu
-Gln->Gly
-Gln->His
-Gln->Lys
-Gln->Met
-Gln->Phe
-Gln->Pro
-Gln->Ser
-Gln->Thr
-Gln->Trp
-Gln->Tyr
-Gln->Val
-Gln->Xle
-Glu->Ala
-Glu->Arg
-Glu->Asn
-Glu->Asp
-Glu->Cys
-Glu->Gln
-Glu->Gly
-Glu->His
-Glu->Lys
-Glu->Met
-Glu->Phe
-Glu->Pro
-Glu->Ser
-Glu->Thr
-Glu->Trp
-Glu->Tyr
-Glu->Val
-Glu->Xle
-Gly->Ala
-Gly->Arg
-Gly->Asn
-Gly->Asp
-Gly->Cys
-Gly->Gln
-Gly->Glu
-Gly->His
-Gly->Lys
-Gly->Met
-Gly->Phe
-Gly->Pro
-Gly->Ser
-Gly->Thr
-Gly->Trp
-Gly->Tyr
-Gly->Val
-Gly->Xle
-His->Ala
-His->Arg
-His->Asn
-His->Asp
-His->Cys
-His->Gln
-His->Glu
-His->Gly
-His->Lys
-His->Met
-His->Phe
-His->Pro
-His->Ser
-His->Thr
-His->Trp
-His->Tyr
-His->Val
-His->Xle
-Lys->Ala
-Lys->Arg
-Lys->Asn
-Lys->Asp
-Lys->Cys
-Lys->Gln
-Lys->Glu
-Lys->Gly
-Lys->His
-Lys->Met
-Lys->Phe
-Lys->Pro
-Lys->Ser
-Lys->Thr
-Lys->Trp
-Lys->Tyr
-Lys->Val
-Lys->Xle
-Met->Ala
-Met->Arg
-Met->Asn
-Met->Asp
-Met->Cys
-Met->Gln
-Met->Glu
-Met->Gly
-Met->His
-Met->Lys
-Met->Phe
-Met->Pro
-Met->Ser
-Met->Thr
-Met->Trp
-Met->Tyr
-Met->Val
-Met->Xle
-Phe->Ala
-Phe->Arg
-Phe->Asn
-Phe->Asp
-Phe->Cys
-Phe->Gln
-Phe->Glu
-Phe->Gly
-Phe->His
-Phe->Lys
-Phe->Met
-Phe->Pro
-Phe->Ser
-Phe->Thr
-Phe->Trp
-Phe->Tyr
-Phe->Val
-Phe->Xle
-Pro->Ala
-Pro->Arg
-Pro->Asn
-Pro->Asp
-Pro->Cys
-Pro->Gln
-Pro->Glu
-Pro->Gly
-Pro->His
-Pro->Lys
-Pro->Met
-Pro->Phe
-Pro->Ser
-Pro->Thr
-Pro->Trp
-Pro->Tyr
-Pro->Val
-Pro->Xle
-Ser->Ala
-Ser->Arg
-Ser->Asn
-Ser->Asp
-Ser->Cys
-Ser->Gln
-Ser->Glu
-Ser->Gly
-Ser->His
-Ser->Lys
-Ser->Met
-Ser->Phe
-Ser->Pro
-Ser->Thr
-Ser->Trp
-Ser->Tyr
-Ser->Val
-Ser->Xle
-Thr->Ala
-Thr->Arg
-Thr->Asn
-Thr->Asp
-Thr->Cys
-Thr->Gln
-Thr->Glu
-Thr->Gly
-Thr->His
-Thr->Lys
-Thr->Met
-Thr->Phe
-Thr->Pro
-Thr->Ser
-Thr->Trp
-Thr->Tyr
-Thr->Val
-Thr->Xle
-Trp->Ala
-Trp->Arg
-Trp->Asn
-Trp->Asp
-Trp->Cys
-Trp->Gln
-Trp->Glu
-Trp->Gly
-Trp->His
-Trp->Lys
-Trp->Met
-Trp->Phe
-Trp->Pro
-Trp->Ser
-Trp->Thr
-Trp->Tyr
-Trp->Val
-Trp->Xle
-Tyr->Ala
-Tyr->Arg
-Tyr->Asn
-Tyr->Asp
-Tyr->Cys
-Tyr->Gln
-Tyr->Glu
-Tyr->Gly
-Tyr->His
-Tyr->Lys
-Tyr->Met
-Tyr->Phe
-Tyr->Pro
-Tyr->Ser
-Tyr->Thr
-Tyr->Trp
-Tyr->Val
-Tyr->Xle
-Val->Ala
-Val->Arg
-Val->Asn
-Val->Asp
-Val->Cys
-Val->Gln
-Val->Glu
-Val->Gly
-Val->His
-Val->Lys
-Val->Met
-Val->Phe
-Val->Pro
-Val->Ser
-Val->Thr
-Val->Trp
-Val->Tyr
-Val->Xle
-Xle->Ala
-Xle->Arg
-Xle->Asn
-Xle->Asp
-Xle->Cys
-Xle->Gln
-Xle->Glu
-Xle->Gly
-Xle->His
-Xle->Lys
-Xle->Met
-Xle->Phe
-Xle->Pro
-Xle->Ser
-Xle->Thr
-Xle->Trp
-Xle->Tyr
-Xle->Val
-CamCys->Ala
-CamCys->Arg
-CamCys->Asn
-CamCys->Asp
-CamCys->Gln
-CamCys->Glu
-CamCys->Gly
-CamCys->His
-CamCys->Lys
-CamCys->Met
-CamCys->Phe
-CamCys->Pro
-CamCys->Ser
-CamCys->Thr
-CamCys->Trp
-CamCys->Tyr
-CamCys->Val
-CamCys->Xle
-Ala->CamCys
-Arg->CamCys
-Asn->CamCys
-Asp->CamCys
-Gln->CamCys
-Glu->CamCys
-Gly->CamCys
-His->CamCys
-Lys->CamCys
-Met->CamCys
-Phe->CamCys
-Pro->CamCys
-Ser->CamCys
-Thr->CamCys
-Trp->CamCys
-Tyr->CamCys
-Val->CamCys
-Xle->CamCys
-Leu7
-Ile7
-Acetyl (T) [Unimod]
-Acetyl (N-term) [Unimod]
-Acetyl (S) [Unimod]
-Acetyl (C) [Unimod]
-Acetyl (N-term) [Unimod]
-Acetyl (K) [Unimod]
-Acetyl (Y) [Unimod]
-Acetyl (H) [Unimod]
-Amidated (C-term) [Unimod]
-Amidated (C-term) [Unimod]
-Biotin (N-term) [Unimod]
-Biotin (K) [Unimod]
-Carbamidomethyl (D) [Unimod]
-Carbamidomethyl (H) [Unimod]
-Carbamidomethyl (N-term) [Unimod]
-Carbamidomethyl (K) [Unimod]
-Carbamidomethyl (C) [Unimod]
-Carbamidomethyl (E) [Unimod]
-Carbamyl (C) [Unimod]
-Carbamyl (R) [Unimod]
-Carbamyl (N-term) [Unimod]
-Carbamyl (K) [Unimod]
-Carbamyl (M) [Unimod]
-Carboxymethyl (N-term) [Unimod]
-Carboxymethyl (K) [Unimod]
-Carboxymethyl (C) [Unimod]
-Carboxymethyl (W) [Unimod]
-Deamidated (R) [Unimod]
-Deamidated (N) [Unimod]
-Deamidated (Q) [Unimod]
-Deamidated (F) [Unimod]
-ICAT-G (C) [Unimod]
-ICAT-G:2H(8) (C) [Unimod]
-Met->Hse (M) [Unimod]
-Met->Hsl (M) [Unimod]
-ICAT-D:2H(8) (C) [Unimod]
-ICAT-D (C) [Unimod]
-NIPCAM (C) [Unimod]
-PEO-Iodoacetyl-LC-Biotin (C) [Unimod]
-Phospho (R) [Unimod]
-Phospho (C) [Unimod]
-Phospho (D) [Unimod]
-Phospho (Y) [Unimod]
-Phospho (H) [Unimod]
-Phospho (T) [Unimod]
-Phospho (S) [Unimod]
-Dehydrated (D) [Unimod]
-Dehydrated (Y) [Unimod]
-Dehydrated (T) [Unimod]
-Dehydrated (S) [Unimod]
-Dehydrated (N) [Unimod]
-Dehydrated (Q) [Unimod]
-Dehydrated (C) [Unimod]
-Propionamide (C) [Unimod]
-Pyridylacetyl (N-term) [Unimod]
-Pyridylacetyl (K) [Unimod]
-Pyro-carbamidomethyl (C) [Unimod]
-Glu->pyro-Glu (E) [Unimod]
-Gln->pyro-Glu (Q) [Unimod]
-SMA (N-term) [Unimod]
-SMA (K) [Unimod]
-Pyridylethyl (C) [Unimod]
-Methyl (T) [Unimod]
-Methyl (S) [Unimod]
-Methyl (N-term) [Unimod]
-Methyl (E) [Unimod]
-Methyl (D) [Unimod]
-Methyl (C-term) [Unimod]
-Methyl (L) [Unimod]
-Methyl (I) [Unimod]
-Methyl (R) [Unimod]
-Methyl (N-term) [Unimod]
-Methyl (Q) [Unimod]
-Methyl (N) [Unimod]
-Methyl (K) [Unimod]
-Methyl (H) [Unimod]
-Methyl (C) [Unimod]
-Oxidation (W) [Unimod]
-Oxidation (H) [Unimod]
-Oxidation (C) [Unimod]
-Oxidation (M) [Unimod]
-Oxidation (R) [Unimod]
-Oxidation (Y) [Unimod]
-Oxidation (F) [Unimod]
-Oxidation (P) [Unimod]
-Oxidation (N) [Unimod]
-Oxidation (K) [Unimod]
-Oxidation (D) [Unimod]
-Oxidation (G) [Unimod]
-Dimethyl (N) [Unimod]
-Dimethyl (N-term) [Unimod]
-Dimethyl (R) [Unimod]
-Dimethyl (K) [Unimod]
-Dimethyl (P) [Unimod]
-Trimethyl (A) [Unimod]
-Trimethyl (R) [Unimod]
-Trimethyl (K) [Unimod]
-Methylthio (C) [Unimod]
-Methylthio (N) [Unimod]
-Methylthio (D) [Unimod]
-Sulfo (Y) [Unimod]
-Sulfo (T) [Unimod]
-Sulfo (S) [Unimod]
-Sulfo (C) [Unimod]
-Lipoyl (K) [Unimod]
-Farnesyl (C) [Unimod]
-Myristoyl (C) [Unimod]
-Myristoyl (K) [Unimod]
-Myristoyl (G) [Unimod]
-PyridoxalPhosphate (K) [Unimod]
-Palmitoyl (T) [Unimod]
-Palmitoyl (S) [Unimod]
-Palmitoyl (K) [Unimod]
-Palmitoyl (C) [Unimod]
-Palmitoyl (N-term) [Unimod]
-GeranylGeranyl (C) [Unimod]
-Phosphopantetheine (S) [Unimod]
-FAD (Y) [Unimod]
-FAD (H) [Unimod]
-FAD (C) [Unimod]
-Tripalmitate (C) [Unimod]
-Guanidinyl (K) [Unimod]
-HNE (K) [Unimod]
-HNE (H) [Unimod]
-HNE (C) [Unimod]
-Glucuronyl (N-term) [Unimod]
-Glucuronyl (S) [Unimod]
-Glutathione (C) [Unimod]
-Acetyl:2H(3) (N-term) [Unimod]
-Acetyl:2H(3) (K) [Unimod]
-Propionyl (N-term) [Unimod]
-Propionyl (K) [Unimod]
-Propionyl:13C(3) (N-term) [Unimod]
-Propionyl:13C(3) (K) [Unimod]
-GIST-Quat (N-term) [Unimod]
-GIST-Quat (K) [Unimod]
-GIST-Quat:2H(3) (N-term) [Unimod]
-GIST-Quat:2H(3) (K) [Unimod]
-GIST-Quat:2H(6) (N-term) [Unimod]
-GIST-Quat:2H(6) (K) [Unimod]
-GIST-Quat:2H(9) (N-term) [Unimod]
-GIST-Quat:2H(9) (K) [Unimod]
-Succinyl (N-term) [Unimod]
-Succinyl (N-term) [Unimod]
-Succinyl (K) [Unimod]
-Succinyl:2H(4) (N-term) [Unimod]
-Succinyl:2H(4) (K) [Unimod]
-Succinyl:13C(4) (N-term) [Unimod]
-Succinyl:13C(4) (K) [Unimod]
-probiotinhydrazide (P) [Unimod]
-Pro->pyro-Glu (P) [Unimod]
-His->Asn (H) [Unimod]
-His->Asp (H) [Unimod]
-Trp->Hydroxykynurenin (W) [Unimod]
-Delta:H(4)C(3) (K) [Unimod]
-Delta:H(4)C(3) (H) [Unimod]
-Delta:H(4)C(2) (K) [Unimod]
-Delta:H(4)C(2) (H) [Unimod]
-Cys->Dha (C) [Unimod]
-Arg->GluSA (R) [Unimod]
-Trioxidation (C) [Unimod]
-Iminobiotin (N-term) [Unimod]
-Iminobiotin (K) [Unimod]
-ESP (N-term) [Unimod]
-ESP (K) [Unimod]
-ESP:2H(10) (N-term) [Unimod]
-ESP:2H(10) (K) [Unimod]
-NHS-LC-Biotin (N-term) [Unimod]
-NHS-LC-Biotin (K) [Unimod]
-EDT-maleimide-PEO-biotin (T) [Unimod]
-EDT-maleimide-PEO-biotin (S) [Unimod]
-IMID (K) [Unimod]
-IMID:2H(4) (K) [Unimod]
-Lysbiotinhydrazide (K) [Unimod]
-Propionamide:2H(3) (C) [Unimod]
-Nitro (Y) [Unimod]
-Nitro (W) [Unimod]
-ICAT-C (C) [Unimod]
-Delta:H(2)C(2) (K) [Unimod]
-Delta:H(2)C(2) (H) [Unimod]
-Trp->Kynurenin (W) [Unimod]
-Lys->Allysine (K) [Unimod]
-ICAT-C:13C(9) (C) [Unimod]
-FormylMet (N-term) [Unimod]
-Nethylmaleimide (C) [Unimod]
-OxLysBiotinRed (K) [Unimod]
-IBTP (C) [Unimod]
-OxLysBiotin (K) [Unimod]
-OxProBiotinRed (P) [Unimod]
-OxProBiotin (P) [Unimod]
-OxArgBiotin (R) [Unimod]
-OxArgBiotinRed (R) [Unimod]
-EDT-iodoacetyl-PEO-biotin (T) [Unimod]
-EDT-iodoacetyl-PEO-biotin (S) [Unimod]
-GlyGly (T) [Unimod]
-GlyGly (S) [Unimod]
-GlyGly (C) [Unimod]
-GlyGly (K) [Unimod]
-Formyl (N-term) [Unimod]
-Formyl (T) [Unimod]
-Formyl (K) [Unimod]
-Formyl (N-term) [Unimod]
-Formyl (S) [Unimod]
-Cation:K (C-term) [Unimod]
-Cation:K (E) [Unimod]
-Cation:K (D) [Unimod]
-Thioacyl (N-term) [Unimod]
-Thioacyl (K) [Unimod]
-Fluoro (W) [Unimod]
-Fluoro (F) [Unimod]
-Fluoro (Y) [Unimod]
-Fluorescein (C) [Unimod]
-Iodo (H) [Unimod]
-Iodo (Y) [Unimod]
-Diiodo (Y) [Unimod]
-Triiodo (Y) [Unimod]
-Myristoleyl (G) [Unimod]
-Pro->Pyrrolidinone (P) [Unimod]
-Myristoyl+Delta:H(-4) (G) [Unimod]
-Benzoyl (N-term) [Unimod]
-Benzoyl (K) [Unimod]
-Dansyl (N-term) [Unimod]
-Dansyl (K) [Unimod]
-a-type-ion (C-term) [Unimod]
-Amidine (N-term) [Unimod]
-Amidine (K) [Unimod]
-NBS:13C(6) (W) [Unimod]
-Methyl:2H(3)13C(1) (R) [Unimod]
-Dimethyl:2H(6)13C(2) (R) [Unimod]
-NBS (W) [Unimod]
-Delta:H(1)O(-1)18O(1) (N) [Unimod]
-QAT (C) [Unimod]
-BHT (H) [Unimod]
-BHT (K) [Unimod]
-BHT (C) [Unimod]
-Delta:H(4)C(2)O(-1)S(1) (S) [Unimod]
-DAET (T) [Unimod]
-DAET (S) [Unimod]
-Pro->Pyrrolidone (P) [Unimod]
-Label:13C(9) (Y) [Unimod]
-Label:13C(9) (F) [Unimod]
-Label:13C(9)+Phospho (Y) [Unimod]
-Label:13C(6) (I) [Unimod]
-Label:13C(6) (L) [Unimod]
-Label:13C(6) (K) [Unimod]
-Label:13C(6) (R) [Unimod]
-HPG (R) [Unimod]
-2HPG (R) [Unimod]
-QAT:2H(3) (C) [Unimod]
-Label:18O(2) (C-term) [Unimod]
-AccQTag (N-term) [Unimod]
-AccQTag (K) [Unimod]
-Dimethyl:2H(4) (N-term) [Unimod]
-Dimethyl:2H(4) (N-term) [Unimod]
-Dimethyl:2H(4) (K) [Unimod]
-EQAT (C) [Unimod]
-EQAT:2H(5) (C) [Unimod]
-Ethanedithiol (T) [Unimod]
-Ethanedithiol (S) [Unimod]
-NEIAA:2H(5) (Y) [Unimod]
-NEIAA:2H(5) (C) [Unimod]
-Delta:H(6)C(6)O(1) (K) [Unimod]
-Delta:H(4)C(3)O(1) (K) [Unimod]
-Delta:H(4)C(3)O(1) (H) [Unimod]
-Delta:H(4)C(3)O(1) (C) [Unimod]
-Delta:H(2)C(3) (K) [Unimod]
-Delta:H(4)C(6) (K) [Unimod]
-Delta:H(8)C(6)O(2) (K) [Unimod]
-ADP-Ribosyl (E) [Unimod]
-ADP-Ribosyl (S) [Unimod]
-ADP-Ribosyl (N) [Unimod]
-ADP-Ribosyl (C) [Unimod]
-ADP-Ribosyl (R) [Unimod]
-NEIAA (Y) [Unimod]
-NEIAA (C) [Unimod]
-iTRAQ4plex (Y) [Unimod]
-iTRAQ4plex (N-term) [Unimod]
-iTRAQ4plex (K) [Unimod]
-Crotonaldehyde (K) [Unimod]
-Crotonaldehyde (H) [Unimod]
-Crotonaldehyde (C) [Unimod]
-Amino (Y) [Unimod]
-Argbiotinhydrazide (R) [Unimod]
-Label:18O(1) (Y) [Unimod]
-Label:18O(1) (T) [Unimod]
-Label:18O(1) (S) [Unimod]
-Label:18O(1) (C-term) [Unimod]
-Label:13C(6)15N(2) (K) [Unimod]
-Thiophospho (Y) [Unimod]
-Thiophospho (T) [Unimod]
-Thiophospho (S) [Unimod]
-SPITC (K) [Unimod]
-SPITC (N-term) [Unimod]
-Cytopiloyne (Y) [Unimod]
-Cytopiloyne (S) [Unimod]
-Cytopiloyne (R) [Unimod]
-Cytopiloyne (P) [Unimod]
-Cytopiloyne (N-term) [Unimod]
-Cytopiloyne (K) [Unimod]
-Cytopiloyne (C) [Unimod]
-Cytopiloyne+water (Y) [Unimod]
-Cytopiloyne+water (T) [Unimod]
-Cytopiloyne+water (S) [Unimod]
-Cytopiloyne+water (R) [Unimod]
-Cytopiloyne+water (N-term) [Unimod]
-Cytopiloyne+water (K) [Unimod]
-Cytopiloyne+water (C) [Unimod]
-Label:13C(6)15N(4) (R) [Unimod]
-Label:13C(9)15N(1) (F) [Unimod]
-Label:2H(3) (L) [Unimod]
-Label:13C(5)15N(1) (V) [Unimod]
-PET (T) [Unimod]
-PET (S) [Unimod]
-CAF (N-term) [Unimod]
-Xlink:SSD (K) [Unimod]
-Nitrosyl (C) [Unimod]
-AEBS (Y) [Unimod]
-AEBS (S) [Unimod]
-AEBS (N-term) [Unimod]
-AEBS (K) [Unimod]
-AEBS (H) [Unimod]
-Ethanolyl (C) [Unimod]
-HMVK (C) [Unimod]
-Ethyl (N-term) [Unimod]
-Ethyl (K) [Unimod]
-Ethyl (E) [Unimod]
-Ethyl (N-term) [Unimod]
-CoenzymeA (C) [Unimod]
-Methyl+Deamidated (Q) [Unimod]
-Methyl+Deamidated (N) [Unimod]
-Delta:H(5)C(2) (P) [Unimod]
-Methyl:2H(2) (K) [Unimod]
-SulfanilicAcid (E) [Unimod]
-SulfanilicAcid (D) [Unimod]
-SulfanilicAcid (C-term) [Unimod]
-SulfanilicAcid:13C(6) (E) [Unimod]
-SulfanilicAcid:13C(6) (D) [Unimod]
-SulfanilicAcid:13C(6) (C-term) [Unimod]
-Biotin-PEO-Amine (D) [Unimod]
-Biotin-PEO-Amine (C-term) [Unimod]
-Biotin-PEO-Amine (E) [Unimod]
-Trp->Oxolactone (W) [Unimod]
-Biotin-HPDP (C) [Unimod]
-IodoU-AMP (Y) [Unimod]
-IodoU-AMP (W) [Unimod]
-IodoU-AMP (F) [Unimod]
-CAMthiopropanoyl (N-term) [Unimod]
-CAMthiopropanoyl (K) [Unimod]
-IED-Biotin (C) [Unimod]
-Methyl:2H(3) (E) [Unimod]
-Methyl:2H(3) (D) [Unimod]
-Methyl:2H(3) (C-term) [Unimod]
-Carboxy (E) [Unimod]
-Carboxy (D) [Unimod]
-Carboxy (K) [Unimod]
-Carboxy (W) [Unimod]
-Carboxy (M) [Unimod]
-Bromobimane (C) [Unimod]
-Menadione (K) [Unimod]
-Menadione (C) [Unimod]
-DeStreak (C) [Unimod]
-Cysteinyl (C) [Unimod]
-Lys-loss (K) [Unimod]
-Nmethylmaleimide (K) [Unimod]
-Nmethylmaleimide (C) [Unimod]
-CyDye-Cy3 (C) [Unimod]
-DimethylpyrroleAdduct (K) [Unimod]
-Delta:H(2)C(5) (K) [Unimod]
-Delta:H(2)C(3)O(1) (K) [Unimod]
-Delta:H(2)C(3)O(1) (R) [Unimod]
-Nethylmaleimide+water (K) [Unimod]
-Nethylmaleimide+water (C) [Unimod]
-Methyl+Acetyl:2H(3) (K) [Unimod]
-Xlink:B10621 (C) [Unimod]
-DTBP (N-term) [Unimod]
-DTBP (K) [Unimod]
-DTBP (R) [Unimod]
-DTBP (Q) [Unimod]
-DTBP (N) [Unimod]
-FP-Biotin (T) [Unimod]
-FP-Biotin (Y) [Unimod]
-FP-Biotin (S) [Unimod]
-Thiophos-S-S-biotin (Y) [Unimod]
-Thiophos-S-S-biotin (T) [Unimod]
-Thiophos-S-S-biotin (S) [Unimod]
-Can-FP-biotin (T) [Unimod]
-Can-FP-biotin (Y) [Unimod]
-Can-FP-biotin (S) [Unimod]
-HNE+Delta:H(2) (K) [Unimod]
-HNE+Delta:H(2) (H) [Unimod]
-HNE+Delta:H(2) (C) [Unimod]
-Thrbiotinhydrazide (T) [Unimod]
-Methylamine (T) [Unimod]
-Methylamine (S) [Unimod]
-Diisopropylphosphate (Y) [Unimod]
-Diisopropylphosphate (T) [Unimod]
-Diisopropylphosphate (S) [Unimod]
-Isopropylphospho (Y) [Unimod]
-Isopropylphospho (T) [Unimod]
-Isopropylphospho (S) [Unimod]
-ICPL:13C(6) (N-term) [Unimod]
-ICPL:13C(6) (N-term) [Unimod]
-ICPL:13C(6) (K) [Unimod]
-ICPL (N-term) [Unimod]
-ICPL (K) [Unimod]
-ICPL (N-term) [Unimod]
-Deamidated:18O(1) (Q) [Unimod]
-Deamidated:18O(1) (N) [Unimod]
-Arg->Orn (R) [Unimod]
-Dehydro (C) [Unimod]
-Diphthamide (H) [Unimod]
-Hydroxyfarnesyl (C) [Unimod]
-Diacylglycerol (C) [Unimod]
-Carboxyethyl (K) [Unimod]
-Hypusine (K) [Unimod]
-Retinylidene (K) [Unimod]
-Lys->AminoadipicAcid (K) [Unimod]
-Cys->PyruvicAcid (C) [Unimod]
-Ammonia-loss (C) [Unimod]
-Ammonia-loss (S) [Unimod]
-Ammonia-loss (T) [Unimod]
-Ammonia-loss (N) [Unimod]
-Phycocyanobilin (C) [Unimod]
-Phycoerythrobilin (C) [Unimod]
-Phytochromobilin (C) [Unimod]
-Quinone (W) [Unimod]
-Quinone (Y) [Unimod]
-GPIanchor (C-term) [Unimod]
-PhosphoribosyldephosphoCoA (S) [Unimod]
-GlycerylPE (E) [Unimod]
-Triiodothyronine (Y) [Unimod]
-Thyroxine (Y) [Unimod]
-Tyr->Dha (Y) [Unimod]
-Didehydro (S) [Unimod]
-Didehydro (Y) [Unimod]
-Didehydro (T) [Unimod]
-Didehydro (K) [Unimod]
-Cys->Oxoalanine (C) [Unimod]
-Ser->LacticAcid (S) [Unimod]
-GluGlu (E) [Unimod]
-GluGlu (C-term) [Unimod]
-Phosphoadenosine (H) [Unimod]
-Phosphoadenosine (T) [Unimod]
-Phosphoadenosine (K) [Unimod]
-Phosphoadenosine (Y) [Unimod]
-Glu (E) [Unimod]
-Glu (C-term) [Unimod]
-Hydroxycinnamyl (C) [Unimod]
-Glycosyl (P) [Unimod]
-FMNH (H) [Unimod]
-FMNH (C) [Unimod]
-Archaeol (C) [Unimod]
-Phenylisocyanate (N-term) [Unimod]
-Phenylisocyanate:2H(5) (N-term) [Unimod]
-Phosphoguanosine (H) [Unimod]
-Phosphoguanosine (K) [Unimod]
-Hydroxymethyl (N) [Unimod]
-Dipyrrolylmethanemethyl (C) [Unimod]
-PhosphoUridine (H) [Unimod]
-PhosphoUridine (Y) [Unimod]
-Glycerophospho (S) [Unimod]
-Carboxy->Thiocarboxy (G) [Unimod]
-Sulfide (C) [Unimod]
-PyruvicAcidIminyl (K) [Unimod]
-PyruvicAcidIminyl (V) [Unimod]
-PyruvicAcidIminyl (C) [Unimod]
-Dioxidation (Y) [Unimod]
-Dioxidation (W) [Unimod]
-Dioxidation (F) [Unimod]
-Dioxidation (M) [Unimod]
-Dioxidation (R) [Unimod]
-Dioxidation (K) [Unimod]
-Dioxidation (P) [Unimod]
-Dioxidation (C) [Unimod]
-Octanoyl (T) [Unimod]
-Octanoyl (S) [Unimod]
-Palmitoleyl (C) [Unimod]
-Cholesterol (C-term) [Unimod]
-Didehydroretinylidene (K) [Unimod]
-CHDH (D) [Unimod]
-Methylpyrroline (K) [Unimod]
-MicrocinC7 (C-term) [Unimod]
-Cyano (C) [Unimod]
-Amidino (C) [Unimod]
-FMN (S) [Unimod]
-FMN (T) [Unimod]
-FMNC (C) [Unimod]
-Hydroxytrimethyl (K) [Unimod]
-Deoxy (T) [Unimod]
-Deoxy (D) [Unimod]
-Deoxy (S) [Unimod]
-Microcin (C-term) [Unimod]
-Decanoyl (T) [Unimod]
-Decanoyl (S) [Unimod]
-GluGluGlu (C-term) [Unimod]
-GluGluGlu (E) [Unimod]
-GluGluGluGlu (C-term) [Unimod]
-GluGluGluGlu (E) [Unimod]
-HexN (W) [Unimod]
-HexN (T) [Unimod]
-HexN (N) [Unimod]
-HexN (K) [Unimod]
-Xlink:DMP-s (N-term) [Unimod]
-Xlink:DMP-s (K) [Unimod]
-Xlink:DMP (N-term) [Unimod]
-Xlink:DMP (K) [Unimod]
-NDA (N-term) [Unimod]
-NDA (K) [Unimod]
-SPITC:13C(6) (N-term) [Unimod]
-SPITC:13C(6) (K) [Unimod]
-TMAB:2H(9) (N-term) [Unimod]
-TMAB:2H(9) (K) [Unimod]
-TMAB (N-term) [Unimod]
-TMAB (K) [Unimod]
-FTC (S) [Unimod]
-FTC (R) [Unimod]
-FTC (P) [Unimod]
-FTC (K) [Unimod]
-FTC (C) [Unimod]
-AEC-MAEC (T) [Unimod]
-AEC-MAEC (S) [Unimod]
-BADGE (C) [Unimod]
-Label:2H(4) (K) [Unimod]
-CyDye-Cy5 (C) [Unimod]
-DHP (C) [Unimod]
-BHTOH (H) [Unimod]
-BHTOH (C) [Unimod]
-BHTOH (K) [Unimod]
-Nmethylmaleimide+water (C) [Unimod]
-PyMIC (N-term) [Unimod]
-LG-lactam-K (N-term) [Unimod]
-LG-lactam-K (K) [Unimod]
-BisANS (K) [Unimod]
-Piperidine (N-term) [Unimod]
-Piperidine (K) [Unimod]
-Diethyl (N-term) [Unimod]
-Diethyl (K) [Unimod]
-LG-Hlactam-K (N-term) [Unimod]
-LG-Hlactam-K (K) [Unimod]
-Dimethyl:2H(4)13C(2) (N-term) [Unimod]
-Dimethyl:2H(4)13C(2) (K) [Unimod]
-C8-QAT (N-term) [Unimod]
-C8-QAT (K) [Unimod]
-LG-lactam-R (R) [Unimod]
-CLIP_TRAQ_1 (N-term) [Unimod]
-CLIP_TRAQ_1 (K) [Unimod]
-CLIP_TRAQ_1 (Y) [Unimod]
-CLIP_TRAQ_2 (N-term) [Unimod]
-CLIP_TRAQ_2 (K) [Unimod]
-CLIP_TRAQ_2 (Y) [Unimod]
-LG-Hlactam-R (R) [Unimod]
-Maleimide-PEO2-Biotin (C) [Unimod]
-Sulfo-NHS-LC-LC-Biotin (N-term) [Unimod]
-Sulfo-NHS-LC-LC-Biotin (K) [Unimod]
-FNEM (C) [Unimod]
-PropylNAGthiazoline (C) [Unimod]
-Dethiomethyl (M) [Unimod]
-iTRAQ4plex114 (Y) [Unimod]
-iTRAQ4plex114 (N-term) [Unimod]
-iTRAQ4plex114 (K) [Unimod]
-iTRAQ4plex115 (Y) [Unimod]
-iTRAQ4plex115 (N-term) [Unimod]
-iTRAQ4plex115 (K) [Unimod]
-LeuArgGlyGly (K) [Unimod]
-CLIP_TRAQ_3 (Y) [Unimod]
-CLIP_TRAQ_3 (N-term) [Unimod]
-CLIP_TRAQ_3 (K) [Unimod]
-CLIP_TRAQ_4 (N-term) [Unimod]
-CLIP_TRAQ_4 (K) [Unimod]
-CLIP_TRAQ_4 (Y) [Unimod]
-15dB-biotin (C) [Unimod]
-PGA1-biotin (C) [Unimod]
-Ala->Ser (A) [Unimod]
-Ala->Thr (A) [Unimod]
-Ala->Asp (A) [Unimod]
-Ala->Pro (A) [Unimod]
-Ala->Gly (A) [Unimod]
-Ala->Glu (A) [Unimod]
-Ala->Val (A) [Unimod]
-Cys->Phe (C) [Unimod]
-Cys->Ser (C) [Unimod]
-Cys->Trp (C) [Unimod]
-Cys->Tyr (C) [Unimod]
-Cys->Arg (C) [Unimod]
-Cys->Gly (C) [Unimod]
-Asp->Ala (D) [Unimod]
-Asp->His (D) [Unimod]
-Asp->Asn (D) [Unimod]
-Asp->Gly (D) [Unimod]
-Asp->Tyr (D) [Unimod]
-Asp->Glu (D) [Unimod]
-Asp->Val (D) [Unimod]
-Glu->Ala (E) [Unimod]
-Glu->Gln (E) [Unimod]
-Glu->Asp (E) [Unimod]
-Glu->Lys (E) [Unimod]
-Glu->Gly (E) [Unimod]
-Glu->Val (E) [Unimod]
-Phe->Ser (F) [Unimod]
-Phe->Cys (F) [Unimod]
-Phe->Ile (F) [Unimod]
-Phe->Tyr (F) [Unimod]
-Phe->Val (F) [Unimod]
-Gly->Ala (G) [Unimod]
-Gly->Ser (G) [Unimod]
-Gly->Trp (G) [Unimod]
-Gly->Glu (G) [Unimod]
-Gly->Val (G) [Unimod]
-Gly->Asp (G) [Unimod]
-Gly->Cys (G) [Unimod]
-Gly->Arg (G) [Unimod]
-dNIC (N-term) [Unimod]
-His->Pro (H) [Unimod]
-His->Tyr (H) [Unimod]
-His->Gln (H) [Unimod]
-NIC (N-term) [Unimod]
-His->Arg (H) [Unimod]
-His->Leu (H) [Unimod]
-Ile->Phe (I) [Unimod]
-Ile->Ser (I) [Unimod]
-Ile->Thr (I) [Unimod]
-Ile->Asn (I) [Unimod]
-Ile->Lys (I) [Unimod]
-Ile->Val (I) [Unimod]
-Ile->Met (I) [Unimod]
-Ile->Arg (I) [Unimod]
-Lys->Thr (K) [Unimod]
-Lys->Asn (K) [Unimod]
-Lys->Glu (K) [Unimod]
-Lys->Gln (K) [Unimod]
-Lys->Met (K) [Unimod]
-Lys->Arg (K) [Unimod]
-Lys->Ile (K) [Unimod]
-Leu->Ser (L) [Unimod]
-Leu->Phe (L) [Unimod]
-Leu->Trp (L) [Unimod]
-Leu->Pro (L) [Unimod]
-Leu->Val (L) [Unimod]
-Leu->His (L) [Unimod]
-Leu->Gln (L) [Unimod]
-Leu->Met (L) [Unimod]
-Leu->Arg (L) [Unimod]
-Met->Thr (M) [Unimod]
-Met->Arg (M) [Unimod]
-Met->Ile (M) [Unimod]
-Met->Lys (M) [Unimod]
-Met->Leu (M) [Unimod]
-Met->Val (M) [Unimod]
-Asn->Ser (N) [Unimod]
-Asn->Thr (N) [Unimod]
-Asn->Lys (N) [Unimod]
-Asn->Tyr (N) [Unimod]
-Asn->His (N) [Unimod]
-Asn->Asp (N) [Unimod]
-Asn->Ile (N) [Unimod]
-Pro->Ser (P) [Unimod]
-Pro->Ala (P) [Unimod]
-Pro->His (P) [Unimod]
-Pro->Gln (P) [Unimod]
-Pro->Thr (P) [Unimod]
-Pro->Arg (P) [Unimod]
-Pro->Leu (P) [Unimod]
-Gln->Pro (Q) [Unimod]
-Gln->Lys (Q) [Unimod]
-Gln->Glu (Q) [Unimod]
-Gln->His (Q) [Unimod]
-Gln->Arg (Q) [Unimod]
-Gln->Leu (Q) [Unimod]
-Arg->Ser (R) [Unimod]
-Arg->Trp (R) [Unimod]
-Arg->Thr (R) [Unimod]
-Arg->Pro (R) [Unimod]
-Arg->Lys (R) [Unimod]
-Arg->His (R) [Unimod]
-Arg->Gln (R) [Unimod]
-Arg->Met (R) [Unimod]
-Arg->Cys (R) [Unimod]
-Arg->Ile (R) [Unimod]
-Arg->Gly (R) [Unimod]
-Ser->Phe (S) [Unimod]
-Ser->Ala (S) [Unimod]
-Ser->Trp (S) [Unimod]
-Ser->Thr (S) [Unimod]
-Ser->Asn (S) [Unimod]
-Ser->Pro (S) [Unimod]
-Ser->Tyr (S) [Unimod]
-Ser->Cys (S) [Unimod]
-Ser->Arg (S) [Unimod]
-Ser->Ile (S) [Unimod]
-Ser->Gly (S) [Unimod]
-Thr->Ser (T) [Unimod]
-Thr->Ala (T) [Unimod]
-Thr->Asn (T) [Unimod]
-Thr->Lys (T) [Unimod]
-Thr->Pro (T) [Unimod]
-Thr->Met (T) [Unimod]
-Thr->Ile (T) [Unimod]
-Thr->Arg (T) [Unimod]
-Val->Phe (V) [Unimod]
-Val->Ala (V) [Unimod]
-Val->Glu (V) [Unimod]
-Val->Met (V) [Unimod]
-Val->Asp (V) [Unimod]
-Val->Ile (V) [Unimod]
-Val->Gly (V) [Unimod]
-Trp->Ser (W) [Unimod]
-Trp->Cys (W) [Unimod]
-Trp->Arg (W) [Unimod]
-Trp->Gly (W) [Unimod]
-Trp->Leu (W) [Unimod]
-Tyr->Phe (Y) [Unimod]
-Tyr->Ser (Y) [Unimod]
-Tyr->Asn (Y) [Unimod]
-Tyr->His (Y) [Unimod]
-Tyr->Asp (Y) [Unimod]
-Tyr->Cys (Y) [Unimod]
-NA-LNO2 (C) [Unimod]
-NA-LNO2 (H) [Unimod]
-NA-OA-NO2 (C) [Unimod]
-NA-OA-NO2 (H) [Unimod]
-ICPL:2H(4) (N-term) [Unimod]
-ICPL:2H(4) (N-term) [Unimod]
-ICPL:2H(4) (K) [Unimod]
-iTRAQ8plex (Y) [Unimod]
-iTRAQ8plex (N-term) [Unimod]
-iTRAQ8plex (K) [Unimod]
-Label:13C(6)15N(1) (I) [Unimod]
-Label:13C(6)15N(1) (L) [Unimod]
-Label:2H(9)13C(6)15N(2) (K) [Unimod]
-HNE-Delta:H(2)O (K) [Unimod]
-HNE-Delta:H(2)O (H) [Unimod]
-HNE-Delta:H(2)O (C) [Unimod]
-4-ONE (K) [Unimod]
-4-ONE (H) [Unimod]
-4-ONE (C) [Unimod]
-O-Dimethylphosphate (Y) [Unimod]
-O-Dimethylphosphate (T) [Unimod]
-O-Dimethylphosphate (S) [Unimod]
-O-Methylphosphate (Y) [Unimod]
-O-Methylphosphate (T) [Unimod]
-O-Methylphosphate (S) [Unimod]
-O-Diethylphosphate (Y) [Unimod]
-O-Diethylphosphate (T) [Unimod]
-O-Diethylphosphate (S) [Unimod]
-O-Ethylphosphate (Y) [Unimod]
-O-Ethylphosphate (T) [Unimod]
-O-Ethylphosphate (S) [Unimod]
-O-pinacolylmethylphosphonate (Y) [Unimod]
-O-pinacolylmethylphosphonate (T) [Unimod]
-O-pinacolylmethylphosphonate (S) [Unimod]
-Methylphosphonate (Y) [Unimod]
-Methylphosphonate (T) [Unimod]
-Methylphosphonate (S) [Unimod]
-O-Isopropylmethylphosphonate (Y) [Unimod]
-O-Isopropylmethylphosphonate (T) [Unimod]
-O-Isopropylmethylphosphonate (S) [Unimod]
-iTRAQ8plex:13C(6)15N(2) (Y) [Unimod]
-iTRAQ8plex:13C(6)15N(2) (N-term) [Unimod]
-iTRAQ8plex:13C(6)15N(2) (K) [Unimod]
-DTT_ST (S) [Unimod]
-DTT_ST (T) [Unimod]
-Ethanolamine (D) [Unimod]
-Ethanolamine (C-term) [Unimod]
-Ethanolamine (E) [Unimod]
-TMT6plex (K) [Unimod]
-TMT6plex (N-term) [Unimod]
-DTT_C (C) [Unimod]
-TMT2plex (N-term) [Unimod]
-TMT2plex (K) [Unimod]
-TMT (N-term) [Unimod]
-TMT (K) [Unimod]
-ExacTagThiol (C) [Unimod]
-ExacTagAmine (K) [Unimod]
-NO_SMX_SEMD (C) [Unimod]
-4-ONE+Delta:H(-2)O(-1) (K) [Unimod]
-4-ONE+Delta:H(-2)O(-1) (H) [Unimod]
-4-ONE+Delta:H(-2)O(-1) (C) [Unimod]
-NO_SMX_SMCT (C) [Unimod]
-NO_SMX_SIMD (C) [Unimod]
-Malonyl (C) [Unimod]
-Malonyl (S) [Unimod]
-3sulfo (N-term) [Unimod]
-trifluoro (L) [Unimod]
-TNBS (N-term) [Unimod]
-TNBS (K) [Unimod]
-Biotin-phenacyl (C) [Unimod]
-Biotin-phenacyl (H) [Unimod]
-Biotin-phenacyl (S) [Unimod]
-DTT_C:2H(6) (C) [Unimod]
-lapachenole (C) [Unimod]
-Label:13C(5) (P) [Unimod]
-maleimide (K) [Unimod]
-maleimide (C) [Unimod]
-DTT_ST:2H(6) (T) [Unimod]
-DTT_ST:2H(6) (S) [Unimod]
-Met-loss (M) [Unimod]
-Met-loss+Acetyl (M) [Unimod]
-Menadione-HQ (K) [Unimod]
-Menadione-HQ (C) [Unimod]
-Carboxymethyl:13C(2) (C) [Unimod]
-NEM:2H(5) (C) [Unimod]
-Gly-loss+Amide (G) [Unimod]
-TMPP-Ac (N-term) [Unimod]
-Label:13C(6)+GlyGly (K) [Unimod]
-Arg->Npo (R) [Unimod]
-Label:2H(4)+Acetyl (K) [Unimod]
-Pentylamine (Q) [Unimod]
-PentylamineBiotin (Q) [Unimod]
-Dihydroxyimidazolidine (R) [Unimod]
-DFDNB (Q) [Unimod]
-DFDNB (N) [Unimod]
-DFDNB (R) [Unimod]
-DFDNB (K) [Unimod]
-Cy3b-maleimide (C) [Unimod]
-AEC-MAEC:2H(4) (S) [Unimod]
-AEC-MAEC:2H(4) (T) [Unimod]
-BMOE (C) [Unimod]
-Biotin-PEO4-hydrazide (C-term) [Unimod]
-Label:13C(6)+Acetyl (K) [Unimod]
-Label:13C(6)15N(2)+Acetyl (K) [Unimod]
-EQIGG (K) [Unimod]
-cGMP (C) [Unimod]
-cGMP+RMP-loss (C) [Unimod]
-Arg2PG (R) [Unimod]
-Label:2H(4)+GlyGly (K) [Unimod]
-Label:13C(8)15N(2) (R) [Unimod]
-Label:13C(1)2H(3) (M) [Unimod]
-ZGB (K) [Unimod]
-ZGB (N-term) [Unimod]
-MG-H1 (R) [Unimod]
-G-H1 (R) [Unimod]
-Label:13C(6)15N(2)+GlyGly (K) [Unimod]
-ICPL:13C(6)2H(4) (N-term) [Unimod]
-ICPL:13C(6)2H(4) (K) [Unimod]
-ICPL:13C(6)2H(4) (N-term) [Unimod]
-QQQTGG (K) [Unimod]
-QEQTGG (K) [Unimod]
-Bodipy (C) [Unimod]
diff -r d4b6c9eae635 -r 8bac3cc5c5de maxquant_proteases.loc
--- a/maxquant_proteases.loc Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,27 +0,0 @@
-Trypsin
-Arg-C
-Asp-N
-Asp-N_ambic
-Chymotrypsin
-CNBr
-CNBr+Trypsin
-Formic_acid
-Lys-C
-Lys-C/P
-PepsinA
-Tryp-CNBr
-TrypChymo
-Trypsin/P
-Trypsin/P+DP
-V8-DE
-V8-E
-semiTrypsin
-LysC+AspN
-Lys-C/P+DP
-Trypsin/P + Asp-N
-Asp-C
-Trypsin/P+Asp-C
-SemiLys
-SemiGluC
-LysC/P+AspC
-GluC
diff -r d4b6c9eae635 -r 8bac3cc5c5de maxquant_proteases.loc.sample
--- a/maxquant_proteases.loc.sample Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,27 +0,0 @@
-Trypsin
-Arg-C
-Asp-N
-Asp-N_ambic
-Chymotrypsin
-CNBr
-CNBr+Trypsin
-Formic_acid
-Lys-C
-Lys-C/P
-PepsinA
-Tryp-CNBr
-TrypChymo
-Trypsin/P
-Trypsin/P+DP
-V8-DE
-V8-E
-semiTrypsin
-LysC+AspN
-Lys-C/P+DP
-Trypsin/P + Asp-N
-Asp-C
-Trypsin/P+Asp-C
-SemiLys
-SemiGluC
-LysC/P+AspC
-GluC
diff -r d4b6c9eae635 -r 8bac3cc5c5de maxquant_wrapper.py
--- a/maxquant_wrapper.py Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,787 +0,0 @@
-#!/usr/bin/env python
-import optparse
-import os
-import shutil
-import sys
-import tempfile
-import subprocess
-import logging
-from string import Template
-from xml.sax.saxutils import escape
-import xml.etree.ElementTree as ET
-
-log = logging.getLogger(__name__)
-
-DEBUG = True
-
-working_directory = os.getcwd()
-tmp_stderr_name = tempfile.NamedTemporaryFile(dir=working_directory, suffix='.stderr').name
-tmp_stdout_name = tempfile.NamedTemporaryFile(dir=working_directory, suffix='.stdout').name
-
-
-def stop_err(msg):
- sys.stderr.write("%s\n" % msg)
- sys.exit()
-
-
-def read_stderr():
- stderr = ''
- if(os.path.exists(tmp_stderr_name)):
- with open(tmp_stderr_name, 'rb') as tmp_stderr:
- buffsize = 1048576
- try:
- while True:
- stderr += tmp_stderr.read(buffsize)
- if not stderr or len(stderr) % buffsize != 0:
- break
- except OverflowError:
- pass
- return stderr
-
-
-def execute(command, stdin=None):
- try:
- with open(tmp_stderr_name, 'wb') as tmp_stderr:
- with open(tmp_stdout_name, 'wb') as tmp_stdout:
- proc = subprocess.Popen(args=command, shell=True, stderr=tmp_stderr.fileno(), stdout=tmp_stdout.fileno(), stdin=stdin, env=os.environ)
- returncode = proc.wait()
- if returncode != 0:
- raise Exception("Program returned with non-zero exit code %d. stderr: %s" % (returncode, read_stderr()))
- finally:
- print open(tmp_stderr_name, "r").read(64000)
- print open(tmp_stdout_name, "r").read(64000)
-
-
-def delete_file(path):
- if os.path.exists(path):
- try:
- os.remove(path)
- except:
- pass
-
-
-def delete_directory(directory):
- if os.path.exists(directory):
- try:
- shutil.rmtree(directory)
- except:
- pass
-
-
-def symlink(source, link_name):
- import platform
- if platform.system() == 'Windows':
- try:
- import win32file
- win32file.CreateSymbolicLink(source, link_name, 1)
- except:
- shutil.copy(source, link_name)
- else:
- os.symlink(source, link_name)
-
-
-def copy_to_working_directory(data_file, relative_path):
- if os.path.abspath(data_file) != os.path.abspath(relative_path):
- shutil.copy(data_file, relative_path)
- return relative_path
-
-
-def __main__():
- run_script()
-
-
-## Lock File Stuff
-## http://www.evanfosmark.com/2009/01/cross-platform-file-locking-support-in-python/
-import os
-import time
-import errno
-
-
-class FileLockException(Exception):
- pass
-
-
-class FileLock(object):
- """ A file locking mechanism that has context-manager support so
- you can use it in a with statement. This should be relatively cross
- compatible as it doesn't rely on msvcrt or fcntl for the locking.
- """
-
- def __init__(self, file_name, timeout=10, delay=.05):
- """ Prepare the file locker. Specify the file to lock and optionally
- the maximum timeout and the delay between each attempt to lock.
- """
- self.is_locked = False
- self.lockfile = os.path.join(os.getcwd(), "%s.lock" % file_name)
- self.file_name = file_name
- self.timeout = timeout
- self.delay = delay
-
- def acquire(self):
- """ Acquire the lock, if possible. If the lock is in use, it check again
- every `wait` seconds. It does this until it either gets the lock or
- exceeds `timeout` number of seconds, in which case it throws
- an exception.
- """
- start_time = time.time()
- while True:
- try:
- self.fd = os.open(self.lockfile, os.O_CREAT | os.O_EXCL | os.O_RDWR)
- break
- except OSError as e:
- if e.errno != errno.EEXIST:
- raise
- if (time.time() - start_time) >= self.timeout:
- raise FileLockException("Timeout occured.")
- time.sleep(self.delay)
- self.is_locked = True
-
- def release(self):
- """ Get rid of the lock by deleting the lockfile.
- When working in a `with` statement, this gets automatically
- called at the end.
- """
- if self.is_locked:
- os.close(self.fd)
- os.unlink(self.lockfile)
- self.is_locked = False
-
- def __enter__(self):
- """ Activated when used in the with statement.
- Should automatically acquire a lock to be used in the with block.
- """
- if not self.is_locked:
- self.acquire()
- return self
-
- def __exit__(self, type, value, traceback):
- """ Activated at the end of the with statement.
- It automatically releases the lock if it isn't locked.
- """
- if self.is_locked:
- self.release()
-
- def __del__(self):
- """ Make sure that the FileLock instance doesn't leave a lockfile
- lying around.
- """
- self.release()
-
-TEMPLATE = """
-
- $raw_file_info
-
- $slice_peaks
-
- $num_cores
- false
- 1
- false
- NaN
- NaN
- $calc_peak_properties
- $use_original_precursor_mz
- $fixed_mods
- $multi_modification_search
- $database
-
-
- $advanced_ratios
- $rt_shift
- $fast_lfq
- $randomize
- $special_aas
- $include_contamiants
- $equal_il
- 100
- $max_peptide_mass
- $reporter_pif
- $reporter_fraction
- $reporter_base_peak_ratio
- $score_threshold
- $filter_aacounts
- $second_peptide
- $match_between_runs
- $match_between_runs_fdr
- $re_quantify
- $dependent_peptides
- $dependent_peptide_fdr
- $dependent_peptide_mass_bin
- $label_free
- $lfq_min_edges_per_node
- $lfq_av_edges_per_node
- $hybrid_quantification
- $msms_connection
- $ibaq
- $msms_recalibration
- $ibaq_log_fit
- $razor_protein_fdr
- $calc_sequence_tags
- $de_novo_var_mods
- $mass_difference_search
- $min_pep_len
- $peptide_fdr
- $peptide_pep
- $protein_fdr
- $site_fdr
- $min_peptide_length_for_unspecific_search
- $max_peptide_length_for_unspecific_search
- $use_norm_ratios_for_occupancy
- $min_peptides
- $min_razor_peptides
- $min_unique_peptides
- $use_counterparts
- $min_ratio_count
- $lfq_min_ratio_count
- $restrict_protein_quantification
- $restrict_mods
- $matching_time_window
- $number_of_candidates_multiplexed_msms
- $number_of_candidates_msms
- $separate_aas_for_site_fdr
-
-
-
-
- $group_params
-
-
-
-
-
-
- $ftms_fragment_settings
- $itms_fragment_settings
- $tof_fragment_settings
- $unknown_fragment_settings
-
- $keep_low_scores_mode
- $msms_centroid_mode
- $quant_mode
- $site_quant_mode
-
-
- $group_params
-
-
-
-"""
-
-GROUP_TEMPLATE = """
- $max_charge
- $lcms_run_type
- $ms_instrument
- $group_index
- $max_labeled_aa
- $max_n_mods
- $max_missed_cleavages
- $multiplicity
- $protease
- $protease
- false
- false
- $variable_mods
- $isobaric_labels
-
- Oxidation (M)
- Acetyl (Protein N-term)
-
- false
-
-
-
-
-
-
- $do_mass_filtering
- $first_search_tol
- $main_search_tol
- $labels
-"""
-
-#
-#
-# Arg10; Lys8
-#
-
-fragment_settings = {
- "FTMS": {"InPpm": "true", "Deisotope": "true", "Topx": "10", "HigherCharges": "true",
- "IncludeWater": "true", "IncludeAmmonia": "true", "DependentLosses": "true",
- "tolerance_value": "20", "tolerance_unit": "Ppm", "name": "FTMS"},
- "ITMS": {"InPpm": "false", "Deisotope": "false", "Topx": "6", "HigherCharges": "true",
- "IncludeWater": "true", "IncludeAmmonia": "true", "DependentLosses": "true",
- "tolerance_value": "0.5", "tolerance_unit": "Dalton", "name": "ITMS"},
- "TOF": {"InPpm": "false", "Deisotope": "true", "Topx": "10", "HigherCharges": "true",
- "IncludeWater": "true", "IncludeAmmonia": "true", "DependentLosses": "true",
- "tolerance_value": "0.1", "tolerance_unit": "Dalton", "name": "TOF"},
- "Unknown": {"InPpm": "false", "Deisotope": "false", "Topx": "6", "HigherCharges": "true",
- "IncludeWater": "true", "IncludeAmmonia": "true", "DependentLosses": "true",
- "tolerance_value": "0.5", "tolerance_unit": "Dalton", "name": "Unknown"},
-}
-
-
-def build_isobaric_labels(reporter_type):
- if not reporter_type:
- return ""
- if reporter_type == "itraq_4plex":
- prefix = "iTRAQ4plex"
- mzs = [114, 115, 116, 117]
- elif reporter_type == "itraq_8plex":
- prefix = "iTRAQ8plex"
- mzs = [113, 114, 115, 116, 117, 118, 119, 121]
- elif reporter_type == "tmt_2plex":
- prefix = "TMT2plex"
- mzs = [126, 127]
- elif reporter_type == "tmt_6plex":
- prefix = "TMT6plex"
- mzs = [126, 127, 128, 129, 130, 131]
- else:
- raise Exception("Unknown reporter type - %s" % reporter_type)
- labels = ["%s-%s%d" % (prefix, term, mz) for term in ["Nter", "Lys"] for mz in mzs]
- return wrap(map(xml_string, labels), "isobaricLabels")
-
-
-def parse_groups(inputs_file, group_parts=["num"], input_parts=["name", "path"]):
- inputs_lines = [line.strip() for line in open(inputs_file, "r").readlines()]
- inputs_lines = [line for line in inputs_lines if line and not line.startswith("#")]
- cur_group = None
- i = 0
- group_prefixes = ["%s:" % group_part for group_part in group_parts]
- input_prefixes = ["%s:" % input_part for input_part in input_parts]
- groups = {}
- while i < len(inputs_lines):
- line = inputs_lines[i]
- if line.startswith(group_prefixes[0]):
- # Start new group
- cur_group = line[len(group_prefixes[0]):]
- group_data = {}
- for j, group_prefix in enumerate(group_prefixes):
- group_line = inputs_lines[i + j]
- group_data[group_parts[j]] = group_line[len(group_prefix):]
- i += len(group_prefixes)
- elif line.startswith(input_prefixes[0]):
- input = []
- for j, input_prefix in enumerate(input_prefixes):
- part_line = inputs_lines[i + j]
- part = part_line[len(input_prefixes[j]):]
- input.append(part)
- if cur_group not in groups:
- groups[cur_group] = {"group_data": group_data, "inputs": []}
- groups[cur_group]["inputs"].append(input)
- i += len(input_prefixes)
- else:
- # Skip empty line
- i += 1
- return groups
-
-
-def add_fragment_options(parser):
- for name, options in fragment_settings.iteritems():
- for key, value in options.iteritems():
- option_key = ("%s_%s" % (name, key)).lower()
- parser.add_option("--%s" % option_key, default=value)
-
-
-def update_fragment_settings(arg_options):
- for name, options in fragment_settings.iteritems():
- for key, value in options.iteritems():
- arg_option_key = ("%s_%s" % (name, key)).lower()
- options[key] = getattr(arg_options, arg_option_key)
-
-
-def to_fragment_settings(name, values):
- """
- """
-
- fragment_settings_template = """
-
-
- $tolerance_value
- $tolerance_unit
-
-
- """
- safe_values = dict(values)
- for key, value in safe_values.iteritems():
- safe_values[key] = escape(value)
- return Template(fragment_settings_template).substitute(safe_values)
-
-
-def get_file_paths(files):
- return wrap([xml_string(name) for name in files], "filePaths")
-
-
-def get_file_names(file_names):
- return wrap([xml_string(name) for name in file_names], "fileNames")
-
-
-def get_file_groups(file_groups):
- return wrap([xml_int(file_group) for file_group in file_groups], "paramGroups")
-
-
-def wrap(values, tag):
- return "<%s>%s%s>" % (tag, "".join(values), tag)
-
-
-def xml_string(str):
- if str:
- return "%s" % escape(str)
- else:
- return ""
-
-
-def xml_int(value):
- return "%d" % int(value)
-
-
-def get_properties(options):
- direct_properties = ["lcms_run_type",
- "max_missed_cleavages",
- "protease",
- "first_search_tol",
- "main_search_tol",
- "max_n_mods",
- "max_charge",
- "max_labeled_aa",
- "do_mass_filtering",
- "calc_peak_properties",
- "use_original_precursor_mz",
- "multi_modification_search",
- "keep_low_scores_mode",
- "msms_centroid_mode",
- "quant_mode",
- "site_quant_mode",
- "advanced_ratios",
- "rt_shift",
- "fast_lfq",
- "randomize",
- "aif_sil_weight",
- "aif_iso_weight",
- "aif_topx",
- "aif_correlation",
- "aif_correlation_first_pass",
- "aif_min_mass",
- "aif_msms_tol",
- "aif_second_pass",
- "aif_iterative",
- "aif_threhold_fdr",
- "restrict_protein_quantification",
- "matching_time_window",
- "number_of_candidates_multiplexed_msms",
- "number_of_candidates_msms",
- "separate_aas_for_site_fdr",
- "special_aas",
- "include_contamiants",
- "equal_il",
- "topx_window",
- "max_peptide_mass",
- "reporter_pif",
- "reporter_fraction",
- "reporter_base_peak_ratio",
- "score_threshold",
- "filter_aacounts",
- "second_peptide",
- "match_between_runs",
- "match_between_runs_fdr",
- "re_quantify",
- "dependent_peptides",
- "dependent_peptide_fdr",
- "dependent_peptide_mass_bin",
- "label_free",
- "lfq_min_edges_per_node",
- "lfq_av_edges_per_node",
- "hybrid_quantification",
- "msms_connection",
- "ibaq",
- "msms_recalibration",
- "ibaq_log_fit",
- "razor_protein_fdr",
- "calc_sequence_tags",
- "de_novo_var_mods",
- "mass_difference_search",
- "min_pep_len",
- "peptide_fdr",
- "peptide_pep",
- "protein_fdr",
- "site_fdr",
- "min_peptide_length_for_unspecific_search",
- "max_peptide_length_for_unspecific_search",
- "use_norm_ratios_for_occupancy",
- "min_peptides",
- "min_razor_peptides",
- "min_unique_peptides",
- "use_counterparts",
- "min_ratio_count",
- "lfq_min_ratio_count",
- ]
-
- props = {
- "slice_peaks": "true",
- "num_cores": str(options.num_cores),
- "database": xml_string(setup_database(options)),
- "process_folder": os.path.join(os.getcwd(), "process"),
- }
- for prop in direct_properties:
- props[prop] = str(getattr(options, prop))
-
- for name, fragment_options in fragment_settings.iteritems():
- key = "%s_fragment_settings" % name.lower()
- props[key] = to_fragment_settings(name, fragment_options)
-
- restrict_mods_string = wrap(map(xml_string, options.restrict_mods), "restrictMods")
- props["restrict_mods"] = restrict_mods_string
- fixed_mods_string = wrap(map(xml_string, options.fixed_mods), "fixedModifications")
- props["fixed_mods"] = fixed_mods_string
- variable_mods_string = wrap(map(xml_string, options.variable_mods), "variableModifications")
- props["variable_mods"] = variable_mods_string
- return props
-
-
-# http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python
-def which(program):
- import os
-
- def is_exe(fpath):
- return os.path.isfile(fpath) and os.access(fpath, os.X_OK)
-
- fpath, fname = os.path.split(program)
- if fpath:
- if is_exe(program):
- return program
- else:
- for path in os.environ["PATH"].split(os.pathsep):
- path = path.strip('"')
- exe_file = os.path.join(path, program)
- if is_exe(exe_file):
- return exe_file
-
- return None
-
-
-def get_unique_path(base, extension):
- """
- """
- return "%s_%d%s" % (base, int(time.time() * 1000), extension)
-
-
-def get_env_property(name, default):
- if name in os.environ:
- return os.environ[name]
- else:
- return default
-
-
-def setup_database(options):
- database_path = options.database
- database_name = options.database_name
- database_name = database_name.replace(" ", "_")
- (database_basename, extension) = os.path.splitext(database_name)
- database_destination = get_unique_path(database_basename, ".fasta")
- assert database_destination == os.path.basename(database_destination)
- symlink(database_path, database_destination)
-
- database_conf = get_env_property("MAXQUANT_DATABASE_CONF", None)
- if not database_conf:
- exe_path = which("MaxQuantCmd.exe")
- database_conf = os.path.join(os.path.dirname(exe_path), "conf", "databases.xml")
- with FileLock(database_conf + ".galaxy_lock"):
- tree = ET.parse(database_conf)
- root = tree.getroot()
- databases_node = root.find("Databases")
- database_node = ET.SubElement(databases_node, 'databases')
- database_node.attrib["search_expression"] = ">([^ ]*)"
- database_node.attrib["replacement_expression"] = "%1"
- database_node.attrib["filename"] = database_destination
- tree.write(database_conf)
- return os.path.abspath(database_destination)
-
-
-def setup_inputs(input_groups_path):
- parsed_groups = parse_groups(input_groups_path)
- paths = []
- names = []
- group_nums = []
- for group, group_info in parsed_groups.iteritems():
- files = group_info["inputs"]
- group_num = group_info["group_data"]["num"]
- for (name, path) in files:
- name = os.path.basename(name)
- if not name.lower().endswith(".raw"):
- name = "%s.%s" % (name, ".RAW")
- symlink(path, name)
- paths.append(os.path.abspath(name))
- names.append(os.path.splitext(name)[0])
- group_nums.append(group_num)
- file_data = (get_file_paths(paths), get_file_names(names), get_file_groups(group_nums))
- return "%s%s%s " % file_data
-
-
-def set_group_params(properties, options):
- labels = [""]
- if options.labels:
- labels = options.labels
- labels_string = wrap([xml_string(label.replace(",", "; ")) for label in labels], "labels")
- group_properties = dict(properties)
- group_properties["labels"] = labels_string
- group_properties["multiplicity"] = len(labels)
- group_properties["group_index"] = "1"
- group_properties["ms_instrument"] = "0"
- group_params = Template(GROUP_TEMPLATE).substitute(group_properties)
- properties["group_params"] = group_params
-
-
-def split_mods(mods_string):
- return [mod for mod in mods_string.split(",") if mod] if mods_string else []
-
-
-def run_script():
- parser = optparse.OptionParser()
- parser.add_option("--input_groups")
- parser.add_option("--database")
- parser.add_option("--database_name")
- parser.add_option("--num_cores", type="int", default=4)
- parser.add_option("--max_missed_cleavages", type="int", default=2)
- parser.add_option("--protease", default="Trypsin/P")
- parser.add_option("--first_search_tol", default="20")
- parser.add_option("--main_search_tol", default="6")
- parser.add_option("--max_n_mods", type="int", default=5)
- parser.add_option("--max_charge", type="int", default=7)
- parser.add_option("--do_mass_filtering", default="true")
- parser.add_option("--labels", action="append", default=[])
- parser.add_option("--max_labeled_aa", type="int", default=3)
- parser.add_option("--keep_low_scores_mode", type="int", default=0)
- parser.add_option("--msms_centroid_mode", type="int", default=1)
- # 0 = all peptides, 1 = Use razor and unique peptides, 2 = use unique peptides
- parser.add_option("--quant_mode", type="int", default=1)
- parser.add_option("--site_quant_mode", type="int", default=0)
- parser.add_option("--aif_sil_weight", type="int", default=4)
- parser.add_option("--aif_iso_weight", type="int", default=2)
- parser.add_option("--aif_topx", type="int", default=50)
- parser.add_option("--aif_correlation", type="float", default=0.8)
- parser.add_option("--aif_correlation_first_pass", type="float", default=0.8)
- parser.add_option("--aif_min_mass", type="float", default=0)
- parser.add_option("--aif_msms_tol", type="float", default=10)
- parser.add_option("--aif_second_pass", default="false")
- parser.add_option("--aif_iterative", default="false")
- parser.add_option("--aif_threhold_fdr", default="0.01")
- parser.add_option("--restrict_protein_quantification", default="true")
- parser.add_option("--matching_time_window", default="2")
- parser.add_option("--number_of_candidates_multiplexed_msms", default="50")
- parser.add_option("--number_of_candidates_msms", default="15")
- parser.add_option("--separate_aas_for_site_fdr", default="true")
- parser.add_option("--advanced_ratios", default="false")
- parser.add_option("--rt_shift", default="false")
- parser.add_option("--fast_lfq", default="true")
- parser.add_option("--randomize", default="false")
- parser.add_option("--special_aas", default="KR")
- parser.add_option("--include_contamiants", default="false")
- parser.add_option("--equal_il", default="false")
- parser.add_option("--topx_window", default="100")
- parser.add_option("--max_peptide_mass", default="5000")
- parser.add_option("--reporter_pif", default="0.75")
- parser.add_option("--reporter_fraction", default="0")
- parser.add_option("--reporter_base_peak_ratio", default="0")
- parser.add_option("--score_threshold", default="0")
- parser.add_option("--filter_aacounts", default="true")
- parser.add_option("--second_peptide", default="true")
- parser.add_option("--match_between_runs", default="false")
- parser.add_option("--match_between_runs_fdr", default="false")
- parser.add_option("--re_quantify", default="true")
- parser.add_option("--dependent_peptides", default="false")
- parser.add_option("--dependent_peptide_fdr", default="0.01")
- parser.add_option("--dependent_peptide_mass_bin", default="0.0055")
- parser.add_option("--label_free", default="false")
- parser.add_option("--lfq_min_edges_per_node", default="3")
- parser.add_option("--lfq_av_edges_per_node", default="6")
- parser.add_option("--hybrid_quantification", default="false")
- parser.add_option("--msms_connection", default="false")
- parser.add_option("--ibaq", default="false")
- parser.add_option("--msms_recalibration", default="false")
- parser.add_option("--ibaq_log_fit", default="true")
- parser.add_option("--razor_protein_fdr", default="true")
- parser.add_option("--calc_sequence_tags", default="false")
- parser.add_option("--de_novo_var_mods", default="true")
- parser.add_option("--mass_difference_search", default="false")
- parser.add_option("--min_pep_len", default="7")
- parser.add_option("--peptide_fdr", default="0.01")
- parser.add_option("--peptide_pep", default="1")
- parser.add_option("--protein_fdr", default="0.01")
- parser.add_option("--site_fdr", default="0.01")
- parser.add_option("--min_peptide_length_for_unspecific_search", default="8")
- parser.add_option("--max_peptide_length_for_unspecific_search", default="25")
- parser.add_option("--use_norm_ratios_for_occupancy", default="true")
- parser.add_option("--min_peptides", default="1")
- parser.add_option("--min_razor_peptides", default="1")
- parser.add_option("--min_unique_peptides", default="0")
- parser.add_option("--use_counterparts", default="false")
- parser.add_option("--min_ratio_count", default="2")
- parser.add_option("--lfq_min_ratio_count", default="2")
- parser.add_option("--calc_peak_properties", default="false")
- parser.add_option("--use_original_precursor_mz", default="false")
- parser.add_option("--multi_modification_search", default="false")
- parser.add_option("--lcms_run_type", default="0")
- parser.add_option("--reporter_type", default=None)
- parser.add_option("--output_mqpar", default=None)
- text_outputs = {
- "aif_msms": "aifMsms",
- "all_peptides": "allPeptides",
- "evidence": "evidence",
- "modification_specific_peptides": "modificationSpecificPeptides",
- "msms": "msms",
- "msms_scans": "msmsScans",
- "mz_range": "mzRange",
- "parameters": "parameters",
- "peptides": "peptides",
- "protein_groups": "proteinGroups",
- "sim_peptides": "simPeptides",
- "sim_scans": "simScans",
- "summary": "summary"
- }
- for output in text_outputs.keys():
- parser.add_option("--output_%s" % output, default=None)
-
- parser.add_option("--variable_mods", default="Oxidation (M),Acetyl (Protein N-term)")
- parser.add_option("--restrict_mods", default="Oxidation (M),Acetyl (Protein N-term)")
- parser.add_option("--fixed_mods", default="Carbamidomethyl (C)")
-
- add_fragment_options(parser)
-
- (options, args) = parser.parse_args()
- options.restrict_mods = split_mods(options.restrict_mods)
- options.fixed_mods = split_mods(options.fixed_mods)
- options.variable_mods = split_mods(options.variable_mods)
-
- update_fragment_settings(options)
-
- raw_file_info = setup_inputs(options.input_groups)
- properties = get_properties(options)
- properties["raw_file_info"] = raw_file_info
- properties["isobaric_labels"] = build_isobaric_labels(options.reporter_type)
- set_group_params(properties, options)
- driver_contents = Template(TEMPLATE).substitute(properties)
- open("mqpar.xml", "w").write(driver_contents)
- print driver_contents
- execute("MaxQuantCmd.exe mqpar.xml %d" % options.num_cores)
- for key, basename in text_outputs.iteritems():
- attribute = "output_%s" % key
- destination = getattr(options, attribute, None)
- if destination:
- source = os.path.join("combined", "txt", "%s.txt" % basename)
- shutil.copy(source, destination)
- output_mqpar = options.output_mqpar
- if output_mqpar:
- shutil.copy("mqpar.xml", output_mqpar)
-
-if __name__ == '__main__':
- __main__()
diff -r d4b6c9eae635 -r 8bac3cc5c5de modifications.xml
--- a/modifications.xml Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,2580 +0,0 @@
-
-
-
- notCterm
-
-
-
-
-
-
- standard
-
-
- proteinNterm
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- standard
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anyNterm
-
- standard
-
-
- anyNterm
-
- standard
-
-
- anywhere
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- standard
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anyCterm
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- anywhere
-
- label
-
-
- anyNterm
-
- label
-
-
- notCterm
-
-
-
-
-
-
-
-
-
-
-
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anyNterm
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
-
-
-
- isobaricLabel
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
- standard
-
-
- anywhere
-
-
- standard
-
-
- anywhere
-
- label
-
-
- anywhere
-
- label
-
-
\ No newline at end of file
diff -r d4b6c9eae635 -r 8bac3cc5c5de mqparam.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/mqparam.py Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,349 @@
+"""
+Create a project-specific MaxQuant parameter file.
+
+TODO: check validity of parsed experimental design template
+ add support for parameter groups
+ add reporter ion MS2
+ add label free quantification
+ don't hardcode parse rules for fasta files
+
+Author: Damian Glaetzer
+"""
+
+import ntpath
+import os
+import re
+import xml.etree.ElementTree as ET
+from itertools import zip_longest
+from xml.dom import minidom
+
+
+class MQParam:
+ """Represents a mqpar.xml and provides methods to modify
+ some of its parameters.
+ """
+
+ fasta_template = """
+
+
+
+
+
+
+
+ """
+
+ def __init__(self, mqpar_out, mqpar_in, exp_design,
+ substitution_rx=r'[^\s\S]'): # no sub by default
+ """Initialize MQParam class. mqpar_in can either be a template
+ or a already suitable mqpar file.
+ >>> t = MQParam("test", './test-data/template.xml', None)
+ >>> t.root.tag
+ 'MaxQuantParams'
+ >>> (t.root.find('maxQuantVersion')).text
+ '1.6.3.4'
+ """
+
+ self.orig_mqpar = mqpar_in
+ self.exp_design = exp_design
+ self.mqpar_out = mqpar_out
+ self.root = ET.parse(mqpar_in).getroot()
+ self.version = self.root.find('maxQuantVersion').text
+ # regex for substitution of certain file name characters
+ self.substitution_rx = substitution_rx
+
+ @staticmethod
+ def _add_child(el, name, text, attrib=None):
+ """Add a child element to an element.
+
+ >>> t = MQParam("test", './test-data/template.xml', None)
+ >>> MQParam._add_child(t.root, "test", "test")
+ >>> t.root.find('test').text == "test"
+ True
+ """
+
+ child = ET.SubElement(el, name, attrib=attrib if attrib else {})
+ child.text = str(text)
+
+ def _make_exp_design(self, infiles):
+ """Create a dict representing an experimental design from
+ an experimental design template and a list of input files.
+ If the experimental design template is None, create a default
+ design with one experiment for each input file, no fractions and
+ parameter group 0 for all files.
+ >>> t2 = MQParam("test", './test-data/template.xml', \
+ './test-data/two/exp_design_template.txt')
+ >>> design = t2._make_exp_design(['./test-data/BSA_min_21.mzXML', \
+ './test-data/BSA_min_22.mzXML'])
+ >>> design['Name']
+ ['./test-data/BSA_min_21.mzXML', './test-data/BSA_min_22.mzXML']
+ >>> design['Fraction']
+ ['1', '2']
+ """
+ design = {s: [] for s in ("Name", "PTM", "Fraction", "Experiment")}
+ if not self.exp_design:
+ design["Name"] = infiles
+ design["Fraction"] = ('32767',) * len(infiles)
+ design["Experiment"] = [os.path.split(f)[1] for f in infiles]
+ design["PTM"] = ('False',) * len(infiles)
+ else:
+ with open(self.exp_design) as design_file:
+ index_line = design_file.readline().strip()
+ index = []
+ for i in index_line.split('\t'):
+ if i in design:
+ index.append(i)
+ else:
+ raise Exception("Invalid comlumn index in experimental"
+ + " design template: {}".format(i))
+ for line in design_file:
+ row = line.strip().split('\t')
+ for e, i in zip_longest(row, index):
+ design[i].append(e)
+
+ # map infiles to names in exp. design template
+ names = []
+ names_to_paths = {}
+ # strip path and extension
+ for f in infiles:
+ b = os.path.basename(f)
+ basename = b[:-6] if b.endswith('.mzXML') else b[:-11]
+ names_to_paths[basename] = f
+ for name in design['Name']:
+ # same substitution as in maxquant.xml,
+ # when passing the element identifiers
+ fname = re.sub(self.substitution_rx, '_', name)
+ names.append(names_to_paths[fname] if fname in names_to_paths
+ else None)
+ # replace orig. file names with matching links to galaxy datasets
+ design['Name'] = names
+
+ return design
+
+ def add_infiles(self, infiles, interactive):
+ """Add a list of raw/mzxml files to the mqpar.xml.
+ If experimental design template was specified,
+ modify other parameters accordingly.
+ The files must be specified as absolute paths
+ for maxquant to find them.
+ >>> t1 = MQParam("test", './test-data/template.xml', None)
+ >>> t1.add_infiles(('test1', ), True)
+ >>> t1.root.find("filePaths")[0].text
+ 'test1'
+ >>> t1.root.find("fractions")[0].text
+ '32767'
+ >>> len(t1.root.find("fractions"))
+ 1
+ >>> t2 = MQParam("test", './test-data/template.xml', \
+ './test-data/exp_design_test.txt')
+ >>> t2.add_infiles(('test-data/QEplus021874.thermo.raw', \
+ 'test-data/QEplus021876.thermo.raw'), True)
+ >>> len(t2.root.find("filePaths"))
+ 2
+ >>> t2.root.find("filePaths")[1].text
+ 'test-data/QEplus021876.thermo.raw'
+ >>> t2.root.find("experiments")[1].text
+ '2'
+ >>> t2.root.find("fractions")[0].text
+ '3'
+ """
+
+ # Create experimental design for interactive mode.
+ # In non-interactive mode only filepaths are modified, but
+ # their order from the original mqpar must be kept.
+ if interactive:
+ index = range(len(infiles))
+ nodenames = ('filePaths', 'experiments', 'fractions',
+ 'ptms', 'paramGroupIndices', 'referenceChannel')
+ design = self._make_exp_design(infiles)
+ else:
+ index = [-1] * len(infiles)
+ # kind of a BUG: fails if filename starts with '.'
+ infilenames = [os.path.basename(f).split('.')[0] for f in infiles]
+ i = 0
+ for child in self.root.find('filePaths'):
+ # either windows or posix path
+ win = ntpath.basename(child.text)
+ posix = os.path.basename(child.text)
+ basename = win if len(win) < len(posix) else posix
+ basename_with_sub = re.sub(self.substitution_rx, '_',
+ basename.split('.')[0])
+ # match infiles to their names in mqpar.xml,
+ # ignore files missing in mqpar.xml
+ if basename_with_sub in infilenames:
+ index[i] = infilenames.index(basename_with_sub)
+ i += 1
+ else:
+ raise ValueError("no matching infile found for "
+ + child.text)
+
+ nodenames = ('filePaths', )
+ design = {'Name': infiles}
+
+ # Get parent nodes from document
+ nodes = dict()
+ for nodename in nodenames:
+ node = self.root.find(nodename)
+ if node is None:
+ raise ValueError('Element {} not found in parameter file'
+ .format(nodename))
+ nodes[nodename] = node
+ node.clear()
+ node.tag = nodename
+
+ # Append sub-elements to nodes (one per file)
+ for i in index:
+ if i > -1 and design['Name'][i]:
+ MQParam._add_child(nodes['filePaths'], 'string',
+ design['Name'][i])
+ if interactive:
+ MQParam._add_child(nodes['experiments'], 'string',
+ design['Experiment'][i])
+ MQParam._add_child(nodes['fractions'], 'short',
+ design['Fraction'][i])
+ MQParam._add_child(nodes['ptms'], 'boolean',
+ design['PTM'][i])
+ MQParam._add_child(nodes['paramGroupIndices'], 'int', 0)
+ MQParam._add_child(nodes['referenceChannel'], 'string', '')
+
+ def add_fasta_files(self, files,
+ identifier=r'>([^\s]*)',
+ description=r'>(.*)'):
+ """Add fasta file groups.
+ >>> t = MQParam('test', './test-data/template.xml', None)
+ >>> t.add_fasta_files(('test1', 'test2'))
+ >>> len(t.root.find('fastaFiles'))
+ 2
+ >>> t.root.find('fastaFiles')[0].find("fastaFilePath").text
+ 'test1'
+ """
+ fasta_node = self.root.find("fastaFiles")
+ fasta_node.clear()
+ fasta_node.tag = "fastaFiles"
+
+ for index in range(len(files)):
+ filepath = '' + files[index]
+ fasta = self.fasta_template.replace('', filepath)
+ fasta = fasta.replace('',
+ '' + identifier)
+ fasta = fasta.replace('',
+ '' + description)
+ ff_node = self.root.find('.fastaFiles')
+ fastaentry = ET.fromstring(fasta)
+ ff_node.append(fastaentry)
+
+ def set_simple_param(self, key, value):
+ """Set a simple parameter.
+ >>> t = MQParam(None, './test-data/template.xml', None)
+ >>> t.set_simple_param('min_unique_pep', 4)
+ >>> t.root.find('.minUniquePeptides').text
+ '4'
+ """
+ # map simple params to their node in the xml tree
+ simple_params = {'missed_cleavages':
+ '.parameterGroups/parameterGroup/maxMissedCleavages',
+ 'min_unique_pep': '.minUniquePeptides',
+ 'num_threads': 'numThreads',
+ 'calc_peak_properties': '.calcPeakProperties',
+ 'write_mztab': 'writeMzTab',
+ 'min_peptide_len': 'minPepLen',
+ 'max_peptide_mass': 'maxPeptideMass',
+ 'match_between_runs': 'matchBetweenRuns',
+ 'ibaq': 'ibaq', # lfq global options
+ 'ibaq_log_fit': 'ibaqLogFit',
+ 'separate_lfq': 'separateLfq',
+ 'lfq_stabilize_large_ratios':
+ 'lfqStabilizeLargeRatios',
+ 'lfq_require_msms': 'lfqRequireMsms',
+ 'advanced_site_intensities':
+ 'advancedSiteIntensities',
+ 'lfq_mode': # lfq param group options
+ '.parameterGroups/parameterGroup/lfqMode',
+ 'lfq_skip_norm':
+ '.parameterGroups/parameterGroup/lfqSkipNorm',
+ 'lfq_min_edges_per_node':
+ '.parameterGroups/parameterGroup/lfqMinEdgesPerNode',
+ 'lfq_avg_edges_per_node':
+ '.parameterGroups/parameterGroup/lfqAvEdgesPerNode',
+ 'lfq_min_ratio_count':
+ '.parameterGroups/parameterGroup/lfqMinRatioCount'}
+
+ if key in simple_params:
+ node = self.root.find(simple_params[key])
+ if node is None:
+ raise ValueError('Element {} not found in parameter file'
+ .format(simple_params[key]))
+ node.text = str(value)
+ else:
+ raise ValueError("Parameter not found.")
+
+ def set_silac(self, light_mods, medium_mods, heavy_mods):
+ """Set label modifications.
+ >>> t1 = MQParam('test', './test-data/template.xml', None)
+ >>> t1.set_silac(None, ('test1', 'test2'), None)
+ >>> t1.root.find('.parameterGroups/parameterGroup/maxLabeledAa').text
+ '2'
+ >>> t1.root.find('.parameterGroups/parameterGroup/multiplicity').text
+ '3'
+ >>> t1.root.find('.parameterGroups/parameterGroup/labelMods')[1].text
+ 'test1;test2'
+ >>> t1.root.find('.parameterGroups/parameterGroup/labelMods')[2].text
+ ''
+ """
+ multiplicity = 3 if medium_mods else 2 if heavy_mods else 1
+ max_label = str(max(len(light_mods) if light_mods else 0,
+ len(medium_mods) if medium_mods else 0,
+ len(heavy_mods) if heavy_mods else 0))
+ multiplicity_node = self.root.find('.parameterGroups/parameterGroup/'
+ + 'multiplicity')
+ multiplicity_node.text = str(multiplicity)
+ max_label_node = self.root.find('.parameterGroups/parameterGroup/'
+ + 'maxLabeledAa')
+ max_label_node.text = max_label
+
+ node = self.root.find('.parameterGroups/parameterGroup/labelMods')
+ node[0].text = ';'.join(light_mods) if light_mods else ''
+ if multiplicity == 3:
+ MQParam._add_child(node, name='string', text=';'.join(medium_mods))
+ if multiplicity > 1:
+ MQParam._add_child(node, name='string',
+ text=';'.join(heavy_mods) if heavy_mods else '')
+
+ def set_list_params(self, key, vals):
+ """Set a list parameter.
+ >>> t = MQParam(None, './test-data/template.xml', None)
+ >>> t.set_list_params('proteases', ('test 1', 'test 2'))
+ >>> len(t.root.find('.parameterGroups/parameterGroup/enzymes'))
+ 2
+ >>> t.set_list_params('var_mods', ('Oxidation (M)', ))
+ >>> var_mods = '.parameterGroups/parameterGroup/variableModifications'
+ >>> t.root.find(var_mods)[0].text
+ 'Oxidation (M)'
+ """
+
+ params = {'var_mods':
+ '.parameterGroups/parameterGroup/variableModifications',
+ 'fixed_mods':
+ '.parameterGroups/parameterGroup/fixedModifications',
+ 'proteases':
+ '.parameterGroups/parameterGroup/enzymes'}
+
+ if key in params:
+ node = self.root.find(params[key])
+ if node is None:
+ raise ValueError('Element {} not found in parameter file'
+ .format(params[key]))
+ node.clear()
+ node.tag = params[key].split('/')[-1]
+ for e in vals:
+ MQParam._add_child(node, name='string', text=e)
+ else:
+ raise ValueError("Parameter {} not found.".format(key))
+
+ def write(self):
+ rough_string = ET.tostring(self.root, 'utf-8', short_empty_elements=False)
+ reparsed = minidom.parseString(rough_string)
+ pretty = reparsed.toprettyxml(indent="\t")
+ even_prettier = re.sub(r"\n\s+\n", r"\n", pretty)
+ with open(self.mqpar_out, 'w') as f:
+ print(even_prettier, file=f)
diff -r d4b6c9eae635 -r 8bac3cc5c5de mqwrapper.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/mqwrapper.py Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,148 @@
+"""
+Run MaxQuant on a modified mqpar.xml.
+Use maxquant conda package.
+TODO: add support for parameter groups
+
+Authors: Damian Glaetzer
+
+based on the maxquant galaxy tool by John Chilton:
+https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/maxquant
+"""
+
+import argparse
+import os
+import shutil
+import subprocess
+
+import mqparam
+
+# build parser
+parser = argparse.ArgumentParser()
+
+# input, special outputs and others
+other_args = ('raw_files', 'mzxml_files', 'fasta_files',
+ 'description_parse_rule', 'identifier_parse_rule',
+ 'exp_design', 'output_all',
+ 'mqpar_out', 'infile_names', 'mzTab',
+ 'version', 'substitution_rx')
+
+# txt result files
+txt_output = ('evidence', 'msms', 'parameters',
+ 'peptides', 'proteinGroups', 'allPeptides',
+ 'libraryMatch', 'matchedFeatures',
+ 'modificationSpecificPeptides', 'ms3Scans',
+ 'msmsScans', 'mzRange', 'peptideSection',
+ 'summary')
+
+# arguments for mqparam
+## global
+global_flags = ('calc_peak_properties',
+ 'write_mztab',
+ 'ibaq',
+ 'ibaq_log_fit',
+ 'separate_lfq',
+ 'lfq_stabilize_large_ratios',
+ 'lfq_require_msms',
+ 'advanced_site_intensities',
+ 'match_between_runs')
+
+global_simple_args = ('min_unique_pep',
+ 'num_threads',
+ 'min_peptide_len',
+ 'max_peptide_mass')
+
+## parameter group specific
+param_group_flags = ('lfq_skip_norm',)
+
+param_group_simple_args = ('missed_cleavages',
+ 'lfq_mode',
+ 'lfq_min_edges_per_node',
+ 'lfq_avg_edges_per_node',
+ 'lfq_min_ratio_count')
+
+param_group_silac_args = ('light_mods', 'medium_mods', 'heavy_mods')
+
+list_args = ('fixed_mods', 'var_mods', 'proteases')
+
+arguments = ['--' + el for el in (txt_output
+ + global_simple_args
+ + param_group_simple_args
+ + list_args
+ + param_group_silac_args
+ + other_args)]
+
+flags = ['--' + el for el in global_flags + param_group_flags]
+
+for arg in arguments:
+ parser.add_argument(arg)
+for flag in flags:
+ parser.add_argument(flag, action="store_true")
+
+args = vars(parser.parse_args())
+
+# link infile datasets to names with correct extension
+# for maxquant to accept them
+files = (args['raw_files'] if args['raw_files']
+ else args['mzxml_files']).split(',')
+ftype = ".thermo.raw" if args['raw_files'] else ".mzXML"
+filenames = args['infile_names'].split(',')
+fnames_with_ext = [(a if a.endswith(ftype)
+ else os.path.splitext(a)[0] + ftype)
+ for a in filenames]
+
+for f, l in zip(files, fnames_with_ext):
+ os.link(f, l)
+
+# build mqpar.xml
+mqpar_in = os.path.join(os.getcwd(), 'mqpar.xml')
+subprocess.run(('maxquant', '-c', mqpar_in))
+mqpar_out = args['mqpar_out'] if args['mqpar_out'] != 'None' else mqpar_in
+
+
+exp_design = args['exp_design'] if args['exp_design'] != 'None' else None
+m = mqparam.MQParam(mqpar_out, mqpar_in, exp_design,
+ substitution_rx=args['substitution_rx'])
+if m.version != args['version']:
+ raise Exception('mqpar version is ' + m.version +
+ '. Tool uses version {}.'.format(args['version']))
+
+# modify parameters, interactive mode if no mqpar_in was specified
+m.add_infiles([os.path.join(os.getcwd(), name) for name in fnames_with_ext], True)
+m.add_fasta_files(args['fasta_files'].split(','),
+ identifier=args['identifier_parse_rule'],
+ description=args['description_parse_rule'])
+
+for e in (global_simple_args
+ + param_group_simple_args
+ + global_flags
+ + param_group_flags):
+ if args[e]:
+ m.set_simple_param(e, args[e])
+
+for e in list_args:
+ if args[e]:
+ m.set_list_params(e, args[e].split(','))
+
+if args['light_mods'] or args['medium_mods'] or args['heavy_mods']:
+ m.set_silac(args['light_mods'].split(',') if args['light_mods'] else None,
+ args['medium_mods'].split(',') if args['medium_mods'] else None,
+ args['heavy_mods'].split(',') if args['heavy_mods'] else None)
+
+m.write()
+
+# build and run MaxQuant command
+cmd = ['maxquant', mqpar_out]
+
+subprocess.run(cmd, check=True, cwd='./')
+
+# copy results to galaxy database
+for el in txt_output:
+ destination = args[el]
+ source = os.path.join(os.getcwd(), "combined", "txt", "{}.txt".format(el))
+ if destination != 'None' and os.path.isfile(source):
+ shutil.copy(source, destination)
+
+if args['mzTab'] != 'None':
+ source = os.path.join(os.getcwd(), "combined", "txt", "mzTab.mzTab")
+ if os.path.isfile(source):
+ shutil.copy(source, args['mzTab'])
diff -r d4b6c9eae635 -r 8bac3cc5c5de proteases.xml
--- a/proteases.xml Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-
\ No newline at end of file
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/BSA_min_23.mzXML
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/BSA_min_23.mzXML Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,2198 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Thermo/Xcalibur peak picking
+
+
+ eJwN1mc4FnwUBvAiEVL2ePBYFSkkUkTjnPN/HhpEqKSpt120SyVEycjeIyqlIm82kb1HomiYab1pGQ2t16ffp3Nd58N97utAgdIFWrloBRQcDyFLEQsoOLmG/G+uggJPV55dmwwUJKjw97IDUHBzP9WpC0DhxN2UKQBQKP+C5xt8HAoVW5iatCcUKp9kQla7oVAlnDXGLIZC7mu2T/kaFHpOpqLVfCiMXkVfZt6GwgQf8jYYhcIrztSaowuFPzmMs2IJFElupF2TXKBIXplKuq2giJNL9dZ6UBRhSuFvM+C+ogmzO5IF90O16K5WH9zvqKey0lQolougasHTUMyZwxwm2UKJiiGtyQke9ydTOzAVSjbNp9MdO+GB0mmmKDsMD5x+8y36ZOFBZB1dVcmAB9HHLSfybsKDeFNeaJQMPHjhyeT8AErlfzMZuTdQqvCa598QDqXL/Wln1CUoPZPAfKK/QmlsCGXJbIMyVW/efBcjKDsbajm30xLKPBooujMLys7xKOVjO5Ql/qIC0fVQVpVFIVpiUPbcmP9wNAjK/k7kWecJQjnnAF9qsx6Uq53nTzhYC+VOCayFpUP5WRFevPNbKI8rYwo6cVB+ZZCFmn6B8j//MP2T16BC7gLduu8NFRwdpjocDxWns1jMCzeoOJPKFg3shYr4ILqnOgsqrm3l7TMKgIpfJ6gvyQYqFU4wm7x4qFThMuldaVCp1cgMj92Dyuhmyk8VgsrYTma4ugsqc0XYpCm6UPk5lWm0rYEqpRC6stobqnhilOqQBVXOFhS+/i9UbZKjlOsvoCr+A/O8WgRViVcs+8c4UHVlCrM0ngZVXbOoseEeVHW3WWr7bINq4Tl0suEvVEuvpOONo1DNncKfsuIuVG9ext46vYbqi0VMsLsLqmMP8xIlNkN10lJ6rmEO1U85tCs+F6pflJLfX12oUXrBTC7shprESXT2jSfUZNbTxUgbqOU8sdQuvgq1ymW0cSQGauOX85pb5kDtt0N05tkFqONsoUKjJKhTJvp6yBHqVLqZ3sdkqLNMI3fjYag7dIZ8K/dA3anvzPdWCNSFW9PuZQNQFyNLNzw+Q73CGSr+YAT1KnaUu5FBvaoWHQ/YDPXcDv6TNUFQr/6BbiUHQP2pn/T1rAPUez0hr+WVUB+pzN5NmQb1cYqUMksE6q8s411ytoQGuT3UuU8KGsbvsLT1FDRwp1DeSXFoUGulKuvn0JCwmB6vWgaNykfohucgNJ4hy3lKldAYtY/ecY2gMVaK+V6cBY2/S3lzt5+HJoUxspwTCU1KcXQ4eic0qR6jUyt6oekQlwIyH0PT4SqqyTGBptNFPJ6UDDSdqaBPe8cNkKTgN5rQFLKXDuVvgKb4k2za0Cto+r2c9klwoFl5lHYbmkHz+gDy0AmH5mJpCjI7CC1KP2nr1x/QklBPGx5nQsuVg3zZb++gJbmJTmythYecuRSctAUecrvZhPip8FCti5X0PYWHcTIs+2QHPEz4QGfTxeFh1X/M7/tJaFXKpwgbWWhVMebPi/gIrWoK9MlhBFrV2y2PPdoGrXFH6eTXjdCaMIHdjAgdN5mVDfdDa8pSvsaKEGjtMmZQ4AKPuLrMvTYRHqk9Z5NUbsIjDQf2z7o6eBRayqqz9eFRfCMFaNpBm+K/lOmxGdpU3dgElzFo2/SO/pl7Gtri1XmT+u9BW5INBdJ+aBtxoStpptCu7EGDXT+gfXMqE6xUh/bIUmY/lQft/TPY1ElC8FjlB4Vam8IT7kvKP6QPTxI62QcLQ3jSG0vna/fBk69bKOHHd+hQtWBqI2ehI9aEUl+fg44EDgUuzIGOIXf6FbUFOpVP0SO/XOjkGvBfnbeCTrUKin39BzrVFSm0yws6Ndv4Kk99oDMphpcuuQ46r1mySr2j8FTVhvyutsBT7mV6YOwGT9Vn8ZwinsPTZH8mZmsPz8ZzllUkCs84BdRzVguefUOefep+eM4ZpUvFXvB8RjGdqC6E59H1PKuOw/BC7gyb7poILxT5NPiXA12KjylwgTh0qf9kNf7jblvObD6ZQFfKRSrKOghdz/6wLUEq0D38H7UenA7dv2rodO476FF8Rrc90qFH9SQ79lwUetSNeOdcXKFHY5RdrF8NPTGFFOjqDD3JkcxaUB96KiN5pR8nQk+3DcVFmkHPp394W+NXQK+SEbN/Mi4nnwb3LIReTQOed+IU6L3yL2/3dxHovXqVmf3sg96eRSww7wz09r5k/745AH1cRyb/fQL0qYux6R/7oS9RnKJ0LkC/wkeK3PkG+iN12dqye9Af20r3vwzCS9VhKhkIg5fOdVT85xm8TGphs1anwwD3EMVrusLARkFen8cbGIgHnuB+HRh4sYt6/tsAA125lPTZCAa6B5l9hSMMjLawVsGZ8Eoljnz9t8Er7hwqWTyuWiyLGtOAV0ff06lZVvDqmjD5mbyH16opFBT0EF5v/kx3lUXh9dYoFiARB69ThKnFVh3ezJChzmM18LZfjNHm7fAu+SQlTNoN78Vq6Eq1I7xXvUNRnIXwPh0s5+ncgEHNBWz6czMYnPsvX/OeAgxmzGPebeEw2IMUvPMFDH4zpNgwJfigcpDue7XCB7VEOuX4FT5si2AaDQ/gI7eBTXYdgY9qabTxwL/wcdtBCu1zhE+qFlT3qQU+J1yiNpdn8OXoLopyr4YvSfMprHsGfElZT8XiP2GI84uuP/sAQ3Oi2PbKuTCUuI2uZ1fDUO9aJvdhJgyrfCf/a8dhWM2DqRsuhGEPYV7Ar2oYDvOgHes/wnDXPd7NwBEYUXnL4yyLgRF1U2aW2ggjGj7UFWcAI5umM+23LTCydSFrztwMI2fdKFFDGUaSXdkO2g6jWmeoecIXGDW9QJ1+22D0Wg9dFtoJX2deopYT3fBtqzDLW8OFb8lrGPfEafjWJUi9KcHwXd2C1UZuhR99jhTaYwJjqspM4ooWjCUR+QbrwFhDKvm/HIKf3EGKmDEF/lTcp8ieDPg7vlfDWgOcYBZIaZ/n4YSDeyi7ygonuMlSUIk+TpR0pKY2V5xoa0rdNYE48aAtq8yMxImXt7KNR+fjxOAG8pq1HgWmM4rSiEABST59oGoUkEqg1zniKGC2gUKfvkQB2+n0OVEMBQ4VManROBQI7aDbAtIocC+ALnXvQkFJe8pJFUBB61sUMWsBCtouYNlTclDQbjfdstJHwYNzmXVQHwoecmCm/5mgYPAtqrX/jYIhFrT9vTsKhm6npurzKJg1mXls3YmTtq+kpBmROMmtmOLzd6CQ3jRKuTMJhdbk0XBzBwrtqKDIq5ootDOXsg1zUchNjQ573Bn3LJ0QW45CniWUoeaDQiHjferNRaGwTzTUmIFC7TYUwqaj0NAvFrsvESfb3KGRA1U4eY0sjf1yw8le8+jhqnqcnNFNXjcdUdh6K6Wo3UThNbksJKkXhe2E2Zzjt8ftJ88nb1E4WJfu9t9D4ZjJlBzRhsJZnjyVlhoUfuhMde1+KNyWys4L7UARg52U1e6LIoYaVHLzE4rYHKH/hm6jyL6/5B35B0XcDlBfVQaKhNTQ6GkxFAmtobxcNxT5Yk4xZvNRZCiYpUkGo8hwOgXun4JTpP5lJobROOXeNGbip4uikvpUr2uNoqbCFFhdP+5D/liZIoraGPMfReqh6I4ovkbWKxQ9NcJTeLACRYOdWJB0LYrdWE2XrNpRPNiLd9hPHsUzo3nmCy6j+MMcXuXId5w6fZT1S2mghKsSm+QfiBKh3lSho48SQ4up+34MTjOaT/4t0jhtQQNdKDPGaWFVdMRoE05rvkG9PnY4fe0BVpzXgtMjiqjE1x+nt11hktfdUVL6LtN23IGS81tpVCwCJY9MpYRWL5QMjaIQRXOU/KHA0uOno5REEBMwzUYpzS62yZODUhFmFB7yDqUehTHfK59RaugOm9s/HaVXr2INuoEovb2QZVxuQ+mTM2lwcTZKB21gymbtKB1mQ7Wa+1E6fCHr9UlC6WxHFlcQidLtiVQ6uw5lpKvo1QRvlLFNYQslr6LMoeuU2laEMlf9eDIXzFAm5zSTGBJFmfxf7GDNZZRp3sWmLTBFWRSjsFXiKLtGmAqrLVHWVosuD9Wh7Dl1qjCxQNngUt4MgSyUbRVgFwMjUHakg4Ykz6LsWBrlSBLKSUhRXVomyskMUVbZQpQz9qR7KZNQLvgjZY0moVxBHNPzP49yzV/Zgb1clGu1o5vFOij32IF+BC5HeXs9Jp73AOVdT/OWHtqP8odzKPONI8oHR7KKZl+Uz2xl+r4+KP9okPLCeahg58aS6wRR4XAojX14hgphV6m2+wAqyqyjBzVjqGj3ixn0qaGi63qWvvoZKh6RouoVb1DRPY382i+hopc+3V+cjorB29mMWD4qDt+i+JTDqGQbTpEvV6BSeAXF3zZHpfaplHzpOnJcZzPJr6HICV5FMTFGyAlVY9p8LnJSZFjgy1jkZG4hn9K/yLlnwNb/WYXKRxwoo04LlUNEWITyNVROtaIC/cOoXNTCxDT1ULl1MZs1/QiqSJ6icq8xVJFxonceKqiy+iVVN35ElfXlFFuchypHAsg7ewKqBLvR92MdqCqzjim3n0HVa1JMaHk0qlbMo+tllqja3EeJ5gXIlRqgEKdVyJVRoCDzcOQuvEkBPhuQa7eUmjOOI/fwWrozeSlyj4wwrSOXkBsxm3IC/iB3eDov7YkwqknP5Bmct0C1+cic73qjms8g3e63QbU7C6jACFEtv4QimCOqPbKjducaVBucSInFD1H9si+TcbuC6o+96NJ+E9SQPU0RdWKosXMDeV3dgRq7XalgmghqPO6mzJB9qOnexha466FmiCH9ncJBzdR/KOsTFzXvGjORAB3UfMRht1PnoJbUFkprWI9ay4soYMgEtezKKK9zCc6I6CXvpk6c0a5Hjy5I4szgteTPrcNZMjlUrN2Ls7LM+ZsDLuKsNgf+xB8SOGv4GM/ayQa1pSOZuvEi1Ob20ufz5qg9fzWbcAdR276eAs0qUPtMML1Vmo/aF5GdF+lB7dDf7HvRLtROSGXxb6RR++Y6tjNxIeoYneYPDlSiDj+Inh78jTp2xFa5aaDO2gh+QuZT1Dlym/dqeyfqhJfyFMIIdbJf05X026jzqJBSEntwtg1jq4cX42zbH2xuIBdnO//L1gf9xtkeI/R0RB915VTp4bY9qLtgKiWlCaCu7Uu60zAZdaNnM//cN6ibz9j2jEOo265KKbkc1O08xER35KPut23s4jd3nCPvwJb80sU56EvuPl04x/4EO5a9B+dEnRvP4Uac862N6a4ux7nyrxkeMsO5RySpbbyP57b1MPH7C1HPQZT8WhnqRXyjr4OSqC87k8WvaUR943ls5uwA1N/YTSkno1F/ky1TODqI+scfMcWtk1C/LZWeZgSifvcG+qOdg/rD9WwG7z/U/3OUTS7iocGJZRSdthkNgn2o77cszpPJpIudsTgvrJUt0q/DeYkXWGxZNs7LKqOagUE0lPZi/vypaGhXTLW3ZNCwLYRKNgqikWwZ+QsTGoXnsGNqP9Aou5NJ2FmgUXsTlbc5o7FDMrNfaYHGTyYxQejGBY4TyGf3ClwQFkQp7r/QRGEum5hugiYOfyjvrhAuCl9OJTPdcdETD/I8qY2LOpqZekUGLnquxLQ2zcRFL9rZTeMMNFt3ji40y6BZliMzkGxBszYXJirehWbDPfzyPf/gYunv/EPbgnGxfBGdsZPGxUYSvJcPwnDxWnHWP/ANFx+ZxGySXHBx2yd6UleL5lkWzOncDjRvW8VCZs9A8+FUJnssDC2kZzB2+yZazF/KFm32RQsjceoX34cWdnvpQfo9XCKXxOQ3lOMSjg+7dnsbLllQxDTs3+MShzf0ve8oLnFKpyLBTFwy3EjFywCXru1jFa66uDRCkwr3xOOy2GrejM15uOz5RGabaYLLF26juFpNhOMLqNB5N8LjHKbiFIM4tZ5Clf5BvFVHGWl+SBslaUT7INKm+XxPtx1I0RfZhSWfkBL38pLHxu2OYIdcSpDJWzAx30xkswdoKGcBMlpAF0KPIjvSysTu3UDmn8ZIIRlZ5A7mfuIk8h7Hsa3l79FycgsVuUmjldwgvcG1aKVpwcxX6aKVwRKeqOtbtDKX5Ll33EAry/c8uTg9tForx8t1V0ErhxJ2yagUrbansSjRj2h1+huFXXqJVuEreRKPtdCq/SClSxmj1Ug+awo5jitkqllK5hZcYRTL9uzciCvMDZma3iZc0fGVEp1bcaXVVLZhiySudIhnJgGpuHJ7InNRjMeVrqeYxjk/XB2pQ50bb6H1QmFe75xFaO1gwnjbZ6H1Og6vaNMGtN7vQHcyndH6hAVPa34XWnvwKUDXFa2jTZm1Xwtax4pStvRXtIkOoseiomjzsoKdkz6DNp//oYy3AmhrYUR3F/1G2y+T2WJdLtr+/sv48pZoJ/qA3V1giHbyXsyo/BbarRCmzBZftHs6Rg2WfFyrGEyxFjdx7R9z+rQkHO1Fx+9qjh/ayz9kbqJ6aK8VzXB+H9rPC2JTm9aivYUck15Ui46msZSj743rGnIp4G4Hbhi9xKauCkInBU2q27UVnY4XUVq4FG6MvM6canfjxtzXNKSui86mnRS3MACdnc8xyaBv6BxVQmMzbqBzbAjV26ri1nUi1OQqhNs5AzT22hFdOHH8UttmdFl3ihqzh9DFqZM/S9EdXeL+8hROSqHLC0fGU56IO8bnwmN0cadCN/24ewx3K/Iof9dk3FNgSO3rf+C+UyUUJuaP+9V1KWfvLtw/4w3byD+O+7WfMyfT7bh/9jJWc8AE9+sfpFuig7h/3lzKLzXGA0ZmdHuOKB5YNp+iVx5HV/kEGljcga7rxZhdYTS6xmyhp3zAE0ezKVxwLZ7aFkhvn0bgKZfzTMW0EN2/jv91e1Xw9P27VCKdhGfXR1CaTh6eOyNEyYr16Cn+kE3ol0bPDzKU++oveqX3UXr0d/RuvkiJcc/R+0kU44w9Ru/X3pTydgTPtwhQ6NEU9FF9TG0QgT552VR0WwZ9l4RR1Jcw9D36gMpjZuOFjypMu8EAL6ouoRyhRvT7/B+N7PDBS0ly5PnqDQbqtbCQ7ncYuPodSzWegkGrbejV0Uq8PFGOkisO4OWpHXSp+DZe/tRPwWdMMVi6mUmp/sHwXfZ05/wYhh+5TvnC4z6sp+QjXzH8cyLFf/uKkTKt9GnVK4yMf0VRWw0w6qUBW+LxGGOGpJmHuxzGSinRiJEjJjR+pMClEpjQ1EQN67Qwsa6Jkr1SMemVAd0z34epnkBPa/7gjS8fKT//GqbJT2PHbcwwUyqEQu0EMPOMMkU/R8xpnEz+yz9irscAJXzZg7mvQigtajbmJS2nWy7SmPfbknJzL2I+3Kfy658xn7ypNKwWCw7FUGhNKxY+qqM7WUNYVK9J/l/jsahBmOIrR7GosYHttQ3DouYd1JC5Gss0X9L12J9YvuoGE10rh+XXwpiWdQFWnK5gMrFuWHH2OjtqOQ8rPMrY0s2AFb8uMEXvO1g58REbmluIlUISvPmjL7FyshPP+mo5Vk6pYuaeGlgprs20753EKtNyqim8gNWyU+jS42KsPt5NV55cweo2ESYh4oc1Ob4UdPAU1jxzpT/xj7Hm7XhlFnKwzkybvS4ZxHp5I6rR6cJW8R2UrrLmf/UIm5c=
+
+
+ 395.239288330078
+ eJwNzYk/FegeB2BblpzJIVE6tuvopEWhMmri/b3ft0X5HFKqabEVLUrTFKZlECeEMVS2hBakyeC2aLGUMi1qaEGLJUmrVqKamZp7n3/g4e8cEpnUV4P3mo1n16a4Qs2+lhV9dIa64hTFuyRCw+sdU5WYYJCbGqtz2wttp+0sIskTkmHD2WxNZ0iu2zJDo2AMddjEtYp2QOatRcqFT2GuvpLly/tgcaeXXbo/AYpv+1lyfw3G9Wxni2MrMEHjAqsdiMAUvShWuOkaXMz9Z0iiGjB18kzqO/0R0/gnlqesBDfPZ3kTb2OGpIG0wi9j5sgE9uCUwKz7RlRdkwZ3XVeKmZKEOYNuU7jTIcyNzqXaPgd41D8my+5yzPMIZ0W1kZhPtqyri2HBVzFjYqEHFurc5b+f/w8WOUm4M2/H4ged5Obqh6V6jWR/0R3LrtyjBKsKrDDQpZxQJYIkh1iT2XKsCopjTtrlCNGtYE8yLLDOK4XkKhXWfZpEq6sCsWFrB4X9uAQ/KKPJ36cRmyadI+VcCcJ+MWbz/i1D+A/G7InSDj+5zeTFljXYkXGZok/dQkxUHNtSlYZYw3aaNTIZsakrKc0zC7F/LWfJLcHYqRCU5r0NOw8oKdlVhrg1lTT50WzExzaw9JIYJGjMIa/4YCSlTabW/EwktzKuO2UfUsLdWLr6MqQ6tpLVsGSkHnrKVz9qRFqUN21h/tgt96CNzU1ID7/KHBsjkLGjkNXK3iHT4huy9e9Bli0nz53PkBVZzAzv70W24R1K8WhEdtEN5uj5LfaNiCPPxI/IsfuHAk4XIidFjXR8fkPOyzg+cv865Eo385zyXuSmNNOoFeuRt0uQ//Uy5LUVk/febOSn3CGH0M84cLKNTixPxcHi6ayo6wsOdSdy9TcZKDD9QCV4hYJ9wXTVvxuFwyJou8FWFBl7sQsdOjjiuJC1TK9HsfUqUm1cgOIMbRqxtARHN7rQuce9+K1hO7vR+SeOOS2ghJGtOPZrO7ueswklu9/SWJdAlMpuct1JligtsKHD1hkos97Akj4PRnnMUTqccgD/PVVOry4qcbxBYPjPjjjhNYa9LWzDieJntOT+GZw8IjDbxh+nFl3hmqblqND7SPXq01FRVk0HpQM4s9aPpk5fhrPRW1nt22acM3TmWRcO4tyxJVz2zh+VYZfo74d9qNIbxf9w90bV4cEYWqOPaoU7aZwMRM3wS3x8/wHUVP9Ityq9cb60hGRNd1Bru22msZEvao+s4v4Gxqj90EHzs7Rx0a+RH8IZ1J0OIXP7HlyNM2c178eg3qyFHMyy8OeR76lg7Hvc/DWdSwyScOtIGPMxGoPmXSr24PwEtGQ78xxJOu5NHsEVj+Jwf1o87WxXoc0qhvLfKNEeZUhJo3eho6yPzlqHocvIhrXWTUO3wpsF/n9+ZhDJ1aLv4VlJM3Myb8bzURYs+XIunse2sgv6a/HSU5uSW1PxanQcWdlewWu1UBb0QgtvnOfxJ6WJeHM8kVIrq/A+Zi7lGYegt6qI6HwX+k6UsRPq+/FBFUet89vQb9HMnid2oj/Bhne7aKF/4Bua1+CDgacOXCNkCz75vab4Jjk+V+1hCVIf/BOmyb5sXoYvhvHUop6DLz2RVN8UIdTy19LKJfpCrSeU9kycL9T3RFHxaVOhqRNELxe7C83Qo4S5u4Vm3gamOuMitKQKsleoCa25NvRL512h1RxELle2iUFDDMi1abAYtKCPW8qzhPZ3t6jttUzoBARRr8ZooZP9lA+qixE6DdO4ymup0B3myNVThgvdgOnMx8NI6LY00xOrl2Lw2g6SdY0Q+g/1+c+mFkIie8HJq14MCfiDJUUXCoMIC1pV+5MwqFlE0ePThEH3V3o3sU5IF1bPXHftOyHNbRSzlOZC2qPDgtNGCaMxzrTfWSGM9lQyp9G+wuhuAr34WymGKnzZ/nuRYuiilbT4wxxhMhS0YsBUmCy6TvIkG2FydCxTHf1dmO4JIN9OTzG82pxJA+ViRL0Nbe5YI8zswmjtjWphFrqKsoPuiJE3Hfj4g3ZCZm9CxyoihSwgk9p764SsoJPGuQphGXiSpGuGCMtWPebYlCmspoyjV9GPhVWIC+vZdlZYtXvy1BsVwtpcjZVOPSesU4cwVYafsHkQQutnvxRyU30uyS0V8jDiK7/WCHn+F16q5Svkt7fQ6+WbhC1WM5yXCoX9etpVkCxG913kxT5pws4yHc//XSDsgq9QsPoDMXZUKiF1QIw91kzJp8cJexNbdjHGT9jvfcqOzz4rJjiGcr2HZ4VT5gzmozgpXA7upvTXAf8De977pw==
+
+
+ 552.918823242188
+ eJwN0WcgF2obgHGZJbJJZJU9iuzIcz/3nVJKaaDQQkPDSaf1qhDCKclKkSQp/mWkQ5ROHVIiJUpGkSiJhjSJ93z6fb8u1Pb526nvTQDqWO10ev9cFfUsJNlDawvU67jCgmsC0HSNMJOLkMZZ+kPgHrccZ71pZ9rfLdDKKAKUJYTQasgMpOe0oY1BIRzRGkRbnWh2W+I82stlsJxZwchMarlG1XHkr1I4Hh/CeXwU8mAYF765AmKGs9A18k9W1BmHboqTuJbyAlwhHsfFvA7gSmFJCLusij46HiyuaxeusTjKuk444zrtAJy2YzKuNxrPVYrCcYO8PK9J9EE/0SHYp9+FfsNTmMiB2xgwFgWbfD1xk9xcFjBrBQY55XHhpDr8wzCTF/o6Y7BYOMeVO3DXfD0IaT6Nf6qZcYln43F3UBUT2VWHeycL4MKINu6zZ6gZ54+HPHJYuNUDDI9vh3ppKwz/ugOEnp/CwxGXQfHuKEak/WaNJ5dipGQ5t9Mbw8ikUSZXOwWjpn6CwE/qeCReCJJ3WWC01XMWoL0eo09Esd7qaRiT94EVVc7GWP39rG+2O8ZmSIHO01j8Kz6VdY3/ike1p3Nx+U48muMOUmWb8djqbla35D8bXbjsaVmM06nijl3NGHfUiGneycN4mWZmW3YaTxjKs+eSCXgitw6w5hsmqMb/17EPE5drQNDuEkx+Jov2azZiivUzrrBQDVMDBHx3nTKmDhXCF4dveCoxml01lsTTsnPY9XkVmBZ/EKKG+jH9yQh2/WuMZ0yfsOLz4phhZcTlagDPGlyHhVEFeLatHEImmGNmVDkbSZuD5yQVeeeqAjzn2wUFroF47ko/2G0ZwqweZdAPC8fs+eGgTUswOzuWpdtJ4QXXfuZqK4Q5k/thk8w/mBPpC0oTrfCi6Q9oWXYYLxnmc7HKLLx0wQJcp8tgrkY33+DShbl1nC+z88S8nDmgXYMoCBCC8yY/8Iq7OPhejsZ8KwtUcXmM+dk6rMHBHwuUT8PGGh0sePAJIoZksND2Xwiz246F2ZN4dkoTFmlbME/Dcix6bcQUlpzHqwviIF2jEK+eCWJHBZ/wWnUobFIvwr9PfmICzMSS4GvM5f4FLFUP4MorDuH1k4Mw7LMCyzzaoVY/BMuKnmNV6wcs11HkZSPRWB5txC551+GN69tBsdIKbxaMQtC7v7HCWpZPuncdK+5Xc8fKULw1JZY7/PfvH9H7IPbTD/9JjeA7+23x9pxRPin5Bd4uyuSC90l4p7oaFd8h/msxCIFXL2KlwX5QLw7FypOd3HfJYqyaIgzCBXewqrsL8xzz8K6NMjfO2I7VJn046haP1cV9AIPX8F6pAwiEFuF9NICGt6p4XxAFjfO7sWbqXpbXqIsP5LPBsWgu1rJvcJIHY21KCuYMJmCdmR5kmtpjXXa7U32ZOT7MfQCZG32wnk8Bh6UT8JFyOZxWs8dHjXGMPVLBx17RrF6+Fh9XyYLlaids0H/ApRL3YUNtDq+WXo5PlhM3SLHHJ3Xe8PSbJzY6hoBunDQ2XjWCQ8Vj2CQ56PS4ohubNnfzIxkX8Nmta3Da7yk2zzLht6RtsTknhM/yjsLnXRoknxKNLauCuFSqAbbkFcJTlYnYGqAHLVvGsPXvD3DARBHbfLbAoWeO2FaeCrJGnvhiUhJ/sCITXxxcy8P/MsCXyoUw0taNL7//4BKPMrDjLwc4mNaBnXpSXCVAFztP2vKJQx/xlcIHLj/1Br4Kt4Q7w3Px1W8z1I1ei107Q3nPi8n4WkKYG6YY4eukOWjzYQhfD/RBhWQHdl9I5wavdmKPbSuPcfuFPdWxUFofj288hnCOVg6+KREm/bJf+PZSDnup7IrvjvXOlT+ahn3iGbywZD/27VnCw+gc9tVNB60Caew/Gj93S2EQ9g9W8YqScTjQowelOtb4Ia0TUt5tx4+JflDs/Ag/PXDmUo8r8fMf4XDXpAUHDUtw5Jc8Dt414GcS/sQvQdEQX/EBh0R9oV8pE7/amfGwvF78Wi7KveZm4LdmLe4cno3fs9RBUqcff1jKQ56mG/4Q+HHlUkv8qfsS7A4E4s9RRX7M8Sf+2uDMFskM4K/bq1i9lwMO66ezsF1bcfhSF4y5xuKIfRJ0JU/CkbR6aDiuhr8XpfJN17pwtGAvD7yngWNCWWDROYZjS1aytk8fcezMc6g0ABLy/8hlknRI6NR5uJQoSkI9XnCLxdE4vbs89YUQjVtZjGJtrjTupDZnS2/SuJfG/FBgPQmrjrIPm56TsPtWbn9mLQlnufBKkwoSbirken8EkohyKyywmUMiG+7BV6EkEsmcAHoHbpOoRDgEB+mS6LImrqDsT6JnDVjHuh8k+u0dzzwRQWLGkdwwsZDEgtbx3PmHSCwtCH4XmJBYvSRumlBG4kJeXN9jDYkvz+V+0btJ/PkAP5BSTxJ6UtBud5kklpzAy3uDSSJZCiee0iKJL4ao5L6NxlulQS0O0fjECP6/hb9Iarw0lw85SlJuNhC1YBlJPdEFtcWmJD3tLds0vJGkvReDYlQUSR+LAW/hZzSpZQQUi8VJxvc7mJlHkczVWezdsv0km1cN3nGVJPvtLjTWDZHc9FIWK/AhuQ2zwaJ4B8mdtAX/RSkkL37e6b3jDpJfux/m7uwk+asyvMzCn+Tf7ucte/JJYaoCk3iwlBSyfkOGoTspNCVwSZHzpOggBK4bX5Dizx00U6WSlHgafyLkTUonEsHOUo+Uetex0HRnUtaZxZVV/Uh5fQHEaGqSctxTMAzUJuWSjfCjwpBUVGbCJPsppLJaB2a0cZo88yIUZbTTZL9tMHxsAql6LUZ1zX2keioCKubFkmp7Iuva3EpTtg+w2e3naEpaDxi0Tyc1sUau7TeF1I4M841XZ5BaywvUz9lP6ppNcEHdgtQDBqA5X5nUL9nwIfofqX+s5aWeiTTVQJxdw3ya2nqE9MMekobWQ/Q8e580vnTwq9NvkaZGH5fS7SHNaicun15GWmHGcPrxM9K6/YIrJMeR1sAElj8mTdqkhifeu5P2UQ++dP8W0m4+A9dz/yQdYQe24k4W6Zh8hwmXW0nn7WZ+vMSeplmaw/zjU2labS6I170n3Wm9mCg7j3T9tsKqDVdIN6cUdhS/Jj3Xj+z77H7SCysCadv1pNeoA9d36pN+RgSL+2ZPBmuvsS8rxclQTxwumISQUeAvyM2fSEapOqCy7xQZvfKBzJ6HZDzgCA/0askk8Dvr84sik6xd0DEcSybPvvO8NbZkKvKRv4lZSKYOYVz4US6ZPlGCy06KZOauxG41JpNZyv/AZqs3mY3N460Rj2mGkSoeUw2mGfuE+dTM5TTTcB0r01xE5lYFhAY3ydzvIFnOnkEWtiFwI1GMLAL02dPmAbI418zu3rxGFi0tYD+1n2b1WkLgZHWy1G/gIpeTyUrhH2aaFElWuRfYpqocsnpizLT03Mha4iRA93uynrmZ/dN/hKzjg9nh1WJk3TjMTH+vJhtLR75qggbZ7HbnIjlZZPMoi52JKiVbr1R0SlUl25QM/uRGPdm5vYYNcspkF6rAIwp3k921H6B6ooPszV6xTyqjZH/Rip8TCJP902+o1vCJZlslQGTMdHLY4QJXViiToxJHq5IRcuRR0F3WR44CT5AUyiLHrgZm++AezUl3A+tKc5rzeYBHTcsjJ5sUzIr5Sk4brmDK0cvklDSNjdz+z2Z9Nrq6ntj0LFBTUyQWLIDF9QoE3j68WmqIQHCDZxg4EDwdc0pzWkkYqQupkYcJe+1g3R/7iY4f5EqrFWmu/1cWbTyf5rZ1YIdcBDlP/YgTZ3qRc8AaSDRrJ+d8GRbLhGmemAfb+6cYzUsi0Fw8jlzUtzG5vQ/Jxf8XC9AqpoUb97DQthhaZJHGXln30aK2E2zwQD4tfr2NicwzJTelaLAZiKYlS2+z+tmStNTAlH1yv0hLm6bBfU11cndLZgI3Abn3+oDJmlW0TFUNIqyjaFl+BwRvy6bl2of4lANatNxDDM64NdPymC9sdtUUWuF+nMk0R9DK7mWs9GYCeVgZw4E4LfJMaiGN1avJs9MF1YKTyMt+PPv95RKtUqoAkaC9tKoqG5Rqzcm7cxs7vkSGfCybQackhHyDa5l/TSf5pkuAeVUE+XZ+h5039tEa3T2s62cqrQn+DJ4zfWidVjCIP06ndclScGzEkta9+wzPRiVpveUGqHn1ltZvbYPJxtW0/oUa+Lk2kf8sESieWUP+AQXMo9WZ/M/Jgk3yFfLvmQFe+xspQKuQ6/SWUMDuRRAz3Ekbk3+yn9l+tKn7MMhsuk+b5RpZ3nFf2uxVxkzzbWhznD+Ezv1MmzvW8huik2mLfjq/+y6DtpxtAEXnT7R9vwIzXd5DOwwaYdruVtpx9jCY/vfvj/jPzH7hKdqZNRM2CBwpWKYdzhStp+CMWlh56xntmvoXeF13oT3DAmYcl0kh7p78nEsGheTYwjnpg3TQYwRWJSTTwUstrNxQgUIXN+PaXRMpdPtC3tx3n0KTs9hV7+cU2sCZYEINhbkG80lfL1PYTh022/k+hTdEwuqsFor4NcRMe/wo1n0bmC9+QrGDSqynt5eO7TKEyeqldKzoJtwyraG4IHGYF/mB4gPz2KiDAcWnNsGPBeEUX3oD1Ff0UsIVN9RRf0EJD7T5zffOlPA5gEuUz6ST7/NYoeA0nXG7B9Ol5lBGeixoNN2hjAZNUHm5lc7+esTKU8dR5tM9PMolhy7qNbDSjly6uKCSLRDdR5e0nSExJoBy98hxXSdzyk0eg9O7TCi3YCOoRNaToOARV5k+gQT1JhAzOECCYTk4Vf3m/88EcZA=
+
+
+ 676.819946289063
+ eJwN0ok/0PcfB3BXEblvOUMacjyon1S839/PS6fpQtOPJJF1bZUOyVAohAqVKApzhKxjPSZdKtlEKMpV8+uSX0ZNx9Lx+z3/hqeY55BJe2ueCG9vA453fyuWtFhQdb+KWB0USbkRTmKNy0KKtdcTa2c6UO7OXWLDwon0aruHiNI4C3c/T7FzfCT7h3qKxAN3eFtxsUj6+yZrn9khUvYWiZszbUXqAiO+2iYjjuj/TO7Ov4sjFbvpslqrON6znJc9zBcndvaw7aCDKHCL4Porb0RBiptwN7kvCoY3c11ZsCiy9+GTi61EseIkQup0URr7E68K/EeUZ7mS3XFbcbqshTS0r4oK8+sUm/AfUakfwb2qw6Ly1HwqVTkkqpTyKNTTVZzJqqVqf13xy3N/1h52FGeL+3l3bJM4f17idMs08duMAf70rFxcUq0he4NRUf+HMj+YfUPcTqjz7C++JBoc+2n6jRzReN6UUlbbiSY10KbCKtG8XoZv2m0Td0saOCjITrRIkXQq1UC0lI7w5nfKovX3LvIrHyvu5ydRimu96MgO54nDveLBpkcsW+cjOs3zqEOtX3TrX6HQtHeiN6eOTD4oikeWtaRhdUX8WbLP88K3a0TfrR9pcm+teFL1nDKpWzw9UU6KqvfE805IMnuqxYvCNsr06RAvs1fw93l64pW1Ek2/LcRf9vZUvXq/eP3RjfpqX4n3UxzYP2m8+Fj6Hee5DIhPZ009c9wmi89z7XmczWzx1QOktfaC+HpuN8vqx0Nm3C62GdCFzHdMdls3QC5ER9rXNA1yrTWsr2YI+VA32lVyCPKpa+jaA0MoLPWgjMUdUPgwjWeaVmNMsDlvvt6DMW3BUmFzD8aqbqIJjV4Ym7aFWsPyMLY9hLEiC4om7TTHdysUrzXw7QX2UBxN5zK/QShZ3yfb5jwoLXLi6GXZUHrZy5rB6RiXuYL1TH2hbDiBjTs2QfnwEvK7NAUq6rfYMqMC4zMHebz7Lqg97WOrwCGoawZSWYgW1Ev+/1k3GeqPXVi7exk09DzZwE4BGimJ7FrzApqGRzluwAmaj23oIgNaxn2U02ULrexwmtIaAO0sfXbw2Abt5hCqOVQJne5hoazyELoK4ZzsVwndPal00boIek/mcP7nn6G/dDYp1qXBwOYtu3b/BoP6Vu5ucIbB51LJaJY8DDvK6W3HUhjprKVlP82AUVsPDwf8ignt0yQnjdkwXtnOUeNSYNzeypV2LTBZ+ZTlRhxharhOsk4chen2vfxr/leYOTXwxCEDmK3cSI2nnWFWM480iw/AbNCe5a7YwdzlEWsUVsA8vIVW9XnB/Ml6uupQBAuXg5yzvgoWSee4b8cwJuaFSPtkvsDySIRkFaUFy2s3WC63HlamZXTLsAZW0b3SgN5rWN0pEi7GO2H1j6OkOOsorP0CuTW9CpNcYiTbh02YFJbFfzcdwKQ/zaSM0MOwUTlE+97awIGj6I4TwdGqk0zVt8C58wj5xXTCJfcZuX2NgGtECTnu+IJ/9anyumIDuO21l1K0D8LtbIQ0xSsJbo8XkMnWaMwwb2aLuBbMUpdn/cZ+eJwc5aRcf7B/L8mPVoB7tnCG135I2fOk6FofSNfTKOkbWUgjnWR3Zha8grzJpG4T5hru4KnlzZj7rRelbb2HuZ0T+JP8O8w7u5wdfSR4p37D92PC4LMohEay0+Dzy1eeea4WC+fLU3ZtABbmTucbfwxhceJMniw/DUvGWJOpzjosyR/LumpX4TvlIM1Zdw8BP/Szo8hAQHcppdWqYHnYvyWLYwexfGiIYlPaEGiyhrV2KSBwnSvJLc5GkL4bF9UXYMWpUl7/aiNW9Bdzsa8Ggs33iwPj4hC8XVWyKIvEymNNNP1DO0J8B1mPkhCSvJijTndh1ctMaarhR4SaM13/6xlWnz9O86d6Iqz6q1B4roSwTiepUsEU4ZPDSP2SJ8IjzbjR9TTCj8vSaMkwIhxusbfqBnx/Sp2T7xph3QYrNt9giPX/HaHRghfYmNhJXZO+ILLjFuUmNCPyy0Uec7Uf2/WPcJNRGaICurli0TCis7ZzU+gzRD+VFTabCxGTlcguydMQ0x0oybvr46f2YHpz8ili82Po7OdLiFPI5I4DJxB3d0hS+RCJeJk9kvI7JcTrfeHSa7WIdxrh+kcDiA/U47DSaMS/7GTzBSew27mec973YndkNy+vvIwE353Sgtm2SPixX1BBIhJSH3NhI5CYXklyNAdJtjdp+H0YktI/eRW36SLpTA/0qoyRXLaWK3W8kPwkiK+dv42UKCfOCPBGyjEdlr33AqnDXdzt/gbpXcbsEOiMTI84KnOIRmbkBmpdNoysy1MlTYd+ZD3oktTcf0D24DM6ee4CDl8OlrwCtHD40XGKif6Ao1Wv6VBDKY52vJS0WSBHNYsLP1uiJN2S8y80/w/evi6r
+
+
+ 751.810668945313
+ eJwNzIk/1PkfB3DkLMdg0EosITLGrOSo8Hl/Py/NSiXCdiClc1fXA4Uu5Y6RQkKN+2ppu1bbodo2ZdMhupNKbdlKx/arVSr7e/4BTx72PJNJcJPP1d9OK2fv4/PcdrHowBweLtvM5Jfi+NJXvaSNFTzWPIBCv9rzeEsPOlL+jK8zHSP46Ch5gsk4Zhnuydc/qGROZRF84y82TGLbwTfNyaeQ5YU8JUdMidkbeJqxN/vHv45nbL/JGthknuUxSEXVi3lWzjxhy8ovPCc+k8ZuecQVg+6U33OE7xCtYemReXxHfRRTm36B71TsojMxl3lBUh1xG0deNExEBr+e4cWG7Sz97Q+8PFfBSj7l8QqzR0yUtZxXuTYzr5euvFp6lrVrbeC1jjuJxarzfcpkUl9Sz5tszjFJlAFv2itmg4GH+f4aJYsOaeYHh4czr6uD/IilLTPpruJHcs+z9jM7ebNTEEmNHfhx81ySftXlJ0fdJeWtbt7y7TahW17Kz7iM9O0bKuK/29ozy2kd/OybVPawFLxVeyKpnpzHW392YBO/qeXn1w+w0T928QviU6xMOY63nWujZcyV/3kyjDm1xvOLBvaC/PoifnF9JpvouIZfQgeTd1rzK2JX8su14FcNP7Asn1be6baaRZ+Yz7tMzIXsR9f5Db8rpBX2kN88toy1j8rld1YV+PYdK+XdxntYuXc1vx8rY00qVbxn7hPyvKzPe5uXkHbfVv64VcQqeSR/kmNBdU27+NMtqWTa5cWfDpQzywYN/uyBNlvTaMf7tk5lz1Tq+HNbS+YX8oy/aDjJXq7T4i9vm5PqGynvzxUL72d28lf7jpD8Xip/tzSOYptM+f+yk3z/1lHhH5zcqcnOnX84YEpFihT+b5WS1VtV8oGwStaQk8MHTn5m6QXJ/PP5TYLXbh/+xfYcy1GfxL9cOMBOza/mX70vsZqIMKjoD9Koyg6oDdtJNlrjoDbNghLk9VArq6DJ1bMxLLdHGFG3D+rJGylSWgb100qaMd4NGhoTBZsD66HxrpcNzjaGZtBp+hxzCpq7jfjTDik0Hwq06KEVtDT/oeznL6G1ZBe9+msitOoSyXPZa2gPOyrYl9ZAe4ucFmaZQEfjILmOdobOrEuC+E0Ehn+YwkpzWzAi9yavfLAFI25upJ44D+gaprA6nafQbbMi3xlF0BOZCHqZT6C3dhWrjLoEfRWisWHB0N9lTG0OR2GQl0i+iSKI9N7ykqk/QFTiw6rOasHw/0/DQhUYhb0iefJWGG17TVZmDjB6sJQqpbdhXD3IMvT/gThnrnBnvhfEzyNIs8sRJpMGBH2LLzA1WEFpX3pgOu8xFZELTC+JBJ08XZilFgvrvebCbP8K0gi7im9u3GI2j8pg7lkhGHkoYZ7uS8UfCmDe+T1Nb9yOUb6DbPabRxjV8YkUQb9idFQnjY/Zh9Hn29mBRadg2TKTvNpDYRVyg72+chrfuqnQZKkbrMNIMI/thU20qkDjKmGT38UKpu3DGNEkOmqhwJgMCa2bGQPblArq/LQNtm2vqXd+MOwmW5N7rS7s9naT8a6zsLt2mZSpvrDXPERWvbWwT1vMOpeJYH9dBVKnGRirG0C20TKMjThJ2XaxGNvWBDU7PzgY36A7OgIc7j2jtIoBOJ6+TN/vTsC4ZlVKLJ4Cp04HKs6vhSTUkDcbHYCkyoAN6h2E5EkL2f9RBecdheTSVQ/pnFuChXkLpEV7aeZQEKS/B9CCkK9wMc5gVrtXQ7b8PsmHhkN2KZJnuThC9qWISq4+guvEFWTs0w7XNFX6US0Crr9+IN2f7sC135j8b0divPN9mtWjifFbVSj4wjKMP25Hm04lwE3nLTs1oxluG2vIKCgZbu/7KK71PCZMmCXo8Otw9++iuPRNcE+6L/hvsYfHaifEh/4Mj7IKbpZpCI8uN3Zu9gl4ejnRtbsj4Xn3Fh1afQJeyx7TXbk+vOqUQsbXRni986BdC7fDx/AFDR0ugU/gZpKvtYBveBl7P6kGvi8C2SIFwJ5UM9XeSRD2OAj7D5tA+NeA/fJ5PfhBX9Y6jMPv/X76RvQCU9yXsinFAZAbSnDITQZ5qKbQZbYI8nJvUr0yF/K3cTTGYzS+tyRhcqotpmpGk2icHaZKq5hN8TMEvMtjx43bMW2HHp9QfRbT/pCwQ8o2TO//i6b/eA2BNMQafA5g5mKBLIN3I2jkfv7di98RFL2OHG8sQ7CWG9lcDkFY8yrfy3u7MTeqn2qqPTFveSHrj0xGZPwIdq19CJGPJYJ+dxeixqSyzPQiLFBOYIrWxVj4sYAcdn9EdEQ2bDxCEJ09mY4ltSP63DuWuKAVix45EF+gicUXVZnXxxlYovOe9qssx/KVqTQhxBs//VVKpreViLlVwW0cDmOFix8LfXITa0IUXFX2CWsqPOmN7lvEOhdSUuwcxKvI2HP/6VhrJWbHZo7EuiWbqTFdA+s+z2EFu08gwdlfMAzWRsI7dVboOAyJ38WwX5xLkCRXkFHOQiQlqVC5NBAbQr1Zh/weNpT7YdzLNmzodBHMTpojefVOphYwCVsPSdjysi6kXLNhfosGkFq7k3LT3yL1lTuJPI4gTSSnqLIOpA1YkmHKWmTINvO/T6cgY0aNEC6OQ0Z8OGuSDSAjs5yVplYjU6WAScQcmR1JrHJVIbJknUxiEY5tKy8IlbWNyKm+KPjPyUXObyuZrb01FMH3yFoRjNzY95T/UYy8UxWsXShCXm8Zu9u3GTtk09hvT52xo7ufysTPka8rEjSQgAItMyYyH41Cgyv0qaYehX5JrKHfG4WD45lkjA2Kghu5TP04iuI20vmWPSiOyWWFMWko3m/A+vR1UbJtG7Xo5aPkfRZZW2ujtF8heAc8w57hs1ioxVYoY0UUKDVD+dES1qOhQM2IV/TDgIA6/z+FlgI56lb/zLpWLkC92JrJXf5GQ0QrjR1aiQaFP5dqNqKhYSHdl+r9B93fzck=
+
+
+ 670.800842285156
+ eJwN04s/1/ceB3C5X0Lk55Kfa6yQptESyfv9/bxkJFZLa6Eeqt+hFSHdJA9O8pO5VT+UGqULOU5J6jBlto51MSvp0UWkjs4S0o2sy7Gz5//wFEH/OMWDY9YiLKiOrvfEiGWvq2lj5Bzxjddz9tWoESscnrJr3VIR3VnJbeO9Yk1gNl2YoC5iArvIdr6LWOffx26GKrFe7aXYfc9MbPC3o+OyCyJuYgQlLkoV8QlRFHi7WyR9kkxZ9wdE6v9mUtDL/4jvimSk+WW3yHtcSmta9on807pc1JIjCq3D6Xn1MVGYqkZnJ9WKvbo7OUhPLg5qnJHmrN4lDpYHk8r+vSj9oY4qewJEWckg9avvFOXOE2ngaZuocHxP6qu3iZNSDnV61IiqeWZ0aKNC1KWD9/+3WNTnpvO5bhNRP+ZEeZbF4nzxACV7KMQF9yc0/GKhaNqV5d8e1SkuFrawVfAk0Vx2m/95xVD8rFNHL3OqxeVTXbw/5Y64qoxl2ZJ0cc3ajHXNmkVbh4qzt10Vv1YckRTJcaLd/R6H7WgRv7mCavdHipv2pnS09aa43VDFGYrJ4q7bSkoPOyUeOMnJ7clL8fCSitYcKxa91nKW1+uIx2HeXDruI/rd6qVVykzR3+FIG+sDxbPLK6nL2U4MLjlCMY27xfAMI3pcoymGz29g+21Z4rVuMhet8BFv5t7iifMWiLFtKZRlfln8EechmRj/KT7WpnKS9ydi3CuWbNkdarJxyn3/HGrlH9nc8AUmvHpETzPeQD16GpuPGEArtJKOFs+AVr+ppJ9WAe3wPaw5dhraB0v4TcM2aH/opP3XvKCz9FtKH3gPnY5LrGU7A3oRh2nktR/0zYt4smEj9GtfcKCjD/SftVJiZRUMFvvzunSGwfgFelI1iIlp45JF7FYYXvSh4cy3MPJVk/oN42GkcJNcMl7AWK2Kt+zcA+NNDeLhlVAYl67lji9PYlJwJve7zcWkJC1SlyfA5LwF1e5xgamqk8I74mDac5+THaZjcn2g5MQXYaZZQUNzrsOs6RSv6xeQGbVzvxyQJa6XCqvvQHaul71UOpCNzpHy9LtgnraYdzxphHnPWQ643ASLGRcpvCIfFinrueyeDyyuzZZM57bD0louRppiYRlyjBWnD8Cy+U82Gj4JK/02Fp7HYBV+X+oM7YZVVTwr+hSw+uvTKrPlmLK0KMBn4WtMSfsU6lsTMOWHL/iXEW1Yq5RSrrE6rD800e5KL8g9aqTwxlDIl3txvQVBfrxEsuv8BfLet+LE6luwMfCjwdB02Hi+5qOdY7D5bYwrj+XBduUpGizZDtsfL3HZpnLYDlmwtocG7LbsYP/sbtg92ilNDm6DveV37NosYL+pXlrimQ37IQ3+6YAHHBwjOXdIDQ6tJ6SsrhtwdDrIGwpa4RilwWfsf8RUp+WC38dh6vK9wtI7BFNVD/jt2lmY2tHOqyI14WRYyr+nVsPp7mUpIMobzs5TKOtGOJxTmlAzsgLOLUlc3jWAaeNRNPfBQ7hUx/Nek264RwdS+INRzJQ7SKn9wMyQdjrhdh0eD+S87Op8fO6jyfb7bOHHi8jtjyTMNzUgW3kc/GOGJK1nQ/A/e03SMjwAoXzHvnMigDJjCi9pBMZArimzEZAZzdNXfIvAsTUUWP0TvlBsp4oubQSV+rLBVkMEPZzNetXrESzzZVWyIxY+KqC3SVpYZFJIqu/fITT2nFTsvgChxbPo+2kxWHarh102h+BrWQMH37iNb6IPULNfH1YkKOlVRD0i8+eS27smRPZpss6bZ1h9qU/SO+2JtcrDLK85D4WpFf1q7wdFswl9JH/E/K2VmudbIdaiRdQY6SJ23VKpMMAV67QC+LNZjVh/SLDe119hwzNryjIYQPzBAg51aEF8Xy/rflDDRq9INvbpwsbfBY07eyKh9l88OnoXiTq+9OjRXWxSFLB96RJsqlZSYp87tlS8JJt/O2GrzTnKC/4c23tuCsuqWKTYhfHFihCkRlVSre47pKUHUd6NzUgvyCdbn0PIcJnJx+PLkBF9gStGLJCRcYnViz9g16QFpCrbi8zKfOr3L0PW5r/zAdfjyOpcxNOuFUJptYUnnGMov3JmmwhvKF/FSCVcj2zTK5zNFcie/o6bZ9kgO/EOI6wLOSG10l8FkJNgxD+nliP3yBLOUb5AvuNndOVGFQqGGuieuR8KF9tSm9kGFB62Ircz27F37FN2mRcIlaEx5eh/RNHCZO6QOaFoaxHt9vZG0b4kuu95D8VGo2x8Mh8lu6NZR3stStNK2L+39f9iI++R
+
+
+ eJwNl2c8Fn4XxpPRUJItm3bJLEVa55zffdMiK7MllRINRWRWqEjI3m1RGREqW5kZCZnJqKdFtPvzePX9nOu8POc6A/Kl1Gj3H4J898N0STUR8n3dOTe53yD/WjVdH3WF/IT53MWXX0H+ncNUsc8a8n85U5D/CSjg2UNdITOgQLKHY9NrDwXSNUy25S8UyF1mzxaehQKFYZo4pAUFVhvJuEAVCnz5mdDtGiiIdqKs+V5QkFBKTjvfQcFfMaaklAGFkkvpiqoNFErZkuVDByiUaaUYsZ1QeNac/A52whNpLfrvsh08CZtNCe9q4anMUiapogNPIy3otMIOeCa3gooLDCf5gfxkNsKzbcW0weAXPIuQoE36dfDslRntlfWCZ29+UVLrMiiad5tqeI9AkcJ8CjiQCUU2/JzXoxVQdNycjJzHoSgqlq6I6UBRtA+3NUcVimLFyeHs4CSDSH/lASiK1+VIibhBUYIJLb1XDUWd2ylqQSoUSw4yjZtfoFjqIyfcvBWKZb3pSYIjFJ+9y4w5u6E4upg+6L+A4piLZNSRBMXZEWT+4SAU/9Ym68IVUCIfxNlgfwZKVIJIJ20qlBybQmv3noISrxgDJuYCJdeIzp+cAiUx7ymk/CWUxP6iNUN/oSS+kgIKl0BJ4hdKEUyHkvYA2hD4YZKvyHD9Jijp0DWYe08SSib4OX6CKVAqrUjh6llQKnOc6xyfDKVycRSS3g2lioGcccs+KLWO4ihIrILSPfZ0d50WlHrN4rQrhkOpNz/F7KqCUp8+MvZYAaVximypiCOUJn9jkffioLRSg+J9LKC0Y5C8NP+D0vFw+pWxF8okAikgaQuUyWygduvHUOaZyzb02ELZ2ess/OFyKIt+TB6R0lAWf4lyPtZD2Y09nGOLv0PZPxu29fdOKJfyY0480lAuJ0H1TAXK57cyl4YYKD87g+yeKEF59FdqsfeA8thutogrC+W5QkzCnqB8OJXeFgZDhVwQHRHcBBUKGnTu+xuoWKpLyx47Q0VUNeGS2VAR50M2//5BRbwc2ZwImGQrUwhLg4qEErbFeJKJtw1urleCiu5OA6G6CKh4Z0cmTouhUk6FnN5+gUqFOZwfCUuhcpcOy/t0BCoD2xjfqUSojD3NuX4pEZ7Pe8dUHZ7D8xV9tGvjGniu70RaF/bD83gfOvg/DXgxb4TNbTGCFzIdBiscXeGFnDt1t+yDF3bCdPjsFngRZUEBZZnwIt6A072xFKpmGpPOeDZUSYRSxfJMqJLlUtmplZP8TUfO9kGV3B+qnn8bqjxmspduI1At5Ue+8olQrdDDrU0ugWqPuWxn/BaojlzGeiq0oTp5Myfo8DjUSByjtEF9qJl3mQL6/aDmzPlJn3tCTeA1ChLfAzXhAmQrbw81CdLk/TYUajp+04VCQ6iVHKGY6g1Qq7SQfMWeQe1ZQwOt3fegNuosvRNRg9pYeXbBUw5q4xPosmQi1CbJ01YBcah9IUcHJtZB7ZcCCt40ALX/FXB0S3Ohbl40Jah/gDr5B+QlzoE6z2LOzgReqDv7iLKKo6Au2oDsQ9SgLqGWTHMi4GWyO6c/6B+8TPlMG0t5oEH0BVk9OQ8NMkgPVY2gQWGQSU5phgbFHha0DKBh/g16VDGpxymw3MMj0FDxjhm/fQ+N4gO0L3QXNMowctwqCY1y67gL16yHRoVBqi8+Co1KbwycDnhAY8wgBS78C40JgqzcNHaS0SxNLhMaUzncBb8loPEOl/IavkLjUy6tFFwBjV0mlFLIhcYfiRRw7y40yV6mV7sRmhRU2MJX86BJsZNuBx+BJmV/5uzJA02Hj5LMAXNoCqtigbNzoSkplxLlOdAs3cd4v0tAs3wY/W94GzSrnCK3jvfQbGtCocHK0ByvwuHxSIRXkWVM7+13eNUnQ/Xhc6FF0pRORRK8li+k4a3V8NpuiOI+u8LrhA6WRTfhdU0D7c24Da0S+nStYS20yhiz5IXPoVXehC1MUYVW62BmcUUYWnfn0TEvUWhN+o/2fPsOrd8uMdHcA9Am84eCRfZAm2wmBY3vhDY5c+pP8oM2hVXcEe4WaFNp58ortUIbdzodatGEti1DlPvlA7Rdq6Jz6bHQlpTCSfG7DW03NrFS/5PQLj1AjUW60K5gRLHX/0K7kibH5QEftO8qoPsvk6A9qYWM1SKhPSWD6ehVwBtJpF0hBvBGpp/u+ejCmxg3Cty9FN78NOGcer8cOuTKKCzcCDoidOiKrRp0RNdz9No3Qaf0asanJwSd8bkUwtyhsyOXsvy50KU8haXISULXXqKncW3QdUKLLBMvQ1fHdKpbJgXdo01UkqEFPbJxpGH2GHrkL9FXu93Qo6TB8e71hB7lf+zouQ3QE3OMrE+UQ0/iQ/J6OAo9KXeYneZR6CmP52har4SebgdKXqMKPV+d2KD2NeidZ05VRxygV6aEYiKCoVdFmxNX5g69ybmccMYHvdfjmauDPPT26LHHKyagt/cna/MbgrdyVdRlIg1vFawp3a8L3irJsul33OGt8nYyMreBtwkHaLv9NeiLVGbTFeOhLzabuq2OwbseYFmW8tCv4MYUh45Cv8107rTDctAfT5yN8s3Q33mMnX7iA/3dw0w11hn6v7ew5CMLYEDWkR5qDMKA3F8Wsuc1DCieZ1Pnp8DAug9kkrYDBuwWUVBJNgzY3yCrcQUYSAqj6NZeGJQ/TwGtcTC4W5L8oz/C4J5H7FovBwZTeZh2bwEMLeAwzX3uMJS8gc69/wRDNzMoKi0B3itZMTX3Cni/7wcFJ8XD+4YLlN5ZBu/7xDhTjG7AB2ULdo4nHf5n10/bps6DjxmGBtKfBeHju6kUHFYJn1SQCqPfwCfVXK56kRt8um/ANj5aAp+6z1N6hzJ8lntEScNf4fPeQrbGshM+OwfRgegS+Jy8njIr38KXDdHke84dvux1I87Uu/Clu5esrm+Cr0KK5PpoHnyVDaOQTwXwVd6NOk+vh6/KN8nxdgIM7y4jq94NMJzgwKbI+cNw0lXan3MbRuRekNP9JTBiWEyfYqfCSKohpU7eP9+WR9Gg1S34lmJJrj4S8K13Jzt5uRW+/TOn4JxZMKqYQ+8Nb8CotxCn4fNHGE3Vo2O3DsJoVy4ndkgWRr8uoLe27TA6Ecz4b+XCmNx/HNaqDmNKGkz80DoYU06h5zmWMDZ/Gzl4lsKYnRo974qDsT072MktAzDmxsPM9h+GMa8LzPDAVRiLEaZD8+fDWEoMjZSKw1jqVwp/LArflfooYf1s+D4/kIqkl8F33f/RBelS+F64nfbnu8LPPWKs0hPhZ4oJUw6LhJ99/WSk/xh+Ka1k1x7chd+71cjBYwr8kVek9Dw++KN8ldqe8cAf510Uzf8F/iSnUeTqBvjzI5qckjThr3wT7VozAH9vCpKHqC387Yskc2s9+G9Qla57L4Rx73LafmUxjF/SZsrT4mA8pY+Sy0ZhQtmGHBdJwsS+w2TkbQwT+xfQ0cJImOiZoB0aiTjFeDoVl6vhlOMCdMYDkYfPlfYFzEOeuc5UlVWNPM4mrOTpCuQJaaXrDu+R58o+JpDcjDyNtZTi7odTRdIpqUgXp+6QprfDhjj1uC5lqE3g1KyLFLCnGKfmHiWz/hKcWt5NlxxlkXdaOdkOqCKv2hHG078NeXes5UzL80Ne5/lsgWsa8h7fw/TbFiBvmBUFFAkjb+ZBsvFei7zZPOTV1Y+8DXVk+VYB+ebyk2+UMfKpj9OW/LXId6yURl0PId+leURLDZHvylRKiPyEfFe7afDSYeS7+51sd89GvsJt5Kd5E/lefqbjI+nIN36W4m5YIb/Gcrp4whD5j1VRRssU5A/NoMCaLcgfwU+94U7IPyrIZJJmo4D6aSpepYICRk+YqL4dCvitocwnk3r4Gwp4FYsCWXy0NScRpxmXMJ/NVTjNhI9t+N2C004IkPmCvTgtdB6lPziH065+pdg3oTgt+wIbuAQ4rTmceRkW4LThOjo/MRenjRZSkbAkTlffzuQvfcTpRqeobrswTj9mRmal1Tg9QplubCGcnnefHG7E4vRvkezI0BucIZJPJdPlcUbYNbL6dBBnZAlRikYYzhh0INMqPpw5V4vJ12TgTN1mrtvJEZxppMc9GmSBM43XU3plAc7cn8pJ803FmR4CrEnsK848t4oiXaRxZtNaCghKQkHhVIp5b4KCk3PJbewVCjZYkOudRJzFK0tOAjdwVqg/59OIGc56mMiJlDiIsx750dHMcZzV8JjTtz0eZw2PUYDHPZw1nk6W4ndxtvAI65qww9khH8kp/RgKXU2h2CwbFHpYSZlv5FEoy4RC6jko1ORFgcUBOEf4Od3l9Ufh7UAhbokobHqaKclWonCYDf2v0xDnCt+keLEJnCtazVS7hHGu1gATrJuMKxvIXbIa5455UqjZL5z7W56Z/hxGEZU+uvxGAkW0TMk3NgdFdggx0RoxFGlKYk+v2KLIt3zmXa+KomIPKPCdLYpuM+fUX+Ci6L58Tl7bHRR1V+IorxxD0RBHlmCsiaIR+uzYl3YUvd5GpRweFM3ZynbNnI+iYzi557VQbMcdJpc4imLHnzCJZxtR7HoYK190CsUejzDZ5VkoVr+SepZZorjxHOr+tQnFfZZT0H4nFA8t5xT+QBQvuEOX3XxRvJGH1Sh/QPGxEXZsbSWK/3pBAa/9UPxPHn1OeIASQivJ6+1VlBCfygQvlqLE1VlM9T93lMi/yhHP6kGJl3zs+7OtKNGoRbGJdijRz2GLJ+sv8buaqtS1UdJUh85IrEZJM8YW1luipIsHR8g+FCVDrzFLix0o+fABDZh6opSJO7Nvy0Qp0wBK1Z6MT0SxGXLFKG3ygc0S+YnSZhwqHL2N0i6GzPywEEqHnmQya+VQOnuCjjTao/TYCXqSqorzRFZSPI8VzhOzonw3LZyneYLSlHtwXsBqunjhLsq46NLDqIsoEzaHKQcYoUzqHOYkIYcyWRJs5WJPlCldQwnuLihrqkIP686i7EltCtYfQNmrs9k+fkOUvXWM3VF5hrKFeXQrQh1lG7fRy8+HUE5Mj02Z9hDlLO/SDaWXKBd6hCpP16P8DQXK+vMW5fOPUsBZHZQvbaVrthUoXzZMcan7UL5fjVwu/EAFE2WK01ZEhZODTJ23EBWu7aTd3R6okK5PT1V9UWFUhLP6uBYqii5glc6vUVHLhF5cz0XF86OUYGKGio9j6feHYVSsOEjRf+VRsSmMzvm6omLzJnK0XopKcwXo/P8qUOlKJLW+D0Ol8PNM88FbVMrOpSKlDFRq8aUnKzehsrg+Xe7tnGQdJaytQeWF0czhtxUq6/2hwdUdqGxsS4+7eFE5vIBMl/1CFY9GaizsQpWrWmwO9qJKuBLZC1egygN9CvXURZUmJeaVP4EqLd7kaluG80XMqVDwP5zfdJZ8BGVxoX4+4294jQtNJJnK/i5caPqCAg9O6ic/U1vNVlwY/oj8hg7iwqY+enzPGRdJRJFZ4H1cZCpI+we24aLsjdzZWktwUbM1Z2yvOi4avcCZeuMpLhbQotSKRlwsepfSZtviYnF5ChtVx8X6z+n4o4e4mE0lE6HFk3SlE/w8uPjsKUr+aYmLA3XZ1n0iuDhsjK1Q78DFCRnMsl8fF9/Zz9a8n9Sz/jLB01W4RKqcumeZ4xJtb+715p+4hJtIWSItuMQ0lrvPeQMusZtK7ekXcckJCTrXgLjkZDon9ulVXBKRx2L73uOSnDR6kO+DS1fcoHtRe3Ep14B+SBvgUqM9bM0sI1xqvpSqdX7g0muWlMeu4NK0++S7MR6XLZlHPheUcNmOV+Rb8AKXRS9hOTsicFlmEZ3YwoPLHnOZab46Lvu5k8HlKFwu4UQ9n0dxuaQvZUzTx+U6UZR09DIuN5u8s/W24vIcXnKrN8XlP/tooN0FVUWcyafmMqpKvmVak3tS9b0lBVtU4YowVbLY9BjVxJew7CZTVFupzbS9HFDtxFY6dccK1ZpPUcH1ZlT7IEU+4T6oNvqEMr/sRHWJhVRfJIXqZgrknxKB6qHN9PqhCGok+lKzjC5q3NVh4vyhqJFeSyM1K1Dj2VVKjehFjVINNvv3ZtQUvcQy2DrUbPag/pYi1LLwp/saVqj1arIPUnRQO6KO2Z99h9o5w2zttem4UqGXDHMGcKV5IUUIVuKqbKBcL0VclaNNZ1Lfo46UGr37vQ11llygo/ufo86aOvJ52Y46O7nk/yADdVo+Uo6uA652nU3B9U64pkWFGo8a45rXchTeLY9rWt3o/ZAzrmln9MHeG9d0zGLnWs7hms691BX2HXUfcci9thv1uBLk2muOetn72KYX+ajX7MdEXa+h3uggN/hhHer9SCNz7U+4VnScu90lEtdqy3Lu7/qAa01lOQJKqrj2JKOxz/Kon63PXLZYoP6jRtprtxP1m9eyaXyiqD96l4mX5uI60Rn0xeourhObzXj4+3CdZBmdT23BdVqTPouzw3UmK8nd4yuul7jPhJs+4HqZi8zYIQHXx32mCyZrcX3GHLLd9BTXF/CQS5g4bjD9wLxXG+CGazOoR28MN4rPZCsPieBG8xLacaYFN8ZWc/RvuODGDn4WLZCCm2YwurZoHUJMCVlAKkL2D0pZtACh5R8F9vAiVm6mQ3nBSNb9TESzDcluNVev1h0pOomGDgwhJTpzoh2bkLoTmJHTBDLJZTS26huyZSZUfSYGmYUOWazyRubLQ+88DJBdamC8i+4ji9zF5iusRpYiScmnFZBj00yRrwE5LXHU1HIEuRLHqGO+A3Kj5lHAPmPk3jaluIWNyK3ZTxcnhpD7ppF8tOTRwCSIHIrd0OC6OqWbGKDBvzK64DiMhiq7mN9HKTRU1+HwxVqiob4UR3z4BRoajLCiOwvR0FSKy+8+mTcvY/EeFmi47z594pmGhq4zyPdCFRpGGHP0fOXRsDmF4lsC0PBVOlt66xwajmWwoOAO3Cz2lG0OrsXN2p8prL0LN+sfYqJbTuEWg59s6t+tuMV8kMoUynCLiw9lDhzALWeNKahRGLdacCnkhSZui7SnnqYLuH21ECfMbRC3mxuzpUYTuH3nQo6TsA9ud1vPvB4U4fbI8xRiN47bo/fQx2RBNIqpIv/BRWj0epyaHTPQaDST8cZvRWPRJ1TicAiNdU6QCycbjU8I0tVLQrhjWgB5OD7FHf/9YZFTbqLJzAKW/FoNTSTT2PbTrWgy/zRlNa1FE409lHG3EM0EZ1NunTeaSXYxLTiJZvPdmbB1LZppHGK69VJoLjHOYON8NG8Vp2TxCLSQTSOLM1/QqrqYSi2N0DoghwJOCqN11BC5HDqGNuZilBr0B20ic+ieeTja5GZSfeAQ2rRYcaYkeqNN63G6PScGbb47ssygJWgr7kJ/tMTQVuUN9a3LRdudo7StPgFtbUPoeYgm2kal04frgLaxuRRioYN2y7rJ5nQY2lkvprh8Dtp5TCHfU7fQbtL3BXlCuOfeT7L2NcE93/8yActB3CthyfjfP8G9q47SvaRtaD+Pj/KqstBeJpmbUdSB9tadXIFaf7SPF+AI9U9F+87Z9FejHh0S+Cm56hsePHOOPDRfo2O+K9U+nUDH9vOMPyQAD9drUq0m4OG2YarmQzwyu5Yed2uik2IfBcw5iU4LFtCDGa/QaZEzE46NRqclYiwlsROdlqkzab2f6KSaRXm50/DoRg6FOoWiy/+q6FL9bjy2+gLlu0vjcel6uvy0C0/oStG5TEd01X1FEXWn8bSYO91ZI4VnDt6mR+9D8IyjFv0bEkDP7erk/aQYPdNnU4xNNnrWbmLyWW/Q28aSCs4y9G5PI/8369F3VhndSLuEvsF7qbi1FP1CttL57Ej0u7qNnP/KoF/GC2ruzEa/p52Ufvgh+h8NoO/H96F/dwbleG7G8ysKySHMEi/ol5Pn+Cy84GpNj49PwYAvmkxOuxWDeNXoDr8VBg33kXegF17k6JLvLS28PIvIL0MJL6cFkl8sDwavaGLWenkYnPaHdsUaYfDLfro65TaGbDvApqxgGOLqT26VIxgqWkAVHR0YriZIAYdeY6SYJD22+oKR4ooUDfcxxl+YzIqcMeYbL/MpqMNYEXXK2vQP4+RTydatHuPXt5Jbx2pMqDtErc86MVFYnSIrujBpizPtt1DHpMNXKDBjId5UTSKXoR1466oTeRx9greT+imo5RPeTvGiA2478U7mDboYtRnvSs5hRrq7MK3zCe33qsT7i17S7ivX8KGRDx3O18BseR6yc16N2T6HyFXQF/NWCdDrHE/MG99N7dxnmB9uQJ7NeZgfEUU2Xzdj/kgsXeG1wMJadWatoYZP4w9TRqQHFtkaU0j/Wix+okle5zyxdNt5tmDBMSxN5TBFuU1YeiOXnP9EYtnZvfTyUwKWeVXTW3l9LBtTpQSRTCz7EU3XMs2x7GcRNZy4hWW/L9JTTWcs+2fAtEdOYvmUIab4dhWW86ozz8efsJx/DsflvBiWT5Nl9T+OY/lMHvq8/xaWT86HWrdXWC4kRv2GQ1gu0shEtXZjucYpsr5tgRVignTgzUusWM2hvt1CWCmQTufbzLBSqmfy33+FlR4fKLZkCCuT31BgdCpWNlcxvu9K+LxThV78HMPnQ+0Mtshg1YJU8pc6jlV6K1jyrU1YNe5PRykPa/z16RKlYK1JMDn+V/h/0eIMqw==
+
+
+ 456.719665527344
+ eJwNlHs41gcbgBGacsgpLS/xopw+Rhghz/N7HuVCk3Ko1Yq0lMVWWystkSE6KOSNiFA5X+mADtOarEUHYQylwvR2QJFEGl//3n/e133dJDtnDa52+Y/kXKZAI2IJKSmug2LP16RmvRvVRM9ollwi6A3okLqtAjoe7iBN9XDcsniYDB3r4d2hOyQeN4Clmz/SgqlWjHc7Q2bCCexuE5ONwVqMNcoiexsPqLYaoy9VxDi3T0qL3G/Bh9XG5Ixf4H61OsJJS5jSuUz8eTP4R7qSu0wbFNSn0dIVAfCIVpGnwyIw782nZdqp8HJMnnzpJlwwUqMVLxXxavhzWjmogqJ9GyhAzg5XvOmkQI02TD0zRasm+qHCbgdtcIpBF+UCCpFRws/Eyymkaznan3lM39paCTfcg2mT28/gPjeFNnXEwkN9Owrd7wcrL9jQ1uEgnNc4QT+4XoFZnlr0k24bfROFtMPMEm33Ie2UjUHqC6RfnL3heHQDxcwoQtn/NlLMkVf0Q1UM7VMtxIC4PbQv2RW1P66h2L48yEzaS/E7yqB16gMl5JyGWUI87T8aiEkxlynR0BKv7XpJSdOS0FizipIO/4yPz+2lwzPz8XzkaUqeEQEhaWspOX4XODldoyP/lYAksoVSSp5CWutFSv0nBnruXac0l+NgUZ5HaeULIeuHFXTMxBizwm7TsWQ9dOstoXRNGezRbaL0xCLc2s4kmbMOz8ZW0wmzn+DY8VuUVZoGk5mv6KRIDk8uk1KOQpGwODCAchVV4cQceTr1qww8bZenvKQp2F50nvJ1tmJG+nQq0PpKeDl+lAoqw2C/8yU6TYhxAbupcFEG5oTNpCKbNzAxXYWKoxJQWcGPirskODv/NZVUTOJYyHwqVbmDLbY7qTQ7WsgRD1CZ9hKS/X4mld3pxrlb/6Vyd2WYCMqkc4f2oZWOB1XEt4NfTzid3yaHksHjdCHJVjj1TpsuWjzE2NRRuph+BvsNbtAlE3nIs/SlSjNAGXdTqtx565N3CVWfPuH23L6SLhs9wDin23Q5LRaLrkXTVYX3wkzJPPrtopqwuS+JajQDAbskVLOnRTBzc6Hrah6g9iqMfj9yF/rHc+n3p/PxiJY63ahMwLPWV+iPOVVo6B1Cf5QshoFViVS7xANLb+VRbcWg4NevRDeN3kNfcwnd/HE3vKsX6ObkPTTVVac67yZUspdS3ZNN0JARSX/WugvTXLbTLbsW+Dgupr+Mn6CkPpX+KrMRag0q6LavjaDaL6b6iBpIOHiRGvxK8b56MTVUB6LD+lG6o5cJ0aa76M6P8rjQew/dHbDA3pA6urc/RdB/u5num4uhUzWT7pfIYF15OjUaXMHf07uoMV0NXftM6EHlapg4PI2aLA5iqHEvNds8Qd85mdRcvR2jro5Qi1kHXtgdRC3VzRjYOZf+Ng/FdKM4+rtzB2brv6VWy53owJ3U5kzCwICU2op+xLKqldT+9UUknSFqH9YQshbOoI4DPlijpE8PdY6SrcD08Jf3FJO7hx7ZBWLRATE96q/ANJsweryoXrCQjtHj54dRUVRITx7VcOj6rfTUYZKCzvdTt8gPa+tHqTv7OGYoZFNvmQ/EX95F/4bW4LKwRfTqbg0WRshSv7M5dnkeoP7MQcjaEk8DS3rgxaEkGrxXg14REfTa2BaqBEV6s9ATO6IUaEg8CnIb3GhE6zxOvP2cxuJGUTmzkMbzNSA69yuaFN8XrIeKaTK1EzSapSyj5wodncgyoaaY49HNMpL3cAgyWPb4FhhpzWI5pWEhoN6O5Rb3Qq3WA5YLfQ+D2RM8za0Ph82CeVq5ruAYuZenPVTBZ0sDWV7fChZ3R7DCYw2o6w5iRb9g0Ot5wIoHXwrdv5xkxb/rcXT9B55usxa3SO/y9Px2aAiq4ul3X8EzqZSVWqRg0Z7OM1zqYeJbX54xOSL4uijzTIsDmP6wmlVaYiDk0jCr6qS7nXf0ZlV/R6qXbGLVVFth15Qeq/6jDFHurqw21oTBwb08y/0eLvjOidW17HFXdQ2rH3bD7C09rP48Fa23JrBG+jz4c344azRvx2VJuaxZ8AK2FXqwZpc9VlYbs9ZnTVBup8Taukqo9d051g4ewKQ6XdY+NQxO1+ax9j89qJFYz7P14yDkWgbP/tR38gFFnt0igmLtS6wjaMLNF22sE9EDCT/7sk7fQbjursJz9M/gVwaj/HluKww26rPu6pUoX2DEujGa4HQjgnU7fLBXJptFIgVMrrNhUVgKDp3MYFGuVMjMrGBRcyFaffjAoo+IufdrWc+8EmPGbrFe+CxoL9Zg/XU+WHflAuuPaOP9FG2e5+8lbBzz4HmnAoWUFH02cGlEP6GZDTauRJPKzWy4YR2usYtiw8QnWKCZz+KmcuHlirdspF4m6I3UsBGZoszQVTaSWIPe2098vFG4+ZsHGxsOU8LYDDb+NglzzhaxcY4Xxuqqs0lAI3RMlPF8xXh0Cbbi+TtLccGedTy/LQqTr1znBf5SwXLla16Qegj8v3FiU40WWN//PzbT2w5NkUFsJjmHZyJH2HzjOXjzvRxb+LvCswgpW+QNwjYTE7aKzcLGSzFsdSFXaP8umq1epOAB6Sy2NvkGvy5l/kLZDg2wmr8YGYJF2RZsk6GC5vfO8UIfT8gO92F7L0+0sq1m+/xTmLF6NjustRb0FA3ZoVQVvbaFs2NRKDQsj2TH5wehq6qJnaxkwWuvKTtVdUOWzzt2Vr+D3r2P2TnvqIBfNrPz0Bp0Et1ml/xgiPt1FbvKyEJ09CS7npWgZV0Bu6l3o+hFIrv5t2BBhSW7nU6BbWnhDH6vYfRyA8O/sXBMksy0YgdMrDv1aSxlOCT5iZemjwu66r68tMMCW2+/YC9TS9zrepS9xfvgScJeXh6kBXVv/Niv8g9MrvzIAZbtuMEB/w+z/ud5
+
+
+ 562.257629394531
+ eJwN1IlbzQkXAOBulnYViRYULaKuSpHWc37n1K2+Ros2UwZlJ1tlyyBLGrpaJGXJklZZS4pEMkQ1jESRiZGbpCQV04Rv/ob3eV6aqFeJPjuBTCZsxOygbDITekG6LZimPI8Aafw0MjffABevR5DVrIfoecmIZqolCfpSY7Ibex6NGi7QLOUNaGuWSbNub4SrfrfJSTUZ3ORMyJnfg/rrNJLMMYB33d/IY4o1Tp1dQp7jOmFqtg15TyhEnemNFEQ9KF8jpbkWaVAfkEY/cwuER0povosITie40ML/5UFukwmFSz6A6MtKWu61A/VLEmjlhFU8rbaMIlVl6HRLTFGT9bG+RYs2WVeAetld2mwmQiePUtoSNRcadV5TTI8urtqiQr96fEJdn3MU+6MKdoRl067YJkhWeEhxsZaQum4F7c0wwpnoT/FDe0BUc4XiEwwgYIkL7bNwg6s16ygh+hasrl1C0kQfqD5bTtIOTZcOcSYlbolCkWkGJQ2xF8aIyinpSjqybSAlTx4PByvVKTWzGHUtmuiQ2k0Y12RLackltPK8jA5rewnPAswpXeEMTC2wpaOHjTG51JaOt+ljtvtryswuga2xE+lE2ju0X1dC2YfGw412E8rJvYZ7dmZR/owHoNm3lvJP5ODNn19TgekMsCjQpLMWf4E0oojOxxXDBRdtumRqAm7N3+jyKUV40dtPRXKDsGfRDipa9jfU73alYsNX4BDJVGJqjYkKx6jkSzEYeN2m0giA8KHHqCxaQ9D096Frvo8xfn8wXbfSFdRuONP13B3war0Oldu/x+kV76hCSyaUNi2kijx5mHrtGt1s8cORyYVUKbaG02rlVJmwRVB07qLbVjtR3DuJqpZNxhrZE/o9vR8e/5VId+2XYaSNQHdz+vGRZzPdS+ihq+emULVmAtkHjKfq8FrBUEGfqi8NgNvmXXRfLR4DzGzpwUwTXPvLbHpwPwmfh76i2nkstBZup9pLFUTnb1FdWDX+duoL/TFcCxsPeNEfNy7jKp9IeujwCPJUDtPDtK0YKhjSo6n+qGhpR49efccrAy30ROyFksit1CDfLNiMcqSGpTY4odCNno1Wpde7V9Kz42do1v0L1KiviK3Gf1PjiQFMGrhFTUd80LxjG70weYAh7qnUHNWKj2Sh9HKcLnbcl9HLffKoEaRJf+k9gH8udlKLYyZEebhTS5Y8bkjpoteqt9HxrTL9rbAC5Yud6I3qNkHn8GZqzZ4IU2P20NsMMSSxBsli1mNPWQW1eRphXXIOtX3cCRVqAdRupwotxx/Re6cwdJ1cTh2qmTTSI5U69o0U/vyjnz5MdoS9Por0oVgRd7q6UNdIA9z9xp+6ZMXCimd29NG2BCV5S+jjzifY+E2VuuuD4WXDAvpkH4odTw/Sp2PPYdxoA/p85w4eOXmWeg3MBSPzWuo9HogHC5Wob/EvwiLFTOqryBP0FjTR1wAZvjQT0T8aT3Ff2T4aUBtBdRsUaSD6jBDdqEL/KocJe9ccoH8zr8HTKTY0eHAkGv/uRN9MzHFw0i/0rWgJvi3Vp+9DvuKIr9X0/Uggefa60w+lHkzzOU0/klOwIHyQ5cabgKOBHMuFmGHVMWK5F32CZvgbFplsA43EtSwKVsb0FAsW1c+CtgwHlm8qwgL5yzyk7SQW5C7joQF1FF13noemx5HZVlMe2rZX2Oacx8PgMJ5KX8LD2l3x7Jn9PPzo/7A7fjgPHwwXZmgsYgVrFkR+uqwwV4rvvsqzQiLjpxfrWVHTV3h27Tsreu9y9Zs0iRWlnZgv1WWlSXPx80kxK/20EaV3ZrNSoglWelxmpWp1PHTxAiv7OQhb0z1ZeU8dFfaPZeV7MXgg/jmr6E3HaxvbWPX3eqjX+85qQzrBOWQYj5h9QYjwvc8j9p8QcharsrrxJZBcGc0aggKJGgJZY98E4c/r8axx10nwFgJYMyULtS9cYc3Wm3A9ZxuPrJuOZ3fM51GGNWh8OJlHVZ3G4fuWsZahJySssmCtJ3LgX1PN2rqD9DXwDmv/bEcfSrawtvSe4L+rj8esnwv8XsxjXo6DredbWVcyB6PGBrLe8Vlo9cSGDRxS4FUPs+HdSgj3UueJw1VwjcSdJ3pcgWM7NXmSVTuaZtWzUXkKWh0tYuPGOpREDLKJfCXk/iPHJsGboHyVC5sUSl0u1k5nkwY7MNA+zKYThsDlaVpseq4ZAuwr2bT7LK6sF7OZYogQqZrBZrNnCMXdN9gsTgeza0rY7KqfYDNCm806c2BtXSSbh2ZBOKSweXMoFsWdZIvGcpCpFbNYTwkyfaxZfOgJjrYdz+JHiSj5eo6naYYibFRhyymJKLL6yJZpkwXl7hy27BiK2Zk1bKXnBRWptWxV5ovLd5WzteQ6DngvZutsTcyYYcnWslsYoaLP092mYWnYK7aJleDTQSO26f1NGNtpx7Yh+aizeSLP8K+BPxfJsZ1iED53tWG74PnQ6enJdu/dcXqlBs/SfQELPrSyvfa/GO88jO1lLoJc82p2GL8Lu7Nz2CEsG+v67rNDpgucdmhmx6mB2P3Snh0HzfDAcGd2MtoOl+aFstNibUxO72dn168YomTOzqWHID7enF0WFEHJkE3skv8WXaoOssvzKkzKyGOc+/k/xwjGPZ9Aw9aHXVUk4DlsJbvpd0LnMym7xa2Bi6EnWfKmFd0H2tldNxf6xSnsPr8GDdcEsYf3PSEuwJ89En/CTlkKe9SMw+SNx9hrzGIh7FsSe4XNEXzfNfFPPZcwd+g89n74Em39ZrJPIEGqoQv7dAXDBa129jWzwnlqdezrNwTVsw6yX24EpHrH8JxGEU7qS+WAjJs4dpqMA+ufwNNX7Rw0WwMCNyRwUMZ8kKa85qCWdqjwD+PggGDYvrmdg49Wwh3XTA6xiYXvmUYcskAC+YadHPK0D2rFHhw65Qca6hRx6ItjODY1mucbf4FT+b/xfH9vOH/rCy+wjATXhlJe+CYc/efc5bBSHSxM6+ewt8bCsIIvHG6lD5quMRy+1BHV3WUcfsocu5x+5UUr/HHHYh9e0rUYv/kM8FKDTfi4UI+X+mZhrvUdXhoTjx4Nn3n5qWg42NXAK6OrcObgZo5Y5I4LRDEcUTAT1i0q4dWXl6LeySO8uq0Bsx6f4jWmcqhYtprXPAzG8XnPea2SF+RvtOSo9ZNR/ayYo6o+Ycz7Et40bje07Z/Nm0JaIeFcE28u2w2jjw7jrbVa0BunyL/ah8OJIjferrHwv0/SOLYYcZTS8v8D6sRGog==
+
+
+ 589.224548339844
+ eJwN1Ikj1wcbAHChKPcvkTtzNEdSNGfzPN/niTJkopSWo5YOapRIhnVQw5ZIpJtyJdaKkgqxpK3NUQlJCCm0XK9K3n3+iA8tVBFwQC6fFj66isLINbI1VYV+CSDITQSn5gfkZOkCz+7sJA9aAan715Dn0lh00Q6k1Y9lwHRRH33nMAYSj9ZQQLAxjClM0MaJCjg0soW2hCdAvUibdjQtw7jeFRRqoQwmMcG0S7YaL97Ppt2S6yEp1oDCrM1RSn4uRc4LR83mmRSj14L+jm8oTqUevOLtKf5dLha6f0uHw+6i+vn79PPF5WjmsYWSMo3BT9WDjl57BNoiW0qeLSsUtcymFJEKqh0xoLRTzqCj8YlOaN6A5vAGSn/bAA29ayhz2gn4bUkuZaarg0mBN2X2yqJ720w6uypfqOz8RGc/G6PuHEu6sDkNmi1O04UJZTyjvoeysiTh9dz5lH2yE60jdCh38xl0dFaiPPluDK5No7zBCiyzbab8E/mQt06XCmaHYqa0GRWkmeO9OD+6bL0DY0qQCm+K4T79CLpiYg2DTQeoSF8RPt2rpKIj7pA1mEXFn/ag7uNndNXOGzOCrOl3UT6amdpSSUodnprYTaW2J9FZLppK3wXhL4ve0s0LuehRO0ZlWUGoa9dIt6QAJy91060rjwSpmINUvnQ/vHvxlO5K9GGqoQ3dLWSSO2ZIFQc3QJKvDlXGpKHKbSWqUvNA6WX5VHWhHaxd6+neHFuUNtOmmjO5oNB3gO4HizA46Dk9yGiCVLWLVKcE0KFRRHVxB+mr4x1U17UcRht+oz9DG3B6UjT9lX4Np9WO01/jkSg58pz+7jgpHM+Ton9W+EHNCi1qFHkLxvvXUmOEMU7fUExNBkG4Y0ULNWWkwkioCj0WIsBmoJKeGs3DH2IHqVk+Eno236bmrj5Btf9LelblLkjL5lHLlW2wsyGCWpf1Cwn2R6m1wxFvFrXRc0zFnV+MU7vnDWHO/nJ64dYEMfyeXnxUEewKEqmLjeH23hPUdfsSihv8RN2LiuFYjhZ115kJBp5f0yt9kWDepEyvjp3DeWkC9ZR9xlyTCuo92Y6OOaPUF/kBs/X7qP9cCz62jab+j8Ugn25FbyYO4zS3LhqwzccHg1/RQFsTHjR8RIOm6WS+5lca/EmA6Jl6NKSlCc7bzGnoaDfeaWmnd+YCJl9Von9jT0KLsjO9F/2Cf+TNo/cFVyEkUoWG7cYgbvIIDeecFPLFpmhU1I1l+X/Q6J4S9G9HGlNeTdJLVtG4vTyGKnXQeFE0itIbaXwyAi0fHKWJL3vQykyXPhx2E9ZdmEEfV7qh9a1K+ljcICR+bKdJ8MPE01dpsicb9xxLpKlAS+HAgjqaeuiNP6T3sZjiA2GwJo7FkqPRcbksiz01RrXrIp4mdRvv3FPhaWOKaOt7lsW5Gy3SQ1k87J0w634ti//Wj1N2USzeIY133xxjCSUtjPOaZAmrIyhZG88SAQkY/5UvS5QHY+6nP1lS4yYMvPqHJX23onynKUtm1whCVBNPv56GeM+Wpz8vxEPRxjwj7C0ofGjnGUNr8YX+NZaauILxT2+wtMtWrLNYytJHpsAr7BZLv74pFHnn88xEXZz8ppdnfrYRdBQiedbm12zZoMqzbmwVqP0sz/pfCnRtNWUZu+lCA99imbAxPMbBLJOHDg0qu1mmtQrKyz+y7FpXjFyow7KXxHD+3kMstydZeKj1kOWq2nD4yXqWG9MTDO9rsbyFDJbsHmT59N+xhe1ZvtFAOCk7g+U/lAr+Vj+yglMWXlRQYYVd/32HnaxweitWpw2z4pyPcGHzGVZ01caWng2s+DabbGzHWEllo/BovQErOf6F9wt/5tkWleBV/iMrK48KDkqKPCfge5CzreA5XTJQvrKaVYziMfRZB6sGPIGA1imem7wcY4ebWS1qFAvrh1it5TsIdKxhdW1GT9dtrP4kDK0um7GG5k/YummCNXx6IGWmDGs0JYGdlRVrlvVC0wt51uw9LeROObLWZAoucstj7e12IK4RzNrJxbBKwZF1lN/yXHlP1nGRxAxHgecNmAFnDbGuf5CgYKfKui0KoG3xkr+IqMTXOxewnnEnTOFh1lvtCE5xZaz3wR/+LK9k/aZX+P2vIjYo2Iz6x5XY4GWUsPiyiA3LnsFxGWbDvkzoTanj+Zou6B5YwEYztkNM7wM2WhyOaqqv2SimBu1dVdjY5zqe9b/MJgbzBT3tADbxcRAivo9jk0ufsMzPgxc4u0GfdgUvSFkACyoOsFnQEMRt2M3m65VQ3dCbF9cFY96HarYQ5aBY7T629F4GXzqMsWXGPnj29CIvCVoNI+qJbHX8Xxg/W8jWkiIY2HOHra+oCRU7ktimqho7nPax7fN8YZdSI9ufv4ThBqVs33oOI2XceOmqYUHXapSXptRA0oYM/vrJXpKrSWUH7xgaePmeHQoG4FOZAYN6L2b0RjH+/Rnizc8zudsIfo/jmS6Ng8nvp5lzcnCjYhTzRAZarDRkR99O0OFSdlKrwkVPpNhpc4yg7dXGy40jUN0ogZf7DUBrhjw71zrgrr+v8jd5ebhoKpVdyAqzS3LZZSwNYnRq2NVMEhOf3mfXtFl4dCqXV6b+Ck4/7ueVz4fgevgpdl84B0JMQ9nD0wXNG6/yqvZJlG2qYk9DS/xaRYw9/V6BU50PeymbYr+iIXulLMKkCltefcQUA/8Z5zUWC+CZohSvOTOMTvN12HvjeWjur2bvzLVQrN/Ea5Pn0baXybz26U701C5kH4lgPDh6lH1MZfDVRD77pGkKSSNneH19LTx88oY3KG/H1OoE9nXahNLJQex7PEYoWfUt+6WdB6dwCfaXtUNxs8e8aTtDkvRG3lTaCDbrQjiw8yZa3vbhLepLwCvajrdkZuLidOKtIW8gpf4OB4cnQVJIIP8wOxY2ailxyBeJuFxHmUNWdyDdLuSQlkCwgSe8K7gbrU+t4zD/CSgRT+GwthHScq/i8JZqQe7fAo4w94HmojLe2zYTBnr2cuTqaYLRf+/tsxvHU85lvC/QEiVeRHHsBy90kd3Jh4ZzML1+iuMX3kWJGZJ8uPUc5NQHcIKyOxbMdeGE7E44tXKcf3mfB5VavpxSbAQmvaWcMlwEJie++z+uRjMu
+
+
+ 828.876770019531
+ eJwN0n081vcex3EsIspNN5tHZt2Yu2uUexfh8/l93wjVKjGle2WnnJ04raLJWJPGRZh2yU2kmuGIiqTjJHPZQm0yUSw6VFoPik49KsTpr9e/zz9e4lDXEZIblohEjb9o0t9XJNa8oYpnv4nUwpO85Ei5SJNXsItySKTLidS7hci4/AcVuQSJ4/EWHLIoWCit5tFgixB5RQYke7RK5Lv0UIXKURRkqtj0fK848/FMXv3eHlFq/jnpO+mIMjtv8ilxE5X/UHF4wHZRWx7MIZ2hot7xGofoxIn687/T990XRMPPR+mTHC/RuOYa1cQmCVVLFZc9HRJdKctZ+6ZS3P3ZkgxMbcSfsjbmyo3inudSmpumIfoTMr0eCxsxYNfN8ZMh4kG+M9neHBAPSw9SXs+wGDpmTbG7VothQ0uSK9/1uIqeDteKEZN0Kt22VIxEalH1j+pipGk//bG1RTz/2pMPekC8XDTJKYmbxWvDHTQ0qhCvI9vZJ+B38abJnnX37xJjkzv4vlqgGM/dzYUWA2Ii5jn/u71fvPU0orhhW6jNns22AVpQiz8rbbmkh2nGbrzsvVZM8+l45zSD5twgKgleDM3QUyyWmUJLOUxZNonQGpLYVnME04PWUW6EGXQ2rGRtTR/M2GJB8lfj0P3sMRVeOQO98u+pMfUJZp2qoOKr1ZjV8hHt6LsKg9AK6rveCaOPNtHlFxowum4gzVgXizm9U3TxYg/m6lpLi6rTMfdxA2W5acHYMox8F8+Gccl3vD48DvPDH3BejjfmZ09JhuG/YH5brddgwzyYmH7Be8dDYZITyOn+Mfiw+SzlRs+D6Xp1Ltt0AabKNq7w8MWCG8k8f5opFjY+lnTGALNAQ7a5+3eY1UWR+h0XmDu/poczqmHetZjlpVawyveWDLV7YNWnLcWvvQLrVTspdW0nrHPl/P7EScjU/0utHROw+e04RWmYwVZfxrI2bdj6gVdlGWGJjq50ImcDlvi1U7+DC+x8FNKZfUWw3/Q/qo4YgH3rRaoZ/hMO/qNU490Eh2+vku+lRjicu8ld12Vw/DSGnaQpOFau5P6xL+A40UpxVwEnjyl+HlcJp7t61PyTL5yzG7joWxe4zvxVsvngV7jm6XBshAFcb1RS3dgg5EaXWHo1CXnshHS+82vIn9RS8YMDcGv4XBrtWAq3wZuSZ5MC7pIGp13bAPc77lwwfAXLcmTSwuZEeKjZST27FfCw2CtlLw6HxzYzul82As/QAcqt2Q+vAHORlPIWXgcXsrpfBrwqvTjt8CTofRt26tUC3dvD3xT1gq2+5At1+8ChHRRm9AKcvokaf9gAvvOUrU8rIBle4ASzFxAWe/myOArxSzplTXMAtKZLplEBgLuczpbNgrd/K6XN6Id30ktJOzke3qrb/OGlH+A9ls0nmurg81mztGDua/ga67Oy1hG+Bdlc1fAB/PLTqHCwHf6rUiXr5ZbwP2Ii3XOLh3+LUih2tsF/6jSrrsxBgOVpnrnxAFbo1nP5EwkrxsfFuo/tsdLSjzuz3+BTGxn1BUdiTWUwtQ+EYc2brdTQvQ8hJ+r5q9QbCHn4HzYa7cP28aV0X18gbE80WylysEPvBsm+s8SursP0k4MSu3V8OfFlEiKWV9D2qThEf3KAi4zdEbM+hf9mE4vY4a20vcMOcbZOnHbODvEhkdxweyMS9I6QLxKQsEKD5TFF+EYey4GbTiHp2SMK21mO5OnLqEbujORDyTTxz/tQ6B5lV34NRXIkpRnoQfFkN6+Ob0fq5RE2jpHhmM1hilcbwLF/zeQQLVdklrZKcZkKZF7X5ljVILLaWzhqXxKUkWupoyEauSpnukWMvII8jq6JQn7IVxS2OQv5USqWbb2Ek1UZFLRkOQqbH0lV3cko7N8j7Xs1hMKxNM4vfIai0XoWN9pxRqeDUm6FodhvFgefi0Bx1W0qkjJQ/HaUU5MPoSRqULKX66EkYwP/2CtQVvWXkPvEo+z2TqHvvhkVX27j6T0muBBURYFL5qFOtYVvDZqgrieUD777tm5ygaRpXoD6OffY8GzZ/wGzvreT
+
+
+ 639.798400878906
+ eJwN04tfzfcfB/BKya3rUZJzVo9Qkp1SSU2t9/v7ealQqRRxRum0SP2Q2xRRnCQ7rYShtVxbYq6lDCE7eRS5FOWWYT8mkfywTKTf/obn4ymgZ09bB88Xk/oHUdOxAhE6XEmrH28TYWPdSLGlUoQrZ1Lbp1siJr6U1vzxRiTQTVInhop56gga7VAvEke9ZetfQ8TSrjRqDDMXad511N38QKyyMucB1XFitdNCqja7LNbIDXlQ5AWxoaYPpdRkiO8PDyG0Dxa5jsdoYmqZyFvawq7lnWJreAaHyVrEj4OW8fbVDWJH7wuK/CATP1XcIcUcB7En9zNb8yax18KBtUobsS8qhapMDoj9Q4t4cme6OOihoxL9k+Jo02p2zbolyl3yeVxcgji1u4uVfxwWpz3jWbPwpDhbvY6UmytFdZIerXUuF+dWBPH862PFBbc4tr9UL3S/veaW++Gi3sWG9e8Gioa1xVQW+LO4mj2HTlbtENd2xnFGUpe4sSefjSJ6RaPFRfb81CpuFXmz9vY9cVtuwH6GaeJ++RtS+tWJB2d3cFbNe/EofgXtbngmnphuoC2yUvHU/hse1NIqnt7cwW73VaJt+A2KUFmL55a7ae+IPuJ51p/s/v4L0W56jq70VYn2Qg0PTN4oXrgZ8iG9HvGyaCtdqVWIDvt15Cp7Ljqdk6n1UIf4X2gLa3tMxRuvNXxGPUu8E3KKcvtadLkGcPYUId7/9YTKDCvEx35f8JZ1VqJHcYJ9C5tEzwEvyv2nWXwufSkZtXWIXltrOmvzFHozH9GEX1qgn1TA2pgWGOws5xnKEzBo+da/YZIPDG1O8QLnZBg2j5esfaNg5LWI1vY5BqP85+ST3oy+yxvYONQEfQ9X8/HzB9C39SeqmPgbjGV32WeiAYxDjnDRujz0S8tk1fpt6Hf+ruSU6YL+09J5fOln9L+SJxmELsQAk7kcsnIuBpTmcbbOGQO/PEml/1mLQeGfuHOAF0wM5/NI90swCT7O8uzHMNHtYVnIE5g6NLN7ig6mMyT2DVDDdK8zNeY2wPRel+RZEgIzmZpdRhfD7Lvr0lrFC5hdPEoui0pgHm8h5Z44AfNz7/ly/e8w782j11ITLHQJkm+qGhafSqgjbSosw/ZJxjmNsNwaJO36Khcyo4mcUECQRbQIj8J9kGU5c2pOKWRVa+hp+3EMVr0itUcxBj89ziNjX8NKdlZSOjTA2nE2/7JnCayvNvJOTRqG2LxgbforDHlxWtp5dxVsHGslUxMX2CQ/5+/cEmDTISdFUhWGjgqkO7M0GJr0licZHYKtWQ6f2jcTtpm50nm9btjqrkti8mDYdk9jTbMrhgVn8397qzFswzyppEeHYe31ksqnG3KbLNZWZEIeFc3xdY6Qd7Okb7QNir0jhd9fOVB8WMeXL9+D3cVi/tZ/KuzdKyU/lQYjmhJ5+A/VGPXGhy1Tx8I5xoMzrBfDpcuKut5ex5hOe56d5YUv97+lV7oiuP48UFpyJBpuBhreU5cCt+3WpN9hB/cRZ+nKh4dwfy1Rhn4KPKbY+F/TmwOPPBVv2daOcQ97SOG0H17h8+hmgh+8NlvR6JDR8HaaQPoXYuGdpKZPD3zwVX4OxRuux4TuSsnRsi/8zrzmj8WB+FqVxaeda+E/u54LhBL+JbH898dFkGau5yDfQIjCMfTOeTpQ9paHjanDxJY8iq1MQoDtTqpy8ETAnQVsVVaDIINMtpsuIWhWDekeyRHUVir1swvFpP2C1K7XMDlxHBuquxB8cBVFTVqJ4JfMq+Z2YGqfUVxiNgxTDxqRQuWFqe/mkXdbIcKW6HjGwfEIT7jLmyM1iLgRQrXyW5j2OIkL/vWM3PyMLfc1YPqifzimfD5mFLmSS00OoidcoMbKR4iOq+HOXg1mDcmTdIltmEU5/q+KR0IVG8bbL2+E6kgqrfjBCbMzDTmyygIxn7fz8JVtiL09kCsOGmPuw4+0o78+5g1w4mnpdpjfcJ3Dp3chUTGNjtYuR2Lyrn8fmyHxlIrucwAWtJaR1ngKkgKa6ciBxUjuOEneDa1YHP2II/18kWKlY6NqBZZ19KfS9CKsCGv0P5YSjfSlajr6dzrWqDQ8YqsbMoLl1HiRkLG0D6l90pDR+ZGdlNXIVG6kwCl/IvNULL2qvYr1y56xd14/aM5cIoVuELIOBdCG2NPYcD+VTW/ORLarFy/dtBgbr5RyRtNI5DyUU9z7x9g0NIIUhbuwqTeXotyD8b0oor3DK6D1TKbO2iBolzuyub0W2i11tLjMD7ljPelOQAlyl/9K0/Nj/g+Ws/TP
+
+
+ eJwNl3c0F3wXwCuhpGFvEhlZGYnSvPd+fz+jbFE0pKUnpF1UpJQom+y0RfVEr5VNhGSXTZQmMqpH6/XX59x77j33nHvuhFy/4xw/iQeQm6jOlcwKgdy7e6l+15T8Yxs1RYxB3vTTVLp7EPIk3nAcnVQgT6qHma1lkCd7mjrHeCBP7irL7x6BPIUxZu0aAHl+4kzPuhnyYnrI08oV8hK8KOcbQd5Pcab7/Dbk+26kswV7ID/KiHxuy0F+TDad0e+Hp1JLqPjTA3gq10h3spXhaXkbLf/BA087vtLy1X7w9Os22hJWBwXiEWzerzlQIKPD/OQEoFDyAtmkr4ZC6WwyNbeAQnlBCtG+D4WJ+8hpcyUUSaeyOQsyoEhhPWVK6UKR82zOmRUHoOhgEF2qOgVFMavJ1lN2ipfI/9ocKIo9xx3cdx+KEpayrN+CUCzxjhmrikKx5DDHv3M+FG9WIiOxDCj2vcECc5SgOO4YXQudgBL5YI6x0WEoUeSntz8joeR0oql+/jUoiZKl6z/soCTpN5trXQklbY30oCEfSjrWmNpJ7oKSTg/Gc9wRSv7O5thoOEOpjDf3XstqKF0YxMmtDYZS3SoyP2ENpVtiOPvc9kHp6fmcRO1BKD2jSfHmBlB6boyc50VDadh0Up3uAaXxdSzp8UooTRlnx2fegdLCB3RpdQmUPjOh945T/u3xdCFryv+rJN3dYwilfwLpQEQhlInfoc0pDlAm1UFr9/yCMhkDtnS3J5T5ZLGQbRZQ5nuLBQi3Qll8GK1V3ANlCfGUuy4Fym66cdylsqHs13F6SAZQLnmZKXryQrmcOtNrD4By5QZmFG0B5Wf/R1GamVAeO0Q1uk1QHpdJ8UnhUP6/xVTfZAvlI+l0Q7AOKqQz6dYfSaiQcac7xlyokF1Ia7SloSIpzTRU3hEqUo5SyXYXqOh+w22xPwPPFBZwcpe0wLNtwDTP3YRnF7voroQqPIvz4aR+mQeV0t3MoNISKhNNyTn3D1Sm2tE2hwionHxBelckoEp6L3Xsy4IqmU5T7U3XoCrBgtPH7YGqLhmy0VCD57KraOSkyBRraNnwZngu18zUOVP6U7OZ22IzqJYMoJQHa6Fabi4lF/NBtcIb7uNiDag++R9dl7aCav9u8k76DdXRquyT6EyoTmGcjX/KoUY8ipIDU6FG+gLTXOwNNQridLzgHtQsJAr7JxpqTp6inIz9UHPxGB3XloSaKFEy3rQIauLzKEPMCGplcmh7tRLUniqms/17odbX0lQ3fA/UxnjTc4kEqI3TYlUeQVD7u5Czb6cavPB5xrHkzoAXvjVUtC4K6qScCBSFoE76DbGrB6DuyDbyvFsNdc/PkU7/E3i5vYq2jSrAy5RTnIrbO6BeRovy4CjUK/SwRfP6oH7hO3ba4DLUc0bIzC8U6uMl2dkdP6A+cZTW3XsL9RU/mLrRMNS/nqD1/7pA/chjCk78DQ1y67g6wV3QsNCesnWaoEGxy3TDiUJoSBRlx0M2TvEhi4WV0JBqwRUc04CGu64UsLgFGro2srkKU3bf7tPJiuvQKNFCF5q9oVE2ie4Pf4dGBTumlNcIjQs/Ulj3FWhcVETjvUegMbyWXR4qgib5AGoX0ICmBGU2pCMITZ1yFOppDs2yfozv8CZo3naDSlzToDm6mwUnikPzv23ksOU7NL9xoIABLrRYqNOTX1HQcvQneRT8gVb5fKq6JAmtU/kQ1vSB1q0/KcTWBVq3n6Zoy7/QmtjN4o2HoLXmPoW+cYNXMtZcOdKEV/LONHrxKLzaEs7xHlGBV3En6fmYK7yKL2SxD/XhVccAhXUKwKvRQ0xVfw28lu2lP7pd8FrBiNux8S68VmrjKooFw2vuQgoRK4PXyamcO+0n4fVNDisSMoc2qbeUIvsR2hQS2FzDJmhTNOTsbhWFtsPf6GoWQFvyFrJpqIO26+FMrVYN2soWkPNWa2j7wUsuPIHQLjuTgjxKoX2hF93u+QDt3204h/LjoWPLTzou9A90RK6l+/dboCP2JWcDjyB0fEugQ1FR0CkeS5Ozd0Cn1HJKdlWAzo5/WcbEfeiS5aMrrxdAl3wrHdwqDV2L5rDoyQjocjWj9MXD0OWzim4WuUNX+1+28tw4dEv/pvZ9S6E7lY9y8y2ge6yG0turoUf+OQWOTlHRiHPaMgV6Fo2xWzk7oOdaKJ268Ap6ktIpoHGK169Qv7sJ9JQnsBCjC9AzvI3ZfHsHvVKldMGxBnqlzeh6yFzoVTLiBEzlpTcllxOpZw29N66xJZPbobfHmhl1ukFv73eWvj4S+uQGKFDCBvoUgunT8fPQt/AXPef7BH3eZ8l0awP09VjRhcV34I0UP/l1DsEbhc90LUoZ3kRrM+ujw/Am7jfdKMqCfvEHFPE6CvqTB+hJSiz035hON53WQH8P41jnZ8CAXDs5DcbDgMJJ9tLyHxhw5ucUpMyFgW2FbG6rFgwkMI7JUW0Y6HRhOh9rYKB7nAn2Tuknhujnwmp4K5tGVhANb+X62S/5XfBWYSlbVOEBbxWD6byeKrw1d6OHY//A260L2Zk2LXgnn0wX1V7Bux2lLOdFOry73k1lq1bAoNwrOrJWCwYXL2OK/rIwGH+X7vFawGDiErISH4LBVG06sUAH3suso5jUt/Be0Z3x8k7C+/pQCqw6AO/fiHIsV12ED4re1NmnBB8WHWXCH8/BB1cX8gpZCB9i+mnrbyv4kBREe7erwYfKtfTPe4BPc/Jpb/t3+HR/HR2eww+fMjaYSrdPwGclfXqzfiV8Vj5PFv0In7XyuIpGOfD5gS47cvQnfJELoSL1CfiiYEu+Gl/gi2sT4/G6Cl9StpPtiR8wpJBNj2wiYej0IG089hiGZX2ocbMWDMuHU0TbExhWPkyxBftheGsIHeNZBsNeheTCmQbDsZfpJP9WGK5eQsE362Bk+3O6FbMcRhLdqVLqE4xcz6FAxwD4Kr+JVovpwlez+1Sc7AijsnPo2owaGNXMYSv2r4HR9Hh6zF0Po71OLOF3C4y+PUEp9ndh9O8OcuJ7AGMLH1LTdhMYU/pFO7L/wtgZIU6IUi2Mpe6irzq3YazcliVs6oCxrnxOkHQTjA29o8rexzA2HkPHRgDG/t6kgGRFGJeqpdLsuTAuP4M9ff8VxhUlqVo5HMYXeVOcaRGMbxWlHlV9GN/BWHzjFRh36yVPh3swfmyEGc56AeOn/SnlkhuMXz9AdybdYTz1B/10m+KLXErw6YSJqboP+eIKE0qX6HmmIUwoh1ByQA9MbJukdDM3+Kb4kh63NsE3lXiKa9SEb8eE6diGIviu6EhhWpXwffs3ZtBA8P26E5OfAPjeJUAnPr+GH5L6lOgqBj8UbVhMoAX8SN5FQapj8J97LtlLc2BSXosJyY7DpOcDsj6/EybjTOhO0RD8vD5GaQMb4ZfiMHnXv4dfSfLkOSANv9WqyKfoLvy57EgZdsLwp6+fDkish79KXeTnPRv+ulbQ+/Wf4G/qH3pzyx7+1oZRbSAPTgsroJ1+bjityYwO7ovDaV9byVXDE6fbOFLFrBc43dOaxa8OxOknJWjP2iqcftWf8fPG4gzLGbRb9T+cYaNCwXLdOMN7J60SMMYZoSV0UWIvzqj3pcNvt+OMBgOKmmuDPELGFG0mjDw61lTSMIk8etfpkkIA8lhF0ZaEOuSxnk47Lwkhj80q1qRejjwOgWSTqo08nsZM4DIgj7cLWz4pgTOth+h26wecGVRNbrd24MzgQAq86YwzIxaQe1AIznw4SB+So3FmgycFT4TjzD4JCvQoRl6hNMq6kYC8IqJ0tfRf5N3zmnbyvkDeUHvyDS9H3ogfTEG2A3mbl1Kp7V/kHf1C/lmDyLc0mM2ZJY981nOYyHNP5PPnUvuBfOS33Ey9dobIb53DvD6sR35bPmbSsxr5H80kmznrkD/TnykqlyF/kx/jH/ofzlrqTlEtU7TyoNTOrTgr1IHcZ6zCWaMJTHgZP84Wvs8MAhJRQGg1k1jwDAWExSnSVQ0FVrRyFxs+QAErE84v5QoU2JXI2azaiAKn+JmBxlEUCPWmvPO6OMc7iemdu4+CYsNkteErCtq6k0fWNBTcvYu252ajYOgFrpnVahQMbybbIyMoGDmfjhytRcFHyZzWg/0o+CSQzhXzoWB9Pmfk5jsUHKmje1pqOHfBEGs2s8O51tKUsDsd54XlU22fOs5f4EYbL63F+TlfyetBGS6wc2cLFJ7igmZxOmRzCYVEnrGDYbwopP+W+j9Ko9CLSfLZYI5C42eoOVQChf4zplcXS1B4nhuNfTmGwvpz6cyMKyhsI08fc6NQ2HsDXfI7i8JRSylTbTYKN95l0e87ULilnS52BaLw6DO2kOmhiNETKuY1RJGNTqbzCoJQxM6T8j5bocjOAm7f7dcockKCu0vqOYpc2c0pNF6LIpEr2LWZRSgS847OjySjyI1y9k1hEEWyXBnP5pMokmtL9/4xRlGbm0xwZDaKTu3H2ZP1KJp5lU41eKJozl+q/d6PYtZ6FMMrhWKuo3TZaQ6KHVegwLnCKHZWlirq7FEstIyTUfEUxfIKqflJL4o18LL/Je9HsfEBlqI0DcUm0+mukCaKi/EypfkbUDx0khlMfETxyCbyU9iC4rmRnKrkMBSvm+BcveSO4gN2LKtiLor/d515eBxFiXm/6furzShhf5ASsAUlvHxYe8ERlAiNZTkLg1ByXhMFz5ZESf3p5PPYGiVtPdjJ3B0oeSiCCdRloGTfWop36kUp2xEmtHQdSnnZscs6s1Dq8Cy6InYLpfy16O6BOJQKPUXfre+g1M3tFOrOQWnRNKpaWYLS+g9pq20IyjgY0z7uE5TxUmXzv4ujTKgFnfz8DWXCpdkp6ZUokyrP/u0WQ5nb/1HA3ym7xxrMpCYWZUp12JJvu1CmOZjiOT0oGybI7hmqoWz41B97ag/KxtiRL68iyt52Z3c9fFE2/wt1tt5A2QZz6reRQzmhDNpbmoFyokdpME4N5Zwe0I06B5SL+B89zBdDuQmkyxJjKC+6jkLS8lG+RJ4SUyRR/l0KXfA+gwpCWyhoWT8qHP7ClmR7oUKUxNR8kEKFMWF2TqUGF4ooMoVBHlz4uIlsLk7HhQ3/0ZG9DBUj0uj6pDEqtpynl/P3o+LEI8oKTMVFKlEcc/dnuEjPj5KHRnHRyl+clcEncJG1LetrtMVFu+8zj3/GUSnMlDI181ApQoZu7zZApSh/uskTjEqNGizM+xgqTfhRf54HKofrUMmAEyo/mUNewSK42L6Hwr8swcXeGWS+fxMujlCg1Kn+Xhx1n7ZVHkeVVYWs7qcuqtgqsZKMh6hi10aTKxBV9l6gCqlWVDk8SfX70lFlKm6m9SJUqVKkDv4TqNI4TB7dvqhqa0J7z00xk3EeJmmgatMWjuvLXag6dojt2T6IatOP0c2q+6jGZ0SPfx5HNZE0JugYi2oKdVQVl4Zqmpl0JkUa1XwLqB2PodpFR8pe3IRqEYJUa3wZ1RJzmbR2N6rdtaOve+1QLVOcKtQdUS17Ax15ZoVqRZWU5CaEaq01lCQYi+qSDTQWegLVDc5w1a9Wo7phHl29kYfq3Da6aXoc1W0ZM5JUQ3W7eE6T335U3/uI/myqQPVDW5j4Cn9UP5zFceG1QPXIUuZosRyXCLXQvmk5uGR5Lvk7pOMSs3Xk5RODS6wcmZinPC45841+WxfjklsbaKeXGWoIvqRjm1tQQzSWAlfMRg0DDgV8vYMasfrs9Pps1MixZYsiDVHjuy3T37QJNe0v03jDctQ88pdOOGxDzVhbOjdvPmp+72PCf56jlogi+e8JRy2JcXromIFah9XJZ/dc1GoqpjDnANR6tY/iTw6jduwFusIXi9qtLXS9ezfqiGmydONm1FkGVOupgjr25+lp4RzUcbxGZ0tSUafpHn0eJNR5/4MaH1mjzh83pnmpAJfa61B13CNcGhpBxY1RqCv6lzr17VHXOIAsA5ahbsQQW3DIFHWT/qE0uTOoe0+VuoWFUTe9lOLy8lE3s5PeBIuibqkJZR1dhXrTR2hH3G/UEwlhIUVGqGdbx+ZLTKJeUyaVXPVG/U0HaDCnEQ0iX7L0NTpokDXB5D9E4rIZR+kQXycucyihygBHNLSPo6wdXmiYuZQ5BsujYZMus1PIxeWSxtRgaYTLW35STtIMNI40o+x1x9H49Rl6UFOAxm3xbMFnbTRu72TRJrm4YqSTUgKkcGXmcTbDfxaubDpGvYpVuHLsIzfoViuaiE7jWmjXo4mBKCfo8Go0sRNgYdFz0OSwMtPUe4qrMtcwq4ojuKppM5OZZ4KrxkqYuZMfrhYRYHKXC3C16Ew2PcAIVzt8oaCOPlwj7kd/mi1wjcwdapLPwrV2faxG/hyuE+2j+vGruC6umpPm2IXrOqZxpIMCcN2oEDmp+OJ6mY0UfUAS118LJI+PGQjH5lLbv7wIr5LoZNAtpK2ruLwPK5FiwxhP3wWkpBMcm4zTSK3nKEWuCul1JRWZXUHqjqIh60RkEtoUP1MPmcZqqglejcxPlHKWGCK7XENXZJyRRfGRqQEX2f8ayStHGjnOz5nAwF7ktMRSeuBR5LRpUUgrB7niQUxtwge5SjupvEwPzZQOMt3WE2i2lDgiHwvQbJUMR+ldP5qZTrAAQ3E0s7GhyJYraGYnx10ZVoZmDlUssCYBzXbGMy3LcDTzWkOpZl1oFmnH2XXbGM2aC5iATgqajVeyTVxvNBftZLq3UtFcqYbSRPnQ3GCASR7dh+arXKjT4x6aT76k3WvOovlvd7p4QAItTD8zw0e2aLGJjzr1LqNF0AJK7xDDDX1DFPb7GG6M3sK4UI+WRqIcac4JtHTgsFV5imjpqMs+XUxDy+OM+cSeR8uYYPqjvxwtY82oYY8NWuaspJOOJmg5spKiO9PRKruKAtYVo1XrGOXM/YJW/Z3M9PBRtBpLYaqn36C1SCsNetqgtf4u8qp9hDYKP2h3fDPafJ1PF+bvQZvfH+n9YV60Fahkgf9eRVuxg3SyYyPaSjxgal1L0E7XnC59nYd2bXW0s7UD7SXuMRW3q2ivHEtfeQTRXtebiXwtQAfxSUpUPY0Orb8ocXEYOrR/YpZ3w3DTpqn6E2jCTQXHyGveOXTyGKWQk0m4+asZBSkP4pbIWIqruYvO+5dQgPYmdI4uZsr8aejc4sBVDXZF54n9XJ7O/egi5su53KCPLsu8WLtIGbrYc6hNQBpdjuynqOQ56BJzZ2p+/MatWxypVy8Tt57aQYV/ALd/GaTNHW24Y4s1bT+9AHd8W8RiKpLQVdyUPVkWg66GrpQWfQh3ys4jP3qDbjI3uYk7i9FtyxvOd3sedDveR6FR/6BbbMvU39+Bbgki7Lf0UnTr1KJ8kWDcnahC2QUP0L3Nl/E9n4vu/4VTJdzD/XViFPn5BO5vU6GQLVw8oNzKlNJ98YCqHIuoCMADallsc70WHljyh6lm/sEDWkeo2lAZPaSHKChABA9+nqBLTQroLfuHwheU4CGpYnbtsAseMu5jAjnX8ZDTW7bMtgCPJLjT3r48PGGyjd4J++EJ52hmHuWIJ3zOUJdUCp7c95dp8V5FnwNSFPs6GX3SHckvyxp9nhpSxHxnPPOakeebEfQTrGCSztPQT7ODbujEoF+IDVVUzES/xB1Td7M4+g3J0D3fZeif2MRWvRtB/4xGynr6DM91p9C9fzXw3LtXbHqJPAas6KdLD6Iw4GIZ7X3wH56Xb6TaWTF4XkePsqrlMXBIguLCSzDwjxN53hjGoPNi1N46gMGhLvTz8VoM0e6nT2WNGBLWSi6DH/DKqlN0edMVvLLRl+mHeWHkNmGKfdGBkfUX6GxuMkYL/6QnJnYY23GGLgWq4bXRxWzdi1yME17M5iddwsQXF6h4gQ3elPSgQM9HeKuBn/5X54r3JKTYmmwDTMs1p9BZUpjhsojsH4Zgxmgzhd7PwgfWiXS81Rof3leks6ea8ZFWEDlsPIyPb+bSlRW9mBmeQ4dvjmDW/HPkG+WL2cufUfy2FZiDTVT8Yz/mLfpJZ0e2Yn6tPdsQLYgF+1LobIATFtywo7C0Ziwc302Xr3lisXU7ue6UxZKlP8nX6hiWHJUk/9BELLWaR4kl97E0RYGiCk9h6XUtuq72Dktv3KCLkQNYesuVTXMSwrIz2mydeR6Wnc2l7PheLBsbJz+Z51j2Q46aDbdg2aQwPf04jmW/sumtgwaWTxdmJVweLOcJ5Fgr22A5rzq7F7Ycy/kLWbDHLyyfc5LN2bEBy+fNogyLGqxYoUgXXSzwmThS2H7EZ5JdFHD+PT479YpuNNvhs8YESuv7iZVPfCl8kmFlpyX9e7AeKz9oU67VQ6yKeEahy+KxKl6aIuVP4POVSuzR/kisPmRCFzIPYX0bD+0b5cWGPc7kzzfj/ycMvKM=
+
+
+ 883.332824707031
+ eJwNy3k81gkeB/BEYRKqcY8ohqJSk9Aa4/v9/T7Y5Ag9rk7SVEsbO4jIxowjjZf7cUsqckTt9Mg10yVNrKSe2rEpRa1JoUNeU5vsvv9/i2l5s0lDHimmXxyiFI9qMXveVSFs3bCYfcycXFxzxdyMnXTm3W6xRPoZ/+n5BbG8upVVCraLsrxPXJi2W2w+5sou953FlpxJjgj+ILbrSKlyY5f4c00kb++qE680NLDG4U6x80QMx32sFbvyI1mh/IR4W/MpeRX7i31npmjzHxZif008JVx6IT5W6GKzr46Io0tf8hLpqPiiaC/ZTXWIY78Q/zA7Why338nSc7nihPiYczoPiK/0Z7Nh8kVxsvoyJcvNxD+sB/h6wzbxg70ZZygeFP9bGUiNUf2YHRDCFvmlUPJPYhfdvZgjPUqDckfM/XyAZMNGUC4wo2LtZVBxe08j6QZQeXKYLGsfQZUceJ1+OuZdSqA7P7ZDrSifvYq/wHytUAq+Lsd8yXMKHoqCxkIdarh6BRoBiRybW4+FqafZTtMFiwz/wSsfuUNLXk4vB5OgLZ2hvoPnobNJlTSy10Fv8WrOzE6Gvvw9183JhUGZnFJM3GEwY0RItIeR4imhfE4zjDxHKMV7GkbpC3ju20EYO1wi9e48GN9VpxHPfizxOMQHumewtG6LcHKgHCa+ThwcsAImH0LZx+88TIOXkSymGGYa4xw4aAWzzBect20+zPWeCwprq2DeHSKoRRRj2TYd9juniOUWy4W63BZYzNPl9PFIWKTt46DXAiwl46J+hASWSSc46X4VVuo+4GuR0Vh5oIJX2d3CKoN3pJG8DFahcpq0b4PVyQne8jAZq73WsvIzF3wV4EKN45awCXxHA36GsMk87zhSYQub+8d5ldIIbAO7haZaM9iWymm9cidsBwcoXl0Rdmr/f2+PYf2jLGocsYW9+UYKT/sX7KPX8cMFg7CvtmWlH5zxtdSIjW9bwWH7emrqeQqHslPkFVIFhwdG/OiXPnzzbzeSz3WF41Y3IfFoDRzTQujaDW84/lOPFJIGQYaa7BqsDeoM5V21cWDLJzQ6UQLuecKVs8whFCvzl4tMIW7bKDgODwFGEianKWCPOgXnNgO/2bKdRAqnspVChlYYnMZu8Nq2N3DZUE7hraPYEPaMVWaNY8NTY+q4XgTXVbbU4DKNjaq2wq8XSuG2JZl2qd+BW3OQYLN/M9yt250k3h/gHlQvvji9GO5lYZy1dBQev8vo9sxTeEYvcCr5yQaelW9g+ckXnl09vOvNTmyyn+DEh4nY9C6WdY4Xwiu6ke/6esOrPp/vmRjBa/omV1yrgvemIC533Q7vphpW0lgBn+x7rN00CZ+RRvbb2o3NXxSws2UbJGFr2GpxJSRFbVSj1grJyz7ha7Mi+Fpb8+XPPsG3s5CerCiAn3Ur36rrhr+PoZi25xz809cLu/4Tg4DaXvIryERgfCzdqTyOHXnf8KwhQ4Q8OMyzqRV7Kh04pK4dYVzCpvu0sN9gD43svIq/3XrMs7pdETVSSCmGjTjY7y54fd+KGL14OnxOFYciFMg26lvE7ZBwiZUZ4k0OUIfkFf4+qsjlaVIcWT3OO56NIcntLoX3nsD3z9Woyy4UKXXjNLi0HmmmSlzR8iOO6fqw/2UHZOB3jqcNyHhbxcFH25AZO0AZYVPIjjgjLF7zHtlFihxZO43su9XUfvY4pKnZ9OCUHIVxDbwloBKFYyJ1pzCKNE35c82fUJwzwN9mWKFYlkEJPeoo/S2dnUf1Ufp6N2XIXqNs/23eOqSEipgEkusuR0XNIQpXeIPTcdFcntWHKvdhtgq/iap9b3n5l92oPtrHPYtyUD1RThrfZePMeINQJcaiZn4vj/31BurW9IsWZydRv1XkfM0E1EfJaOFfxlDfq8Iac6LREC7n9OEENBQlUI7sCGQf53HQ4140eevwybgONMXuYGM6i4uBzpy6SBkX701TWY4MzSrPONXrOzQvSaWXF16hOdNbUJUWoyX3pqCX1Y2WxiOc9EoFbaPVZHE/C+1aS/ig2150yHoojs+i06OR10j3oXMqikav/Bk39LSpv30cNzPayMX9I7p8ZoS5Jh7/A3aJ1ME=
+
+
+ 602.8994140625
+ eJwFwQlUjgkXAOC+pk3bl2q0kLScPhUqCi249723TQstthKGIoaEVKdIiEFTSo2oRKkzFY02MerXRNZIdYaYCtMmoYVKi8b/PGThEC1IxR0gm7ke4KPiS4tmvl1WtzSQXGePQo6eK7lLjcDE7svkFfE3TulKoTVWM8HJJZ0CvwdC6rxptO2lDk4jfdpn5ISLVE5SmFom7qq/RZGSIUhd/IEO6NTA0Jz3dNA0ASompOnQxpdQ9CGJfhm5ja/mPKQTjkZQOFBJCT9cgJi6OErM+weO9T2iJOXxZT06UpSsHy14b3Cks6ct0f+YC6XNKYWqkqeUaXUS4iJr6GLIWsy/3kvZ5sehqSOCss9NYETBFsr3y8Jc0x66UpCJy+Lr6GpOEopnLadrf5SD+QprKlEshIyl7lRyMgl6vdqp9IdO8Da8QaXnm8BceROVD+aibeNzqtCzw8VjYVRxPFEQGerSjSv16KAeRTfjtKFxkyP9GXUO4k+50C2vAxCzoZsq9W4LvueNqbJqJ/S7yVCVSwicze6naqWXKOsaStVvusHcRYr+upIJfWUJVKMvA/ULSuheVyhcl8unB8ae4C2KpYfX1KAq8As9yrgPtWkR9NgqH9JH39Pj60uFsLw2elp1Duoybah+bjq+vC1Lz6TMIMfkGzVci8IZlxqo0SQXsjulqGnGKF5LlaPnrIj7XaOo2foWNh6NpebEKBDvbaGXa6ZB6ux0+mdmD9javqOWtq342T6DWi38oDvgC7VdaBecfy+k9uqF8LTQiToyAGPND1Cn4Qk8M5lInZGPccxLoC5DGeiQm0fvtnmi6Oxm6pm1Fp9M6lBPxjf4WNRAvVEncMv9Afo41xLMzbrok9VW3GRyivrUWkmhPZH6FyyERs9gGpA4oeRxNQ3OcYemL7vpc0Y5rjd0pyFZKbzvsYuGRYrYeiqVRuIewmwrTxrpPoX2tSn0NSsLsn97RqMLl6LLCQUa/ZqD8uPpNLbvBTpIj9LYZDEaF7jReHIUDC/5TOPfAiG/NY8mfP5D9eZJmmgrFPZ71NHk9Hq8tzyJJoNLIeNqLE32TBMK4gNZyrqRtNVcWKpbHpzNy1j0cw1Grg1g0SU3hMpmlvazE+Jl37H0YQ/hTP8ASxcdRreACZb+biVMSYhhGf1KqJvRwTJ+bwRv5/MsKxYEyUxrln1ZDKH7DrLcyj7QW9TA8sERoHZxD8tfKsYVoM4KshrwPq+WFcAPdd2YFQ5th5bbpjzFaAfWaEl4ivtluOOgz4obSoWZO5xZSayE830HWGmpPXYodbJSJQj6h+NZqfcYrp9fx8rbhuGPxVGsfDZUMChbx8rvGnGHYymrWLdhzW4Jq+SZCsnv41nl7x48aXuDVUXvQLT9A6uuWQ3etrdYNWMUtaU1WPXhcnywoIjFxksFx3ZFFq9bgxk2USwucBQkZ7pZzbWYtDceZ7Wme3hV+leeirZCwpSbPHXiR7xbpM3qczrI8Kgcqwc1CZ0VLqye6EMr45JZQyMFTcb+Y42KN/AxY5A1/UpI7Zwea6ZUCgolfqz55iI4PpNi7QhbNAvyZx3dVlRuGGPdbHuM33+AdV//iQtm7eLpxx+g8qoc1hM8oKf3fzzzUzr+V7Cb9bVe0NXk16wf4Ikys2141uxoGPfX51nPNODbNgkbbI7EGVsFNniijvUHxWzwzQUvytWwka0lLP6+k433ZAmqN8fYJKQQFxbGsMllT4He+rLk9CfMH3Zj0w1aWH95FZvVOsGXhqNsnt6P8/r82PzDv4J22Fyea1+OrooxbBEaKhxpamXLltO4YCyVrdbUCKudatnapxOcup6ydVo/WoWos3VbPoh+lGcbxSo47pHHNoOOcEP7C9uuD8eSUHW227IFzYI3sN0dC+E3Lym2+1oqyI6Ms72JNkxzdGaHYA0MTwvnJTlZODVxNy95pS34yj3iZWvLqPaxJi/L/EswMFNi7CrFeW47WPjQjB160UxXEd7CHqbnT+Gu00Zme1eYSEhmx73heH5JAju7BKHl5SF2TvMX7ug+YReLMhCrHmPXNgOIWV/BbjyOsVcOsVvKLpxv8ZzdtU4jz5NnD0kx3M3SYE9JLkrSw3iFvS5OH1rOK1XkYGPWEK/sbgdRuQZ7hR/F6togXq1liepHW9nv4ioUr1jE/pktmPKTN/s/m8Btr+fz+rx10C56zQEhAWiZtZ9/0lODu0dm8GbjBhiKUeUtDcFUHhjEgbpteO1FGQcu34miYh0OglWoeyGIgw2i8XWjLwf7HxW2q1nw3gwf1NUM4b0fN4JTryuHab2BOy3tHFbcAOYLtTk8C6DPp5Uj+rSw2vpnjuqJQx3TSxzt6yOIixw4uuAiFty4zwf3uaOHUTbHio1IUz+XYxfJ4+HkMo4dGEH1ZYN8xEcZO0+1cJzPfEw7ksZxSbZQ6/yKj5WLIarfmY9NluO54d/5l8FIUO3t44RPh9B+87+cZHYAv29V4TMhjNW5U/lMshoMO2jyuRF9KFCy41yzZiQ+9H+ZbUXt
+
+
+ 648.603637695313
+ eJwNkmkglgkXQC2vZC/ra20vazVKEcO9z73tlAqpRGiUSJtpGVmKUKGERDVJGo0WVGKkRYwWbW9T2UVFKrK1CF++/p7z4/w5NEsxEydWtJPD1yjUT3UhHl2MI/sv07zuCLjkX0+uyu5g4GpAXj+9k5Y8+UzKwULQod+szSH32g3ym+kP95+b0zqzLAz82kABFgBmFgG0aYoIXG5F0Lap66HarYqCncwxV8OFfteoQp+AkxTRtBuKGp/SnliG8nPxFKm3Cu4XplN0Ri3OwmcUMz7PoXLiHIo5Zo9xkrsU216Ns6w20P4rH3HuvFkUZ6YK6sWXKKFRjDaeXXRYNxB3pCRSslo7eIU1UIpyLQyu/0wpB2Ow46AMHT0lJxzqmUipluNwzJHllJqzAar7o+mYkY8gNzyd0pRaoHmdHaWFpeOu60coY5gPHFkYRhnJisLzlibKGOqCtr47dDqzBD2VOyhLTwpzyk5Q1vbtqJBxgbK6y1CpZQ7lR9ZiYifQ5Yv34PTb7XSlIA/FC8ro6vQ23KqLVOjzEJriHlCx+BmEzaik4jhnGJVRRNdnBgoWC5zoetwfUN4QTSUZedD0DOmm2B0GV5dR6d4LaJe4iO7URYOpYzeVWa9E8YgvVK42KFw/2EvlOcH495sR9C84o3lEFlVsc4QbrY/o7ocKbNl5l+5d8sGE2Ml0X9sd01qO04PRYvh8MIIqva0xyDaWKnOl0NtwKz303YmmtV306LQPmFj8oMeTFmH+6HB6/G8/FGvE0pNkdexZIpBE1Q1dd14jyaYjaNHfTc83KWJ0TzG9NC/CoSYDennCA7Jv+lGVQQ/WbbpJVYUeKB0URzX5XfCs1ZzqlovhnZ0D1afVg8vaXqr//Cda6XtSw4U+dLdVocbR7ZAg60SNmfPARnMyNf7Ig/hJF+nVvii8VN9GTWoueKM0m5pnfUL5fH16vaQLH98oojfTtCEqMpTeTnsK0m4X6W19MlYt9KF3KYJg98qA2hQtcX1VNr2P3oyZYV/pfXcOJrafp4919SjSmUgdTnPgy4Yr1PFmBpkuHEWdNtMhfUkMdR8Yj2f3BlHPJGP4EvSDeg12C7KKRtSbHSwM2/WUPs/JE8ZZOdHn7JuYG6dEX40z4Pp7U/qmlSUoB1nSt+3V0KSpSH07fvZaH9P3lXfQ8KM89eeJ8Hu4Bw1IS8Hd28k0cPSTMETTaKAPcEqvFQ0mHQWz4cU0pDhDUL16nYYq1gg9Xw6wlLoH7FcJYyn7sVDZJWGpGE2Y0dTM0lrvsWC/PUs7/AJFEiWWTrTFV1bmLN0UDy215SwzrwAC+0JZpvULLjKcw7Ip+UhSeizb1YyZueYsEgcLotPWLHLtJLn1s1iUsFvwTzrKoufKmFVZxHIjinF+mg3L2S1FrxgflgsNxd2vEliu+qKg8CiYh+nnw52BtzxsbwdOz8rhYTlm0OkLLC/2EtRERizvVSAIDY0s33RYMByw4+FbCN//2s0Ker8Jy3wKWCElBR18S1ih3BRi0z1YcacDrnw2hZV069AlXMJKLoi2iVGstD8b/hnXwcpyLwXP8LmsnG+EL2bnsIqzGbanVbNKzlGwHopkFclX6DDOZVXZMDyk7Muqfh2Cqt5XVm3YIsgctWK16f8I3jkZrJYWgzHzB1mtTgrHH/6LR0Q/IUWJHI94Xioo9F3ikTq2WHdBlUeGqkCB9V4emRWHe3f4srrcMSGy5Air3/sF181UZ42kw4LPsCDWeFggDA/tZk3lbGzxlGLNAMLNboqs2SyLTTperGVgAhLvMax1qR3sT9aytsYy4VZPIGsHMEnVlbL23+9wWYcOa9cOQFihMeuYZGFC8m3WSdqBT/AW69x9QI9rollnYLIgcvBh8e8n0PLhbRZfmy8oN65mXWd1/h5xmXX/2CBsuOnPunmGoOZowrrvT+HOzm7W22oLXxsesl5lJ/65JZH1ZWZjyikl1neXCE+LmPVjZuKfKYdZvyoU26e/YQOVGEG36SUbzJ2BpXVr2aBwDGb73GDDkX/h8UJlNsxEOqPjwYbN/8OPZw6wkU4ALv9ew0bLZLF0yX88ymoBWd/T5lE9RNOXLubReo3oVeTG41JjIW3RXB7XvgSibsjwhPxMKFt6lie8s4WQxGqeaN+NOsH32Xi0HkSMDGHj4j2C/c9PjTsQZepGsInneYhfdJxN8ryh6ewtNql9CGEJQWy6tg3Ch/rYtL9UWCrazGbjI4XDUj1sLrOCjKetYPMGhBKRDVu4BwomblPZItsVYxYUskUvQfk+ZZ78whb9wj14yur9WH1mA085LYZ4o3a2nLAV3o5N4GkGi3Hz7EietjIF06UX8bR6D1AzG+Tpb2qEb4732WpCCrrVbOcZNqE/+QKe0fQDjmtv5ZmW57FnSJNtfLWEwKBDbJN4H+Pre9jmw2Z4/V6GZ2lOAtMha57VXE8aKr+zrWm4EDK1lW0zjbDb1pptOz/iKZ0BtjPvEdTTytiu+BsmO+bwrxVzqS17LNvLHBdkg2oZtK2Ee0+mMHiIMFVrN+OaSNzRXMHC/Hjhh8kIFsK0Uf52FFPjABQ5ejNbT4CShed5duQqsL51hme3uqCtssBz196H8lGJPE9LGpN2t/C8NRcgofoGz5PoCGHbTHm+qJlkXfbzgv8mw1ulRl5oEkC37h3ghR5vBOOAbl54LB4yN35jR0NXmleqzI6+RsKJbzPYyb0fy03L2Kk4FYf/fZkXBxvix2XAi/Nz8WhSDzt7tuGiqlZ2vlKK6v9OZuf/zcXKPVq8NEJFWG5ynpdVi+GBxgZ2Of1IyOmVYZcXxsIm+yp2NXuK/1QYsaunCLxCA9ltzEVMDzzGbmsl6KqWw8uNbPHS6xp2HzcIyTJidn8bA2FBy3nFHAlGH9rJK2qug5qlGq/SfYP7jT7xqkxZiOt1Zo+N7VAgE84e386AZKkcr8ZUrNKr4NWHzwmimYO8WlKJV3py2XMiw6D5WPaaYIER28TstWocdNo9Ya/aEszsesVrsp0h/ccB9lavwSInRfZ+EQvP2pzYZ423MPpXBfY5uxFjeo+zb2AyRn5XZd9X70GSV8FrT4ZiwvgoXvthCfYdWcN+3lVC1BVf9ssrFxbc1WW/Dweh/uk7Xjf2OLS0H+X1n3RQ6kY3+3sroCs9ZP+8ODjSd5EDx0pBR9IL3nisARO91/DGxlC8utSfNztJoeH8LbwlTR8Vpn7jYM0AdL96i7cv3gWb07t4e10EZJSU8g7zGkw9/pB3pm/C0dNUeNfaEpBetZ13dWug2+IODpm4Cz7pFHLI8jZB7esBDtmjjNL+6hzywRrmfIrm3b53HVqjLTjU/x2mep/nMLODgrJ4DYerSaP8AzcOX9EhLCw4xeFphHn6sRwx9SokTfmFI1yDYc5K4Ig0NYjqbec9xlnglSvFe9z2oed/F3lP9yRUmt/De4fdhvYn/bz3sRgKfK04ctFsDCz+zJFbBvHO3AaOTJJFoQQ5av5mUP1oyVHnX6NDghtHfTmH0sNP8r4XU1FhzGTe9ykE0hpOcfTSVvRpknB0fxRcK9HmmBGNoOb9hmNHFsG5Bk0+EHcMzlX/xgdzInBcWxXHubqheGMOx8VLQUzAZ46XeYa5M69zQq4feoyt4YReJzBTyeVDyzoxxX4xH/7gB9HaHzjRIB0qQzo4cdsg7rs8npO2LMd60T1OTsyHc2UKnOJtCVEbgE+kFYDLgR18tvA1mqAjX8jRx2UO5/niCw0cnmz2f3AjBR8=
+
+
+ 465.766693115234
+ eJwNzmlAzYkagPFWSruUTh2J6iCRtEik9/2/b6lslUrqEiUTRUYjl6EkLVJMyygOKRUlkqWQGBRyWoRI3VKyjywV10WN69Pz4ffloWEW2fAWh0hFpAj1Z1tJdUQWNHfFk5pHE2jKnElzSjOec7UgXcVEVDZxJf3FMWA3NJkMln+A1uoiEusGgPy8JDLWOAvBLrE0rjceJ0hKyUz+CWRpTqEJtnUo9ASQVcw6SDiQR9bm26Da05xmKE3DBa4ryHHseKhQkqNZ6q+FwOGHCfs8oLjei1w0ROjrZE3uTomou286zbOdhHoV92m+6Hec9lGJFnn7oa64gHzH9oCD5xxaojJbSFcMIH//cESrWFruWIQNc+bTips1KFpbQ6ucVKF64WwKVXFASaonrTZ6jyMdf9AvQ94gc5FRuMgQMoc8KOJZEE4YaKGNoq9wpdqVorZXwcuaEtoU8h7u+wXS75FTob5Ah3ZMrIT78YW0Q6oEQebjKM7QGXwcdlK8eTKachbFp/tilNMnSmoLRx9xCyXvuYwRjTsoxeAD9pjEUMp2NVRYALTn6DkcsW0cpeZU4vP76pSW4A8rB+bS3oMO6B4moX2hDWgok9AfOTGQ+mU1pcc9gsSpdyhDIgOLKnnKjLmB7g+9ab/CSXgfsp+y98/EmCRDypnXDuvLm0lKATh6mhEd2lgAV46epsND3/BbmRkdUX2Nm/Wr6EjGDOwLSaQ8nYuob9NGeSExqDZ4lfInV6K5ZJDyz6tDW2I2HU1Wx5HiCiro+YbpebupcE83/ummQkUuW3CM7Xk6bqyIaUslVKwwExJOpVHxb+fBpyeZyrbWoV3uIJW1ylDZy4JOxwwKXsUPqDysDPpu69OZMW0o3zGezuTK4eGmXjq38g/e2ct0XmcySO1aqcJgLXqYVVOl1Wg8veYiVT7ThPx3cXSxwgYj1HbQpfir+CKxiao0uvDhon1UdbwWHCoqqNpICivLXtJfhlmCQm0e/dV3AS1bka7FjcOcKx/pWl/DT5fS9c1v8MG1Xrr+jzm+88ukG/uWYZKlJdVMj8CEdR+pdnQfLrM/RLVh+mj2zZ1uFghQeceWbm9bLzhvKaG6gkb07xLTnTO6ePCKD8lMHXFTnBnJsi7jgpwnVO83TEhNcqT6W1Lo/yCmhtQDwp46M2pUuSvM/NhNjX+3Ydl/Vaip3B3fRhvT3egJePLCfrpnbodhmc50f/clVI+9TQ+SZXjwUQ49MosTFofU0aPdNpClm0ut+hrwec0/1BqfgqUpz+lxiR7u9H5MbRHPINNUjdrBVZjlNYrai4ejYedUav/2ET0NPtF/im9ieoYFdYxIgMGw79RRuhyT6rSps2auUMod9GTcLexQO0Bdhblkuk6JumeLhCWdg9SdFY6Nbifp6ZTDmOWdQU/vbsfw9q/UUxKCbinR9EzrgqAiO0TP/f142iY/el5XJVh+N6YX1ivB5VkVvTEdwoxQoDe7jRCqv9P76iWoEHmdPkzaCxv+/Zn6x9+FmrN36FPYS0zt+0z/G7MMQ1J0aWjGGqhYuJzlxF4obzyd5SLEkHGrneU6OtHhSi3LG1tBrcoylvfPhG+ByawwaRIs79vHCp3HwMLXnhWHXYegYidW7Caov+7MysftocZRg5U7L+On1Vo8rLoLMvaO5+EFUlx2YBmraB4TVKVrWfVOAZwQZfEIhxrcObufR2zIhkQ7Dx5R5CzIXQtnNX4DrpfqWU36AF8lxLJa7U3MgWmsLt4AL02UWH1FIBpqLWaNMUO4qOQha25cisGBKax5sAF9Rp9kzd5XKFK5yloGUajl9w9rDRzEXPF61jbVw+xPX1gn/jsG/EjnkUGP0TNyK48KOAst7QtY7+BabJYks76HBDXbDFg/PwOzLdpZ/0EQZjSE8mjTSEFfZQ4bKEXCropSFuk+x1nnXrFo6b9wokMIi2rcwTWqmA17TsEuX102enoPA6NPs3jDJow7tJXFZScwOy2Qx3x5gxlqcmws+4HaMXZsonoPWtyi2WRVijB8Si+bdClD0JXZbFbkBWk1pWxeZIDKX91Y8vcFvHzMhyeIo8BnszFPNDyFI52ceKK0C9p2CWwxfiVqL93IFkukYFFuyhYDWjCg086TC2qx6nApWwYugjQjY7Zs6cTcPnee6tkPmV9r2Ur7Lh7fksZWXIIHViWw1cZYOBbwJ1sdCYV2mR5P0x2JQuZVtn4noEtjKduMNaen+efYJthamK8cybatKeAVl8h2hY3otKiT7X3a4PKPWLYvDEa9q9Fs3/GzmdXsELQHtex/4ZmFDZD6WwE72tRA821vdux/gZ4/v+eonkHbjlHsHNqInt6X2DnXDd56tDAE9UOlJIgF00xsGv0rk0QKXSdOMi2diN1mN5hOb8Ve7WCm3hmgZWfPLiUVkKZwkV0jjqHO+1E899exkH9Vkd2WuGD6DWK3ciXsc9BityfNeMY/nN27WuF12hf2KC6H82VPeeE7bQg2amXvVXY40lTEvlJrWJ81ilc0OcOuuQO8OqoO8mzU/w9Va0s+
+
+
+ 605.758117675781
+ eJwFwQs41QcbAPAsIey4a8pllcfZFDah02W87/99M5V6Ht1UihwllVCIOCvGadGRpBanGdZliHVFn1ymz1CufWzmU1FIJ7IuLvtGfL8ffekYDjGthbR0UzscX3eSVpjdANvUY+Q+Eef24lkmrVuqhvUDw7Q3aDEM9y2mELeZ6L3dncJdC5GcaijK878oOpxP8YZPUeuQDSVca4fcnlZK/EkOonIVJec6glSeSKeUO9AuLZZSNNJhQ+VHlPJPMySPz6TTUzL0fVJLZz/9FUSqJDp7ZhKC809S1op3EJxkQdmjpiCum6ZLETIUV2nR1dOHUU12gq6ODeH60UOUL+vDFaahVFC93W1QVkqFNvrCgqE5VOTwAuQ3LKnopzOgeL6cfsnRQOOGO3R9626QLthIN2SmuPr4MN2WbAJlQzLdvfoSc9+40L3seuh4VUvlLfqQfvM4VVh44PwpX6pIFOHnc4Cqryfjz3JDqr1oKpwO/ZTqT9aC+S8T9OCLZvCPqaTGcA9QPnKhJocwXJgbTc0ZUjQ1cqIWdUeoERKpRREGsY//R621ERjQrUWPUrUhtM2a2qzuopleBrUftMfCqgb6I1cJFhV11PFlmWBRFEB/ykbgzrN46lrbA+4lfvQ0IUgw2VRD3Z45GBIZQz1ZW3HLpT30bISxMjiGnpMxPCrvpudFL+FhkJh6xRK403GFes+WgzJmA/VNVKLNjS+o//VcDDvSRC8PJ2P23e/o1VeOIKq/Sq+u2aJ6MtGg9fdguzuDhrROo31wIA0VvIJyp3p67TqF+/K86c3XCrTq6KORVHNcKXpDI+PW+M78BxqtMhQWuPTTmMUWKJ/KobHhMBy4ZkfjKm10c4uniXkikOe70UROJRbnxdHk/JPwc7EZTY5OCsnTtjQlGRPOT/9BU6UeKBy1oumlrzA7upqme3yhpKCfZ9z6S9CVZvKMYRuUjBuw2hoWriz0ZrVjF4Wj032s1gqQ91sJz1yuJ3iV7uSZ6XpCqvZ5VvcuhgHzMlZPMULzskus3pIuWHm95VkbsoRZrUqe1TAPpTSfNebFwv0nO1gjOQt7Zl9ijYoOfLx6jDU9jqHo0HvWHHyM97aFs5a4HxTNYtaSFqBmRSRrdcVD2J7vefaiQXxxkFhb776wLnuUtbkXP/wewtqPvhFC1/mzjt8yDDSpYp3WA2hSPY919RzQTGMX6x4wF5zXVfLH4mas8v+BP/6uCUM7DrMovBdz6qZYlLMP3aLtWe+jQyDZL2K9jRXYc+st6536gKoT9axXugylR1Wsbx2NR9XCWd/zITyELtbPkApfZTWy/sgEpiUFssHxRmhriGOD3xnlQ0NsuNkIrtcp2VAVT5vXNLOR9S7Bd9lFNgq0xE7ZJBtv68LS0nA20VpBumUqNlnaSCZNCTy3KAEe+I/yPJ8+yPFSsJVUB1c/H2OrcWfU2RXFCxtzcL3FLbauccDAxGC2aTlC652WsPipGcbdduTPFrWgoeUZ/iwzFTc3OvOiWCM8blHDi41T3QZnq3jxYBRmqhmyXcY27I5uYocF3miSP5sdcrsh1iCVHYUlcEfZzktGujBLOpclc++jPIBYsvYBir+JZInMCKOMO1nSTvjYTMbL8zKhPCWeXef6gP4zE3ZVROElJzXG1ibUOePCgvwTQVQzyUKfESrbnjI598JAggmvstyB6p/U86rA95hW9yOv6vQBW3kcu3tFoF2SObsrVGhXEMJfW7bQcvcj7BF0E+4XavDq8w9xjlMxr9m9E/conXjN043wo8ld9kz1AvOSYvZ8VgG5ZSXs5XYBCwxmsFfEPsx1ceeNOXa4MkHOm25eQN1/v+NNL/PQqlPEm/f4gORJC29Z4Ixpzud466GDkFe7k7f+FgW5kT6847IDnLVuY98N2VCumcy+LwxgIGKM/XX+hjCbXpb6ZcCwZxhLXzfh21ARB4jT0FIh44C9f2GHXyIH3JkDHXsLOdDRG5X7z3Hg4DLwn+nOe/3NcKf9Fg76UIPbG6d5/6oU1LxVxwfe6aP6uQMcfPBf8M+KlRz8nzYURVdxyO730JBWySFFE2hzb4BDOsbxsjKLwywk6Np/hMPW+kCoYgeHd12HUxuucaT9KbTIGuKjLnXwYribYy/X4xzvcI4dnoXmfotYtq8B7VVXWHalC5QfXrOsTx1Kb1vxMZt0+HPXLY672CjM0BXzt9XL0fGcIX/b9Tde8E/gBK9JOBH6Kyfp3hWMja5z8t58lKg6OeVJFdoqcv4PLCUD0Q==
+
+
+ eJwN13dUz98fB/AvlRKivYeiaSS+SEa8Xq/7/hRKy9dK5k9mEb4lIURGe6hPO5UiiTIa2lvaGtoq9BVFw9avvx7n3nPP85x7zh2vF2S4n+J2ruMgI0Kb6+P1QkbiEXrpIQuZsj3c/3KMIVO+gV0QvQyZipvo0rGlkKl0iU01cYZMZX8WdYIHmar9zMLEGjK3yVGqmQNkukszGRkbyAz5h96m9kNm9HZKu7kXMn+Ks3/PV0CW1B5KvTkIWW5WFHhiMmQF6VHmwWmQFdpExb+uQbaUN1U3LoBs+TXs79tNkK1cSV+WGUF2pBHtrzsG2U1P6er9n/BcJoQ61hyD54q6zM58DJ5vu8AUtMzgOT+Nnm2dAznKehSccQpyVEQpDQ5ADhMnl6fnISeqiX7GrYVcGXHatZEHuQopbNqgB+RadtDh4XeQu2MqJ6g5FXJvbabb3YKQG+LO+2MbBrmhdRRnNAa5/Eo62pwOueHELIv8IU/2PYM7SpAn94G7p7EY8pTuUqD4HchzS2MSel8hL+QtxVS1QN6Tq/RvszDkfbWji3unQt73lVTjdxLylS9R3KQ4yFfx5yRsTkO+2jjlSFRDvpsrlXbuh/xzESaKHyMgP0iSLmbeg/zQCip+uAzyW/wopsQT8l//Rb75nyC/dZVJtHQR5LclMZ1II8gfF+IWXH0LBfKalH6yEQoUDOnZnAgoUHTkDR7fBwXKfAr2/wMFate41C27oWB7JHchcTUUnJvJBUtkTfiNPFqjoCDsAYsdOQgF0WOMtQdAQU4ORVfZQEEJY54vcqDgsyB9H26Hgj9A1+ILoVDmLj1zfwSFimtpyEEfCrkECqwZhUKeFx3LkoXCsynM6+9UKHQLY9rLtaEwpIQC7WOgMPw0hT76HxTG7eekYnyg8NcJJvlGCIrkvFnagX4oUvhE3kYboUhZliIz7aFoThv92WsARSG/mOCmcSjiZ1H6WksoCs+hwwKHoeiJJt0/MwbFMsoUNpYIxYqrKHSaCxTvHqBzydlQHOHOdDYmQXFkosmBLelQHD2ffjUFQXFHN68orwuKuwzJ+/NpKFGdxV3O2Q8ldrpsVupkKAlAShAzhRK+M5f4/j6UKrxjV6cMQKlyH/n4mkKZYqfJwuENUBbmRKdKuqEsfBPXsXU5lIs601WnaihXWkN/Ki9CufIg0+YtgXLVTrpVuRHK7TUp6KcilLtKMZmHxlAeuome1M2E8rBRchsyhPKSy3R4VB8qpMzo8koNqJDzoZT+DqhQ1qYLZA0Vqm949zM7ocJVh0b+eQIVwfrctKsroSJ6A2d/SQZeSKdRxC1peCFznmzunYcXCpeoz3IHvFBdROWzNsGLsBry/P0YKpX86cGls1DptslEVSgdKs9xFD+lEypvXWfSvyfm+XOZV+FyqPydy6HZMnh5toBbcmUSvHSrpJdZR+Bl+G6mMzAx3zZModHz4OWXDno4ugaqo89yY2GVUKPI6EeJDtSo/mC6ezugRu0tS3JXgJqweez9w26oKf7ELiwzhprm/XRNVRhqhvLZNLGlUCtUQqerL0GtghdF8PWgVnkdb/XRPqhVyaNbrQxq1ZZSlKPchOH0Y+oBqJ3dZWJy5TTUajhRpaIJ1JrK0bl+UagN86NTHTpQG6HMIp+vnTCGPdszkRe7nie6Xglq202YoEog1Cm5U9n1u1CnuoAt9YiBOrXfFLvVGurUbZnoIrMJm5nIcnmo869hV6+2Ql2KETndiod6SV2KuiwK9SrXmfGKyVBve4Gp1A9Avb8TXc9TgPpwLW6Sggs0BFewBYfK4NWG2TS6KAoaVZ4wk3mHoVG1m4keE4HGXWcp2SgRGk+kUo26NjRGtLHHq8OhSWYHJQw5QpOijYm6mxU0KctQ2+SuCeso9oQ1NG2/yfP+rANN/C30SzEAmsJyOdcjC6GpbQrjPToKTV+Os3n3HKFZ6RGNXU+GZtXlvB5nd2jWeM2bVpcEzVExXEJxKzTf3kzO2mehOc6c5a5fCy0q8fQioxpaVB8wofp90DJ7MeeQqAUtUe+ZkuAhaInupn26vtASc4lCDgzAa8UBSj//Cl47DNOV2KvwOnI5FTgMwuuv1tyiqARoDVzOZvZ8gtaQKk7r+Glo7TGg86Xa0Nb6iFO5eh3aFfuYfdxLaFcXYKnu16B9jxl1b1wI7Wc16YGiGLS3zmLb89qgw+4Q3axdCx3DI2zeH33oVImlkgZt6Jy9iltf4w2d6v3s5rKH0BkTwJRGBaCzKITt72uGzsHD9CbQD7o0jLiAro3QFZ3OBRnPg67bicy4wwe62hPo8Ct56Oq0ZkeGhaGra5yb0e4G3cr5lJ0cBd2q4Uz5zyXotjtIwd6D0L37I3n7HIc3wZoMdhyCN/xSKu3ZBm/ufaC7k+dDz75cOnnVC3qinlPmWDL0dCLX+iQPelUvcnPynKB3xwzuxgY56LUrZ1Pbp0DvqfUU+eQO9IYzTsDUDnrb9tLJzVegt+M3m63Gh97RciaJrtCnxCe/pUehT/knJ7znFPTtnMvwQR+8VQlhan2l8FbNhwXOGIS3u5+ybbe2w9vYKWxeigS87Y0lly4reDfXiM3faAPv/hwh33uL4f0bGe5UigP0qx9maftSoX+PLdXEpkN/Rwdl6hvDf+eOUE7dYvgv4gydEEmAD7sKKcDLHj7cyyNXu33w4b65yfycnzCgsYTev18FA/Of8eYeaYSBXZfJQ7wHBmJrKUXnPAyk6LBgpTkw0OHFZu3dAx/3PGVzfw7Dx9vWdLvjIHzquEMXB2/DUPRXCgu2gKGYKIo4wYfPp+Io9042fJkXz3b9+gVfug6wq0H7YViNz1Yrn4bh8xKcPf2B4aJDnMKD4zDcnsfdj9aE4UFD9tOvA4bH+dSu7AwjChx953+DEeUxVn1ABEZmEzvsmAIjOxdQeXgijOw2Zwu29cKIwyry2R0DI+fc6E+qNYxE11Oz0BYYiX1FH7eJwugKO0potYExzRBq2T8fxsKaKPTcThiL2E1R7zXh625dpvFBFr7GbKZBpZPwbbYpi3hqAt9iy8ivVhF+qJ+liOT78IO/k0pcj8OPifxwbQP4qdpHfuW28HOfFCVVmMHP2EbKVZaCcXU9qk+Yi5Mc/mEheSM4yecIO1gwByfVbacz8x/jZEtRBpuP4uRaPWoT3o4C4pupUdofBSSmkkf9chSwXM0GlgWhgIMGs/ScigIn/mEiQ1dQwGcSjclPQgF/HwpsmIKCYnwKO3kYBfUlyG2eIwpadFJEhxEKHu+gtOZwFPQLJ/5yIRRM9aMb/s9QcEiaEib1oJBEHl2XE0Mhi4dM3i4DhQ5MoujuMhQ6YUxxN0ZRKOAPk5U5hlP0z9DPNj2csimHsjXFcMqjENqV/hiFJZoo+mwZCksGU9CadhS2yGKexr4o7NdLL0uyUTjNjV0y/4LCQ9rkuK8JhYczKbeqC0Uk2yi63Q1FNp2mpDeGKHLCk240e6KIrxV1vBBAkUA5KqzMRpEvPuxirgtOlXjIrDSGcapBOsWOj+LURwvI4/0mFBVfwYwSBlB0xUKK9Lo/YQs3yj+GoptWc1UtXihqYU4vm81QdK84ddW0ouj+e2ykSQZFXYWY36kVKHqZKKjkI06ztqHbRgo47Vk7NbB4nFYlTvy/3HFaTwC9EfuG0yWF6VrXCpxOmhRIW3G67xVe+LkLON3PhDx3quP01GieonoUTq/J4QlP78XpQyfYVJ03OGOGJ916vQhnzBplGRLyOKMPKUhpK84Y+Ug/xvVQzHsdm3ynHcVSvpMfhzjTuphi3jXhTB8N8k98jjMzljHJcTmc+XKcLkQsw5lVD6ktWgZnWR9is1p5OCtQnFyd+DgraCq5/6uEs2rkKPbAFhSXfMHiCqaj+BIRyrqRhOIBmZSqXoniVbOY8JxQFO/xYSLvWlH8uzwN9RijhFgMjf3YgRKWc9i629dQ4kwr+3e4FiV8JZhc4EKUiJ/DJtk4o0RdKgstC0GJL0XMwlcKJQWQSscNUVKqhuJ7h1BysR2FaASj5IYWZq8ojpJmtqYy/u0oaZ7OLmZPrLPKpQynCyi5ZzXTP7obJfdmmwqsTkHJ/aIsKD58wkjyCExEyX9rKXXjQ5R0mWVy124AJc+sYgvNJvK9D5so3FJBycB17EXLRP7tHJ5YezVKZihzMh/0UTJ/KhVU5aBk1REWggMopZHI9DNKUMrAkC6IP0Ypw0VMX+cHSpndo4obfihlGUZ81y6U2neEbu3JQakTOZQ2aIpSt0NY2Ly5KJUxiekkDqFUfTYViWii9EYHpnWzEaUtZrCVf61BadsvVGarh9J78tjiWwIofaiQ/XX7AUo7r6C0PHWU9i3gAkyOonRmKlXs8ULpmu+saPANSo90s5l2SSj94x5VfV+GMtKT6UXMJ5SxWkehb2pQxvoq+b+7izL/Ttyjd/0o4zvODBqiUCbDjxvWGkSZqhFucNFnlOm14ehrEMp8T2KeI9tQVqyIeo4+Q9mZOygxIxdlJ85tJT5GWRtGX8z9UNbRjRNLsURZXz6zz/NAWb/7FFVdhrKpjylJaT7KDotThLM0yllN7PPzd5Rz8qNmDwuUX9xGxXv3obzjNrbebz3KO1lTtOtmlPc9zDx3zEX5sRBy17iOChIHKKSrFBU2n6KgGV6oEPCeUmsbUNHAifizWlHR8h45uiuhoqM+1fZ+REV/GZbxPxVUDOimgF8bUTFWgXkuCkbFR4YsJEwVFevWUZyHOCrWW1O4PqLiqzDymBeMStYLKaPbB5X8ZrLAyCJUClxPoTf2oFLCEZbUJI5KWV+o0fIFKjVsIj8Xb1SW2kEvZ35AZZlsCpk/C5X/7qPhN1tR2ew923zPGZX3mVK47zFU9q6mB2X/Q2XfcQrrOI4qUtoUI6GFKrbbiW/tgSpxsvS47xKqFJynsgNHUaVwOnk4rEeVt970+qUuqvz8RhmRp1B14h33Gz+HqjZalJ7kiKonu9nqq0tRdViSHTFbh2oTdWdKZQyqeQzTqMFyVPMvY2JPxnF2QCTdX30QZ79KYB5P96K6ZhBPREQF1Y2+8gQaI1DdYgcXZSCM6v9L5gQNW1H9rBw7p52FGkFbqPiyGmrUzWZh9oQao0/ol2E6zpGwZcKlfai56gm37/Zc1LRS5WAgAjWtX7EFy21Q0/4cCzFQQU23dvbX6+OoGWBPcf5KqFkmR+PBd1GzrpuqP7aiVnAEPXh1BbXSeJzgbgvUqt/JMhTuodbwccr49ga1fseSV7o2aqu+o6E9SqhtGEoZn41R282LraMq1L4w0d//kkdtz/XssuVv1Pb/zTY8FEPtiGSmrj6I2olbmNh9AdSRq6FkmnCJG/dMKg51rNayrPjpqGMdxa01XYA6OwWY3UUb1LG/xzSWlaDOyafs0YOVqBMYThX3OlAnt4RuG69CnVcpFE8dqMuzY3xTadTdZEODkQtQ10qRxd45iLq2jZTl9gh17a/Qqx1hqBtkw84Hz0e9kM2UfdoU9RKU2Izd7aj3bBVFPluKelk36EdyOurVjDOpo7Y4T9aMSmE6zrO5wqY45OO8rw1M6NVznPfHgGKXWOP8wES6PuiCCzafJL5aAS4I1KYnT3NwobQa81+fgAv/VmJKzndx4b811OKgjAtDRCnIsh0X1p+j3NhmXNixheVP9sGF/TIsbGUaLhwuZnorzFF/qj6TuPsH9a83MNXNZajvu42+gDcusllIfZItuMiZIw/tblwUeZktVbiIi9I+Me01j3FRzkR/8uoULiqQpeq4EjSQPMtidiajgVUFFaZ/QIPDNyg0yRkN6h2ppm02GjR/pHh0xcWWByinUheXBL5ghwwicEn6N+rb8y8uTdNg1VOccGm9AXPxXY5LW1ZT7EkPXGZ1heLnnkDDV8nU2peIhk2KzN65Gw1btNihKy/R8PUK5urigIatE3WWzbsJv1G5exQadvaSn+NWXCHpQJnfHdDolDZ9UH6KRmlnmFTWRzSqv0i56fPRaPg9z/9jHq6UmszjZSCuXKLK+e+QxpVWVSxl/XNcuVWM/NKFcFXa32yenjSuqrdg8zaF46rhAiaavBNXS36jzhlLcY3lOiraKIVrGsYp0+QhGlt/YAl7pdE4SIHeFEahcUMB3VSbiWul/qMcyf24lv+S+2N0Hte2CnBKY3NxnaIlfV4Wj+sGg+lO/ByknSt5f/1cjBQSxuyM7yBFnuAsjGqQOp5TsYEqMr14eqpriuz0QXqueRDZjTCmWWSOLMaFIhSkkNtRQNHFecgFO1PyM3XkTQqimMWVyJN9QvkWasjTN2az2z6jqYYzU+t1QlP9DZxK1SY0XSXLefqlo6lJD/tRtxZNrVV5Fj1aaLr5IXOvP4KmgTac95AzmgZ7ks+yFjStf0Djir5o2pDC/ikXQdOREOZXnYPrperYctl+XK/xmjJOHML1S3IpeasPbhDdRSnXv+KGVVpMZ04nbjAVY8eKP+CGzb8ov20EN+wtY1435XCD23pm0NWFG9dmUdPLNDQL5jGjxgVoPiWbonZ6o/lyaTYsNYLmm3nUeKQLzbdos/tbt6G5M6NRLzs0v/ibGm4Go/nVQ+TzZRQ3NU1hUfO7cdNQMiVfyMFNw6nsQmkPWogepmaR9WghGcGmhE+4eIiaFM6g5WddNtuqHy1/f2bWBjfQSugSRTc0oZVoLXO5rY1WUjJ047oFWsnepIH8dWgzTYmyHp9GG9lcJlbpijbHZ9Ot3+9w8+v/uIt5o/iPog4rF6/Gf7bPp69GOriVL0uxNem4raKc3h74jDuCf9CLbyK449U/JhKVPNwxam8iaKeEttKneJ6Zu9BWNpzi+nTRVk6PTrtcRds5keQ79hJt/z7DZYZ0oa3pZ4roy0FbG2dOQmVibBs60Z92oO2pMurP+Q9t+RUU9bMId24/Q93sOu50dWVSX0Nxt6EgVQcp4+6x+aw3ShT3yKxlH16cxT1LD1Bv/2fcJ2dOKcv+wn2KcbxbKfdw3/YO7vNkE9wXPp29VzqJ/wuJooTpSWj/SpUJlReg/RCRf54VHmqJpohjTXjYdiN5lTvj4eLblDsnAY/OuULv3pvg0bm72bSik3hU+w77lK+FR3X/ZpKzRPGo3gfKl1fGo/P72bT0Bjy2JJLuOUjisbT3FKSXjMdei9Oo3gZ0lJOld4cU0dFMmwJdf6BjSwFdWY7oNKOd7p99gE7yhSzG1hydDKvZV7kadNqawYLOnEMnlzJ6LCCMLisjqMlvJ7rsuMTudvjjme1PKcWHj2d29TP1gC14VnkNJVlm4NnKZZQoaIhn26yp4Zkent9wgZJUlqD79Gx6rsND96uudMWyFN1/WVL8ugd4UekIRc29NmEdJTSa4cWPn+iR+Tz0GJzCrHX60VNMlT616aKnoSNV8LegZ3UIXQhxwWtDhVTz+TLeeLCfEqO18aajJZM6Nx1v+p6kzLlH0ctNiQKC56C32UUqcDJFH3MxSv15F31FKyhifQ76SuZSnacv+qUco4iPguj34BWFX0vCAN+zFPSMh8GSDWzmkA2GXn5HDyO0MfSLIJuKN5EvocVm3B7FiKonbNJ/pRg7UEk3FAHjeEKUbnoD447pUHxNC8Z3ClPSGTNMkpVl5lqheL8mkKJmrMQUHxniXzPEdP83FPs6HZ8K8Cm4pBefLo2l8SwdzOAJUHzVH8x6eYfxXxhjVrU1pd7Zic/DfSn+qTg+j0in0NjzmCOcQoFFMphbdpfCLphj3pAt3R0+iAVmy9iaUxwWxN5nq7tvYUHcXXogD1h4zoVxO8SwcESBenocsPCXNPVGfcOiSTLs0gcPLJrcz27/mlAwn4uIe4RFImJs1cFgLBJdznzW1mHR9Cg27X9VWCJbQXlTlmCJ6xlqTFfFktr3lOZTgCX1D6nC2xFL0zuprj0OS9tEmHLEASx95zrRP4li6X8T/1vAbyw30mWV53dhefx/FPr6b6wQXkdBwSb44rQejQycweo1g/TAa/P/AeZSJ8I=
+
+
+ 387.712982177734
+ eJwNzI9fzHkeB/Cam3481M0gGmaUEZdilB8XFyPf9+f1GU3pEWV3IsvjkOra9rQdamWpBhUPcrNMc4ltXCP9sAnJj3I6UpQf6ccldNm0otUPP7LlR3fPP+DJfk6KoQFLMhtUKSkh6SOs7a7xlNXBEMmtmOXVKNg059L3uWPh+OE5xZz6CMk9sTD4+DDGvklFyJHf4NS2m2U/ugD5PTUt7I+FwrxMaPm6Aa4z06nZYI+pr5VCm1wCT3s1kzRlQTVfQnY3yjFLcZ9KZGJ476yhwL/FYbaPWbi4Kwc+i3Lps/sQFsyeSKvyZkAtn0PHU1qwWLVNMPxLAmrXCHVlAPcxU97eRCyVv+Z2NfHw/2I7nfLqQuDoVqEt4BqWuXeQ6RlHcL8/Rdl3Y8XLz5Rv/D1C0luEKfokfKGSEQ7kIkx3krysf8GqEyrSSHQIH3WXnIPL8dWHYBLlfcLa4WGqiT6NDZPaeVLqbmy02ceSypsRMS+StEFvscnrrtD9SIWokDiaVfAW0d3JQklhA2JTa+lGWS7iWnXMw/InfLszTjDMESPev4JKTVbY4uWn6XjwI7auFGHMpgAkLMxjsvoQbBeSheedDDuqd1B213dI9smhgvV6pGxex5yT7ZA68SNpxVnQ7w1lzuoY6Ieb2R6XZuzOH4fqGEfscShla3z/gLRJR7Gg5CbSYvOoIqoT6eJEdthdinTjZ1bhqkWGMVF4o1Bj/9STpBYXYr/hK6GuKwIHdv6A4LnxOChyodsvbiNzvpbsr15EZvpRVpUwHpndi9lijzU4lN1KsVsiYcg3Cm1CHw47NDL7NYM4YvCl0UNNMCr/S98kboRRv5ZSXrohq6eeMnWJMIVFM4cTJpge32c25lr849APLOBMB7K/+7S0oO8GskfUKB7/AEcPFXK1rBU5ylA6/WIJciztVC+U41hMPvP2EuN4/H2m7tiOXLeFguHmRpitu5luXz/MNSpot7njRFEQj7KNwT/9vdnudDtY7BuZakIvLHvdmOLL1chXnNdk+VmQ37KfHZr6Cac2r2IZW9JQkHGXGvUtKBi6RaLkayi8oGMdQe9Q9C6fLXdIQLF2FyksT1Bc1sl8JMBpxUnSzlmJksXhTL7gDko+l2NG9AOcSX3EtbYrUDqzkCzT1qJ0aBed27QCZw06XhR4Def8dFikP4FzP0azqg0mnBc3CHsPfo8yl6lUHPQS5W7fkGvgEpQ3GmjM0mpcNPahbNiES9N7MC42HpdKjVCcH4/L2dPZJFk4roQMsAmRfqh49oQ1fIpA5aoWHIz8FZUVDyENO4urxyZT2QNHVOlX0kDaAG5KRhCRV4qaN7UQXwFuld0TYkOscftOnFD5MBB12uVMX12FurLRVLdtHurnZrC5LAn1+QH0xw063K+VMqtRqWh0FdHldVvRNG5QU358G5qO2SBxdR9aPY3CoPkWnnoZqKif42mFK1uZ6ISuK4uo2DgGz//SRWl7juDFgRC2/2EvepTTeUi4A3r2JbAl+yzodcsS/uMegP7LGnof14iB0zcpYMJdvL4zwOR5GXi7xoEy29fhbVUfTd7RiXd+64WfnpzF4O2nzFfZi/dbifLsQvFbzDk2P+wnfMhjXBwwhI8uI/Rsji9GTBrSJl7nVvzPkL2y5Vapveyvue3cquD/X9Mpbi2JYmuvO3LRlxdgkUm5KCsIHqoGLmqRMpt6T/67h25U26Pk4qu56Gz34OLXMih3beC2/j00T8K4bWOxJuNMG7dzPoKi6zJu//MIPWkTuENQqlA37MEdo6qFus2+XBLxWKjtXs2lEzfSv+WvuDSiCKrZ4XxsRDFdCrvEnRSTSVRZyZ10i4RY2y4+/mWr8N5pGXc++ZzCgsEnjTpOm7fP5i4KOVrG+HOXSCs2K7yfK91e0LNOM5/yd5nG2xTKpzz+Gp7TfuFuS/yooL6PTytYz6RLFXxauxNZnc/m7h02bMAcyz2sfxUqo3L4jBRPCgxN4TNKGmh0oITPDF/OgpiUe5d8K1QWVv0P7NOotA==
+
+
+ 430.2138671875
+ eJwFwQk8FmYYAPCc8eUsNzk/yi0qpfS9z/s8LGdWJjRp1jGq33SnVi3SnKGoqFwppJTm6hgiHUiKjVyLWpHQKDLR/n8+bbqSiSYRxVzGWEZKM4orLOPyqwZQYnkWe6h9DiXHD4HujvUo9bWQGX5QQhltIX59Poqysr/CTMEdlNcrAR9BOc4R9PFMgSKqKYZBc2oLqi83YQ32YaiVIQ3iuUWoLTrNpRxn41xXJZY4IIe6Rq9ZlokP6s3hLGNPHepNd8EakEcDs9WwKeAGGpkrwKIJIxQqSUDqUgEaT7uz6wtk0GJqI/zq5YxW01E8aGUmLviYht1UjHbKZ7hapTIuMo9ikYe/QXup43zYCHGJjSNsGN6GS8vvMhW7Clyu3wkC33pc/qcPS5w0Q5GWGSi8SUO+wod1RgXhN84ysKT0V1wZkQRRZlroYisNPZER6CbvDauNH6OHhT5vDD2PnlLHwGxHO3qO1bKQ9Dr00nJiLYaxuEbLi6V+/Qm97aqhaLsp+tSlgrmiBfp6PIPSQGdcN+M6dFtUY8D8A5CXtAkD5Q4SN7PCwJFSmFhVjFsEb+CYowP+pPoJqjsvYLBSAYnwPYbMz4aDDuMYMraZM7Ex3Dp1g3kG3cedtSHgGPEAd/2TA06rt+HuT2bM1USAe175sxce5bjfS5zPvJSFYd95MzcNBzyoGU4xuv74i4Y+V867jIcUhezFfx14uKIJ7vjvxgiBF/+qqo/HdkaxH4QrMDKvlnn++AaPG6xjUv0BeDwjn3Wo1GOURhfE9HhgdPI0W2f1HmOOTLPsjEyMLR+FjMBCjMtvAJ0Nrhhf+CNTsf2MJ35fIRqKPoUJZZFQeHIzJorEuUypAibG3WC+LrswydAAJEe2Y9KNVnAU5WGyxkKn1f4LMblLyPkyAaZ4PWNyxq6YkhkHpg45eFrdCdYv6MXT54Us6fY4ntGqApXTW/BMUiWLDZ6PZ828YPHdGXg2n/GTN4Mx9UAYkwq/iueiGRP1ueJ5TQNIz72P58v6QHPLMrzgMg45m8YwXTaZk6McpoedZ572+piZOsSm7t3ErHRJGOj5C7Mve7Fh+8V4Uf4D+z5nH+a8tWQd7t14aeMExG/pwcsO6ZCfoom5c6pRN04ec9NEbKj+OuYtlOQSc19i/qwr8EnJFvN3t4P82m2Y/+Vv0HFwxCvpJ6BE1wALTJ25weJIvCrlzYaazPDq0Qh2HxLxmukulvVtMF5r6GafFR2wcFEDA6u1WFiZCW8kovB6/gWoNYrFG0qHuY5SMhaJfeCSl99g0fVd8E4yGW/ufsmlgnqxWM6EdVT8gMXRBazR5SiWXBxnpbF7sdRTgovicrFs1mwWeyMPyw5pwtNrKVjWKwaxa52w/IQqJLdM4q0N41zylBfeKn/MNeKa8Lb2XNje3Ie3i7ZCbMNLvLvZkyskVuEfRV08JDgHK/xMoH3UGSt9qnjA7WmsvGQM5dm2WGXTCb4GP2HVXTto136E95YcgvB0ZbwXpcdWeq/BaukdcKF8BKtjC5hvjTvWKEtDW1sH1uxx4xZtP+P93kjuoBSEtUdCufUJW3wwj7ESRSV8cA8g8/0kPlyzh5d90sKHNUXwcaYcPgpV5M71YvhYqQs6Cjbg41ET1G31x7qTwBMTxrBe7w5fstUH62PUIe9WBNaP9XO+qx0bsk/S0dBpfKJZwZ3UKvBJMaFP0HNsNJ1yGhg9gI0PF/GqJ3PwqdFtdlXxKD5t6+F581Swyc6WVfxmjk1PRBCoX4zP15VjSYINPv892MlyexM2G3pArX0ENjcO4pEHr7ElQp+F/aeDbWfecnGLU/hC5hzz3NOE3Vd+hKZ7O/GlxVdY+m4EXz68ye7nZGLPkWb+R90g9jxVA4nxf7B38WLYfsAAX5UkwNn2Y/i2AdmBNHPsM3Bi/9bq4LtLTqw/jXDQ5DJIi73HIfWvEONXjsOiWbAvqAyHL15iIdkD+OFkKcva243/6vSD9fRGHGnVZX11QhxdocU6pjh+xN/A30wVP/lNsbs14Th23I/NeXgQx/WPQ6F/GI7Xr2dSLTH42ewUlz6ii5+bvmN11cE4EfuQGfY749RGhF3ninHapJAc6/Rx+vJT7rLJkGYUa/ITPY9ITHuEDbcIScwDWE07ktjZ37nQqpPEhqvgVugfJL7sX+jNlCXxrIsQYz5B4oP7uCDsT5JIKWEHzNNJ0taS7y3yJskQA74yoYYkJ7xZhXw+SctYg5vqWZIe3MS1TCxo5jchLECsgWZGPoCCDluaeW0v5E4Ok4yLI5NViieZixIQWKZBMr1q7MX0XySrIska0qxI9hdZiFy4n2Qn45jKPiTBIhNWbniNBCe/hy8tcSToiAfl3FU0qzCFZYvUaFYHgtnZCySn4QtbfTRIzmMZe+7uQHLRTnyWMZF8cjx7dlOd5Afs2fXhj6QQ7QF+Ef6k8PoLOFpeIcXDLhDgmk2KPQaiodvFpBSuzV22dJLSxBuoDBki5W0lYNIYSsp5M9jlHkmafbESYsxUafZALqw60kJz/tKgU4H7SUXTFGcIVEnFJwVyX78m1XB5rj8VTKqvl3DDYzKkxnSh6qsWqWcJwc36Eak3voXhJCnSsDmPun8qkMZae6fd3SmkceYcKf92iDRaHdnY52HSlBuAVbKVpBmuwdquHCTNZnc2p/Af0hLuZPEuXaTVZcZvGBuRtnIYrF5hRzqvGAsr7qK5wvmQkJZEc9sOwc3RBtKtG2EBwinST3GDWKf9pN+ay5de2EsGOkFcukWRDC2usq2rfiDDvSag86GOjDqNIPXLIxJemIQoj0YS9oRCkp43GatFoK96FBn7OPD5TQ5k/ORvlhj9iuZJKLKXOyRoXrcD6NSGk+maSZgcuU+m6Z+409GFZDq0HRTwDpm7imBGXy9ZyNezfYeek8W3eqDakEaWquOsYVSdLD2DwHq/HlkWNMOzKUmyUsmlyI+WZBU4yC+9sCZr9Sc8vs2HrP3WQMv3zmT9bj+oGvWRjeZsWF7qRjZn4tBm72qyaV3CJc8dJdvvWnh+YzbZnh+EzT/HkJ18P8srv0eLvAsgbnc/LRa3AnJcT0tb4yG7OpEclMXYxIJScsgTYzZfxsgx4S6LXSdFK67+zKSanxDLeAER1/0I16mzXus95K6cBLntgeReaQz2b1X+B110Iqg=
+
+
+ 455.744659423828
+ eJwN1YtfDXYbAPDqpMvb/aZ70akzpyihFUq/5/c8JGRNlFyiGkkoYwnhZCK5nFKmhEo5KRFaoqyUpNV0cdJcuq6GJqRpMsm7/+H7+XxRaeZV0NA4jQKNEFYnX4bKqvXs75I6VJU7sfjBqahhfRV+dMxBzc8iVpTrjzpOdXxarwXq9liA4ekhNJhdAXnRs9Gke4xdibZBc8Pn4K/4O1pqDsKUoK1oN5rL/Fr68av5ZrBWYQVOmhIDa2eaooMLZ+bJ8ThF4ATZa6LQcVEFK2y0RifRRjhq5oSzHf5hwQ2IfIsbu+gQisjqec2V75E8vzAvaRzSuzp2UbgJvY4tYFHxJuj9xIsFe3bjgjwR6xqMx4XfvAbv+WG4yH0VNDXdx0Wjj1n1pDO4xDEJfh5nj0t1Y8HbbzsGeBSw9OJtGNRzg2n5L8O1W9vYm+poDPnzJJiHB+O6Tz+DfrsBhpn/BTsVj+Mm/dvstusARs2R8KBAGX7v9gdrSynFbQsL2GrTCbh96nOWePwA/tBTCAUW2zFmxhAYjvyIO105eAdswN0zB8G/WgVjfdPY81tGKNEOgEvmCiiJ2caHIs9jnIYA3QomYlzyLlh/8wLujz7I9hqoYLzAlTsqPsD4hAauZ70UD6b3w1B1CR6yuQpjfVvx0EE1Ntd2LyYozWcvhu/iYZVx/GL5Fzx8uJ9rWapgonUhHy6ZiYnF0dxrowoeUXzEVto24pHki8zPoQSPzrrOxJlFeMxmM+zZfQiPxc9nq9N34fGyP/kkuQJKddq4ZP8hlB6qhiw7BUxSLuJLiiSY3DrE0tflYYq6FSq1TMSUpNOQWhaNJ6dXgPbSHjwlfc12HsjENFkpHA2YimeS9dhQpzue3RnFsoX/YKbWFjhYaImZCR+4WUouZv2tD6vCyvG8oogl9zdgrsiEyawYXsh5A8L3J1FW8JnVx17AvKgxyNbqx4uozoo8ZuHFwlRY0xaJ+WsKmbhoIRYIo2HJihAs6PkAn5Sb8FLGVkhckYCX48Ngv3oIFs34Gs40yLDonAM4uqvgNd9c2PdhAl732AUDt07g9cv1kCkbwWKXeez0Rwcszq0GZ00j/FkmhpVqB7DEcA746kdhyeUcsLWJwRs/5APOPIg3hv9iLfU9WHrnAAwOrMabPqPs8T+b8KbMhxt2d+Kt9XNY88QTWKZWwoKZBMty7vKdq+uxfPxCkFh9xvK4s6Dxyyy8vTwf7GXn8XaBHVdt9cQKoTLXMJ6CFZ3OPGlxHFZu0IXksnN4R3Eq15Y24Z30CWjU9wyrhOZcxSgQq25qQZTCOKy2Rq5hoonVvwTCNNqHd6eugZqSNqwxcOYCD3eskQdz1/wteG9vJZ/9oQ7vPWoH1VueWJuVAT7Zxnjf6B43lanh/TQJJmlV4/2XnTzru/f467wI6Pl3Cf766zWYsCcB6zOGuENMOjZ4lrGuoRBsuP6Oq0Qb42/r9Tkvc8XfvlyC9/1yfJAXCC3+VthoGcjj5Luw8UITUtIMbBr/BfpyEJsk89jvVT7YfDkEVDvLsWWzD+hsH8WHk0NhXq8YH6Z8ZC/0glG+bD+csD2A8qI+NGu1xNYT7bx14xx85KkDos+F+GjAHYPcbbGNy6G4+hW25f0Bliad2DbSBK399fh7pgVMU/sOH3/YzL17r+BTqSEaXQ3HZwYtPDVDDZ9lGLK2rjnYbjYd/vXTxQ6jvdC+6Tl2SDJgh1gdO4Yy2JEradiZlg/rRYXYtcwfd9SWY1eRLu+t49h96CNPLLDH7seJ7K+YC9jbPgT2s9uwT3qMxa/9DvuP3GV+mQJ8pfAOvCxi8VVOFTua0IkDomuwh2Lx9b2vmOzPbHybfpKLShbj4HRFtkQQin+rPIeztjIc9tWCwIQIHL4vYLHtAThS58ed4vPw48Rwz/5aSxxzO8Jn3HmBY6WvWPLb96S48jz4MHdSbPQASVYCKU2wZcFhASRI78LX8xVI8OAe3/x1HAk+uMDHzVtI+a0e/CA0pXHiRezJ6hhSSYngCUYnSKV6AGq1d5GqTQSU2liQavANsIgsJrX8ZnZO/Q2pxyVD4ktfUr+rA+kv19H/ItXhiM4F0ngmB329q6Q5uYclv7Qkzey58MbbkbROxYDev+2k1V7GNpkvJm3dk6zGKZm0c8ZAL/oA6ayxBvtYV9JV1WWdEEZ6EatYdrgL6VXuhn1Gy0h/ZxxINownA/VW9kCQTQaXvkDzyQlk+KKOmQfHkNHRKpZY7E/jRY9YR7MSjR9VB6FESMZtV7lEnkQm+l+gM22ATHwns66f7pBJvh+URu4n01Q9Zl4rIFN5I9SdUiczPyGYFDaTmbQPvvWMJrOOb2H1w91kHjiDldsFkHltJfdwrCMLYwM4PmxNFsu340vNcrI4sxX1NTPIamMzrGnaTVZNkehfY0/W1j78G/sQsl4eho8H5WR9Np/XTpeS9Ws9kPavoYnSBlZx6wXZ0B8w46Ex2XSrQaW9lIQ25aAeNELCBR2efSsiSCgxB/3RcyTMdwbxWA8JuxUhsTqSbFcyFr//Dtl11LByhVwSWaWAeMSDRCHb2GX/ZhLdHYXAIFP6KuMEezr7DE3qamJW4lMktuGs0yiMxBEpQJ9SSHwtlO0SfSZ74TCLVC8g+1XvYco2JbJ/lgyp4SJyME4FvfpT5JBdzB49WEeT+5+D2qo8mvJWldmPtyTHDZWg3BtOjreVWcvIUnLWm8hSgmaS89b//M1dTc6nsqAkQUbT7Taz4C355KL2mNXLR8jFWRUeO38kl3V+rLvGlVyOB4Di16Pk0t7CtgzcIDezJti/1pjceu+z+vY9NCtFwOi9H7nb3ebaim7kvtwHfCte05zDu+CdZgjNkT8FaVUgeVqk8v4mU/IM3cYPt5STZ9o19qNSODExB4VzT4ilhHLthkpiD6pAfVENQWaNZ8MvUuLiLNY3Ek08zATmffEhnl/KXA9WEO8JgkSfRkJDPxa/YzHh8g+Q1plImGHHdd4cJ+yYBr0xC4gWJ0MAlBJVv2UxDZNpbu87sFeSk5d/OrJjseR1vpln/PSCvI91w5NQGS2QdbOjYTW08Ebkf7+cIR/5Jb7D6CkttlrEtnxa8n/dfxrM
+
+
+ 664.963500976563
+ eJwN1IlbzHkcB/A2YatFTIcaHSOpCBURxXw+v+970jM96dpWrgxCVopWa5N5VJSiYRmUxpON0CJ35bZsyJE1LErKuovcCYvaff0RL0GTY0klHoppFi5U5lMiMrwWUbdL80XmhnV0vW2tWNGWR/oF1UJn24fSpruJNUUxnLCrTRScTCZP7S9ik7+GLU1micIrFlRV8VUUBQ2nqXqFKB6whEMiPMTWL84khUaIsoBW7lT+s9g32oluvM4V+7buIa1ltji0vxcr+6eIyh0LqVtAsDh9LJDHu3cRVadPUVTRAHFOnk5R3pWiurQf1cmtxcVVtpTQ8FbU9FVzWnq7uOr8krKKlgqj4i57jCgQxt3Z7BdiEDcrrlJ3i1JRa2ilHV6xos7+BK+p+yrqZW/Za465aHiWR4X2f4jG0nBK6tEg7q3RUK1+k2iaFMnmFVai+ZMX24+ZK1rSI8lELhMv9gyjPy0TxavRvlT85Kho3VVFhcMfiLbjvpQYtlx8cAtmzQ1v8TU1VjL9N160/7WObSJiYKIZT1FuLTA5U0krL53HN/nFZDxpC9NrWgo3AJ0sozn9Vi7M5H1IVWwCs6mzeWTfcpgVTiFVnAFmV2ooK2k1OsuUFNWtA52Vxbyt61B0TvCkWP6ELhFLOfljK7pcdZRMHeah67S1PH3XBZj7x3BXH3+Yaw0cf3g6LOT1vPeuEZbWH3jVgcewTArjORkfYXnfg7acPojvnB9RlP0SdDM345DPi9C9ix3l5XWGlfwz99E1oedpHSV5u6DXrShqHPw3ZKvLOPuLM2TnnPnloA5Yj3Sn1KchsE66Lw2wsYLNjDiqUNXA5mw4a8IiYLvmNldszofdkjJq9HsHu6PvucTJCXavfqd2277oXWvOWxf1hr2Q2BDYD/bvL1Pp9+lwiJ8v5aVFwmHDRVa/LoJD7XZqja6GvOdjOpCcCXmgOwf1mAS5bjfhzCjI7wySlM/94WgdzT2XFsBxgkyMst8Fx/xmzjp8CE7Op6Tjnqlwyp9BP9ZFwln9QXKxuAGXLZV81kMLl/OpXBS7HIpO8ySHUD8oohu4vQlQbM+UCntVQ9FgJ4Ub3NBXr2XJtwiu6nJ6khYE183X6Hb/eXB9uUzSfHyAfg73JK71hVf5QArSjsCgx2oypoRhSNN68oytgHd0Gs8xb4H3hlBlx8MseDd0sLl1Bnz2L1VWRyRiqG8gv3s2BMPUg+lFixeGFUZRzehtGLElhaKe7IR/41dKNW5EwDM/goUnRvtUcvfwPIw595PkqtJBuXc3qYJXgC5HU93zWRAlR7hsuxHi5j5+cykG2GxgrcEdqpuv+PUEwljjS24ePgrBDpclq/VmCG4wck7vNqjfh1CdrgUhrgtoh1s4xoWSZPrbVIxb7E5ZO3sh/FyFFHZvHCIWllCp7yZEOt4nzZtERN5xoSpfb4yfreDEazWIeXGAPKfoMbHJSJveTYTG5jiHJLVC06in66u+YFpWAgdZzELc4FxqMUQjrnSSZHE7HjMd19Lzi6GYWfJY2VF1DLPeZlDBYgXi+0fQ4hx3zB14gYvzn2Bus0xSpFQjoUTGRUfjkOhVwxvLPJBs9w9HBx5GStI+HvNtB1Lrj/BY/1Is3uNPy5rroS1o5ulwRYbPfvr05iEy2sdznxOnkOmtVz5qdkCm7ldWTumOZbefsmWqHsuthpHnSlNkrQ3gsoMDsEKd/f+fgVhxNJ2e/yBDzmo126yuRM6xKxyQcQ8512+SSncKuYGplOz3Brlp9ZwwdDLyZL1J61kGHSlJNTcI+vJbHDvzwH9wyks3
+
+
+ 441.717224121094
+ eJwN049fzHccB/B2JVdx6i7TJKyrs0u/Foklvd/f10eYzUqZNJGGJltLPciP2KP1YxLrEZWcmn6IkpM4zaQyrNkulx+p1mxmZbEShjBk+xeej8cTMrNCHuuUC/mIUK77cyasFz2kdv1m2Fgt5vSoCNg8deT1tXOgnNPG3N2AkeYdPGu5Ec5PDBz8yVy4WrVyo7UttNK/VPtoGSYP28ibR+2Dr+dCCl6chimOx6TbXjnwUxygrAtPMG2wig5efYmgpzIqXuqMDxRHOW9iPMKi9pMockf4GB1HC4GIsG9ZHb8Yi1sqSD/6QyydkBL4iiZhhXsPT49LQMzw2YGmTjOsQjlny+5jte0xxh9XkOi7juLmRGOtfSmJtr+R5BhPlzbMxBdWR6jkdjZStj7g2WtP4ctMR0nmNBepC4yU4rYHqXf8pam2BqSF+FHG63FItzxGuxLGIn1vKKcuyEJGzBWOCLfGV2alrKhVYdsPFlD1ByPLOYSnaEOwXRtL6ZFy7Mg8wPJHE5GjqyetYhZ2DSvGTqdfsWv/VhbJJuSqF3HGhEPYbXNYeiNpEQqU3uT44XEU5BC9pvGFzimDHuEo9ipdWXHpU+zNu8szrHJQtLuMHNu34ZuyeB61rQbFmeEU9XIDStLf5vHzx6AssZSnPvFF2XNPju88j/35J5G6/AzKNTqubFbh4AdN9Kw+DQdrDnPRkTpU5F6H5+0eVPQrKeuULarMk4gbU6A3DyPt9mLoMzdSclUsjiitOao1BNW565E3RIXqAUPgVqvDOLrdmWa+NwM1y0slh6ZW1Jy3puxaJQyeIdL0vwpgqLSSJlgocWKVRvLrzUetop+P1/ij9kYC67a44KSPjE8rZuC7X/RkiLyIOqc7pA3tRV1REU/fsQj1qnUUOuZz1GcX0IEAczTEPeMmpyg0OqymOmUyGuNzaHjQSTQag0kXpMcZl1vcse8yvj89j73Xp+Jc9qA0ZeVtNMljqO3seTT9OpT6fabiRw8z6u6bjR/L7ejE2au4MMyF+yI346fgCDK+tQw/nz5PCvuXMEY70P0SCcZj86nEtAXNVk+kHVWP0fy/a8KDclx0rZQsYzS4qEvkjpXNMHmskYZXNMBU1cF5bIGWqUHc8vVLtHRl8SE3HS4V7mHvxy64vOA+h6t/wOWmGkmG57gyfpOk6Y3F1Yx8qBQWaLVvlcrSX6C1aCgHjHTAtVGe7F0cgWtpn9GzajO0W/RxjvBA+/JA/kj+Ch2qh1J7rBod6wYw0f1bdNxr4v7wx7j5sZoKwkajd9CPdLoT6NPFkR4f4d67/ZJnYjQeH7lFb6krMaAx8cznBjyr96HenBS82JnC21NMGGxoY43CW5jvvsbqsbeE+UAvO1x3EJarjeQXnCAsO2/+/90khvbYUXLxbCHPf8XtA8eF1ZJKSi4ME9bzfHij+wthXWAvbM5sEda/HZJKfpIJG9c6yvCxFTaxd7ktSSaGX3uH3bXnhKLjMJ+aIRMjblWwPLdb2Fbu47SFe4WdsprXXsoQdsf9uWano1AGJ7HXm98L5Z5ldCM/T6gW5sHDFC1UuyZx59X1wn5JkmTpPUuMDPmc/DQbxetme/hs1wXh0FLO25YK8caQNZLFwD/CUddIFYkbhNOIOpa/3yTGBc6h37qqxPjfAyiuXCmcc4dQ7ZIpQm0fQ9q5W4S6YRRnDvtauBTq6UbOU+FqoyJDkpvQFD6gyDtVQnPDhipsO8WE+4Ocv2mdcLs7htLHqYX7zWaq/itVeF4upHOdKuEVMg8nTBeFV6mHZHyoE28XfsXhox8In54aHqnbLCZ129H8V++IyW5OHHovU/iuTKJNDv7C989VHLDDJPxKezhiRZ/w677OI7QbxLTAm5LKa6LwN3somQVWCX/3VoqcqxfTzRvJ2JUmAqSddHp3lOAuA3u33hFB44dSvfyb/wAuqICf
+
+
+ eJwN13c81msbAPCEBifh4UE2UaRSSRHqdI0fItHOKNrDeeu0ixanoZKSvZX2pGFGHomGjLJFJaXSMpLW+/z1/dzzj3tc93VD1rDtFNBqDFl7dwiHbyhCVsR1alfug6wEM8chq5Qh69x8urrqE2RdMaOI9O+QLbOdqkP8IVvjlbA32gGytep4SuldyNY5xGs/5EK27klOKdSFbP2f7Ll4PGTvVeLhFe2QHe1AfT9fQXZ8Ph1eMBayE1LojIosZP/QYXX9PsjRGM8K4ydAjvZDiu8tg5zAlZRVpw+5WmMp7fZWyI2Jo1MXTkKe+DpVHpaDPG1rtlD+CXmLlpEkog7yYt9S5o2JkBe3m2J/TIQ7STV041Q15A87zYueSiDfS4OPpVVBfnSw4+e38ZAfu41ixl2G/PjZ9C7gf1Cg8YnBXgUKNL8IyU1RUBB4iYM8X0JBjDY9fL4XCmJ3s/XwR1DwfSabxjHc1YsQBltPhbu7kpych06Du3XGFNV8Umol69upw92GqU7N+Ufg7p/BwiZjbyjU/sdJe6EdFBocEvJWJkMh+NGm8i4o9EwTKlRzoXCXivBmd7HUbvqgYQ6FcZM5be5eKEz+ygv/soDCO7fZ7MxAKCx24fX2eVD4+yi9OuwKEvFnSvBeBBLtZ9S9ow0k+lcpdMQSkCwyovPGsiAJeMTmjcNBEniW50VJ+8Xvo3v9LUFyeoUwXckaJD/30M2KCijSDOYD3pegSNeCvtuvgqLhlbxlrRXc0wI6/Wow3EuQp6DiP3Av8bKTc9BHuPf8jWNc/3oo1hcLPhZHoXjxfFZ7Mx2KY3cKOR/soLg5iNISXeH+sD5e87wY7o95SadmfYES7RanKb5jocTHk7YKW6Akzp3aWoKgJN5daNdJhpIfC+mevRKUaptTWfJKKNUZw2oBtVLb6OIJZyjVfcOblhGU7lThHc2P4YGuB8vHroQH+q8di/TS4MHOYeyweyI8iDQV9Kf5w4PkGcKqJUfgoTiG1eZ1wcMEC7qgdB4e1m6nwCcx8LDRgLKUFsCjwNlOMN0PHkWtpYylkfAo1pD35JbDo85G+u/uD3j0SyL47ZSDxwFFwhaDm/A4MINSh1rB4/h/qajCH55od9D143LwJHm30Lc6G8r1u1jGeyiUG7RxyrTLUB43mkvzfkB5sSpvfD8aKnTJcVK0DFQYzKQPFcpQYfjKyXfyYKgIekXbbJKgIuE0d90eDhWpsxyH6s+HiqbJ7DBrNVT0JNOtgcFQqXGNQmR/QaXOSTbuEUGlPvCi7SZQaRRMN2kAVJ6oYYn/TqiMPUHXHd5AlVYzhZAEqvRS6bRXAFR5r6OPkX1QFTeKgpR9oSreikumtMNTcTwdjG2Cp5EFrPdmPzx9OZpKDVfCM627lOweBs/MNCja8xI8c1Gnzt1zoVpkx8pKnVCtd4UXCwVQrf+EziprQbVnNIWsUoDqJddI0tYL1QktXJqVA9U9rnQ1vgZqNPXpukuG1IdU/DoPaoYB9/sCUKM916lAawDU6H7mSStboUbvBa3L3Qk1noecrF+XQo1PK6V9OA81cTmO2koroKbhD98Oc4Car7t53xFHqNWRpet5+6BW385JfvpwqDV+7qg1uBVqTVype/IwqE1KEx42d0HtaXd+t6gU6rTeU3q4DNTpn2aFdZOhztBW8HcbD3Up8fT6sTnU+22kmyXlUB9rS6l6s6D+2zxh/zt/aDipRU/qVKAhulHQiDsMDXGH6Yb7d2joeUGPXRygUXyS+/ksgUYtB6pyVoFG/Xd01TAIGhuuCwcXvoUmzdPU+k8jNGm38e/1ydBkpMCb4/qgyWs8nRN/hCa/6WxzYic0NQxgRZEXPDdup8RqgOedbdJ1soZmQxthg/Q8NRt18t+HMqE55RYPqrOE5qILPPJLOTQ/Atp4sgBajG2FA8M3Q0vSBgobnActybnCskHToeXUDd5XGwYtzU68r9wEWl7IcFqvDrzQT6fij3nwwlCTvo3ZAC+MllOaVT94Gck8ZVwYvGoWHOWKDKBVf4+wMS4IWr2GCGnWNdC6OJsXzNoDrZvnUcHwYGiNd+ZivWvQ2hhAH13MoLVZljG0HV7r+FDhl+nwWver4GW1B177jOfYksfwOnEjHY8th9c98+nJuPvQphfBCm6Toc0gRDDfFgxtSzyoYkottPnmc6jccWhL/sKLEkdBW8ojajc5AG0NPhTqqgNvTIBpVQ68NVzPMh0u8NY3ly49uANvX2oIM0qWQruRK1/Ut4D2L+E88ckyeKezm1omqcG7XaEUvsIF3iV8pWjXgfDe4CrlJG2G9y5L6fiaGfD+soeTRcAW+GA8lyomS+DD6FxHzVRf+HDFhBN3+MCH5sN0yGs0dOjOoMrVG6DDr5KtkjShI/EUXQ+1g49ejZSbHgqfBt2lAr/v8EkvkHV3KMOn4fF0NtEBPhs30bW+Xvic2kARb1vgy7kAyv18Db5apLNfRjN8vdBJkqmd8LVlHYcHzYBOgwscbDoJOnerCena0dBZtEXQXbISOpvuCcG7PkLnp2l8WykUuvTkBL3PZ6DL0IatLi+ELqODlD5DHbp8zKmhZDN0+S6ktCUnoGubDn3sjISuXUfYzScRupJjqL7iEXSl3qQPX5yg27CScoqTodu2jwfluEL3EhnaUR4IPfoC5Y2sgB7jCir1FkHPpuUUnawN33wHscyhD/AtZRvbHpsA35pkqXdEPvTqXaKjgR+g13A6p3ZNht7UFgpTyoTe5iN0c8wv6NNzojdX10GfXw8lbWmEvuhGut55B36NTKV3Z27A78NjKfu7H/xOfkbRV3fBn22qtGuuF/x5dIg64z3hT0MgnfAthT8t+pTZ/yv2+5lEd7keZTxcqHjyYZT532w+/NgcZY5tpV8HFbC/h4jeOSzH/mGl0nj6CfufHUkZE59g/6JflKsYhf3L6+nFf/NQ1n0bBZvuRVkPe64JNULZ/5lR88YlKPuvLysftUbZY/I8froayp7woTPrulFu9lVKyHZCuQ1FVPZCBeWOrKUchwKUOypLKaYJKHdMTLfL9KTepxjbGJQX6VLtsgqUX3WEQtVuonyYJ731vIfy4V30/VIoyj8KIsm0eThAVZoHifVxwPrTtC5CR2o7Bb4bgwP2IcuapuOA6gSKH7gdB7pn8tYFD3HgbDHlBE3DgSdkKHNtktQGSs4yw4FnLOhoaQMOzAjiif9JcGDVKaoLvoqDvobzloR3OFg1g8frLsXB6TpU0EeooDKTLk4diQq29ULuteWoMMtRsF9piwpLt/MCPT1UWJ7Kf/IGosK2nXS1S9p/x3uqej0VFS2+U0KYFipOCKFUqkPFOYMpMaMJFTPLeXNINyqW2VLWJ1lUfHWCRTceoGK3PiWHy+FfYSGOceVu+Ne1VEdr/1b8q7xAeKjeH//63EetumtwiFIiJcxIwSEqMnzCXVFqLsWfr8UhlS088Ig5DumWp5tPrVFpmxk1ClmodLSAnv2YgErpa6hjuxYqZSlSRHQuKlX60q+tg3Bo+DtK/PgKh149QlkbknFoZgjlNTji0KzZ1PteFZVVFtGL/SJUdq3hQRc3o4qojCuq3FBlQjNPfrYFVeYMoBtRr1GlbDxbdlSjyqsjLPfLD1W6drLmu1JU6c2jeL/7qOoxiW13haDqjlauT7ND1TB1LgQRqobHUbrBBlRNG89/27qjauVZ6os6g6rv8umuzghU/ZpOea2Eqt9j6N3j7SiS96PCkUNQpNRFV5ovoWjyU/oU+gtFM5axbPdIqQX0wv0LilzWs8U9eRS5yvAnk/4omunrfDL4GIpm5fACIxsUuU9l9dlLpUpYfLgFRR7LWX9CJYpm51ORkzOKfPVYXs1Baim7vVFDkd8SrvRZjqKl+c5B96XlZY8F+e47KFq+iA92pKBoxSB6ULpNahDLZbajaNMjygqciKLNPtQRJy1vTeel7d4o2q7qPOrWNBQFzqHMyE0oCq6i6AFPUHTUgiTm16XupMfWiKLQtU6pLf4oOhbO8v1+oChMgRUexqPopAXLmZqiKKqdzppL5zlV7Jh6yANFlzXp07PbKErfTfclK1F0YycPWSEdn/lbmFlwGkXZPXTN5D6Kyrz5fsEpFFWdpGKrnSh69YCShnxFNePT/CD5B6rZ2PGlthRUm3mLw0bqodoyK2qeeA/VTh2k32tKUS3Dny6pzkO1zM98aKc1qpV50vkzu1HddaWgfDMf1f1quHjUAFTfZkflnwnVwwqFuQ3zUf2cFR1NnoTq5T95/5JaVK96SLFd/6J6Vy3dtApCsdIA+k/mJIpNath2cxKKx+2iR3YaKJ7iwhOiAlDscYCe7B+G4q3NHJK0DcUB4XS4sxrFR914flIdisPes82zwShOjWfrVERx1jGhpCQMxWU9QvyvNhQ/W0B3HBajuHWRoKIxHsXfg+n9gXippdSeFYYaqtPpeOd+1FgfwLGhB1AjLJ6d/AtRo3YuxayWRU2Veoob14eaNmV0IsELNWfv4MEVI1Bzzmu6/s0aNTeGseaeu6gZforOjqhHzcoIOrP4JWp2DaTow+tRS+RNFwwUUWv9PJ7y82/UClvJewZvwmFqYdSVpo7DcidTpF0qas9OpFvZOqi9fjobu2qi9gl1rtC8gNqp2lz6aQxqp1vwin/TUDv/MGVeHITa5X6U0bYSdeYoUc1BR9Q5PpoVPkegzhl/3pzphjpX7lNoyCbUVRXTIcXVqCvaSKlplqg7s53FP4ejrkcYJd7tQr3EXEqFBNTLiqTnTrtRTzKWB6proV7bfl40bSTqfbOlpMlBqD80ilfKW6K+CrGay03Ud2umW375qL9Zlvvvy0L9p350u3c+GogsqD0jAw1y2ihm21403PxK+r4HomH4Rp69tAkNq4rp3KhgNJTGq3y3ODQyjXLcPfoGGk356RispolG7l6OcvIn0GjFHWHZh+FoFDCSD7vuRKPjM9myNwONquPoiKcnGleO4HUbRuDwVqLWAZvQRP0G1at3o8k8DUq6fh9N7XOFmUXyaDrbTDApmo+mc5opf85gNF21i3MVA9F0UwubqmugaWAX1XtqomllDStnpKNp01QqUDmGI7xX0+l/h+CIaB263qaDIzIcONXzM46oWsP7IlVwROdqavZIxZEDJrEQvhNHihSpJWwVjjw4i6dG78WRCUmsN13afm4uXzfeiWampZS18T6aWW0VRni7otmcNL59wwHNvHtZvscUzTbl8PKqfmgWPo3t171Bs5MJdCakFc0dl7ChgRyaz3Km4j+n0Hy2Moe+34nm3k/YMP4ymke4U5OdtD7SgeLS9qL5hXjqfp+Oo86Yc5pHOY7K2UzfWBVHlb/gxecJR1W/oitlS3DUtxWUJzmPFhob6F3DIbSYG8KeFmlokdNK0e6VOFrtJJ0qr8PRNV2UaNqLo39foSoZHxwjbmQF/cs4xmEXJT82wTE3n0v/hR045ulaPno/E8e0aVPqWQ8cq27AeSU6OHaiCW8ZZYxj59qzyotUHLsqg0ISqnHs1rcsW2yOY6O16KHpABz73Inqz1fi2PYBvLGiHi3FznTw8zO0PKpLsRtWoWWYNF8ccxPH9T9B51SG4biJ4+jtzWs4bq4DFd8swHE1Zyl9+BscLzrKlYuDcHxVKL0hT5wwQkJ3yoxxgt13qryTi1YnW3jPSUO0yuuhOKf5aFX7jSqXTETrDCNh2F4ZtK6azidm6OIkzYl0cXoPTpq1gFKvzEObqpcUW+yANtUtFFH4Gm3qXDipog9t6kP5NI1Gm4Zg9vZuQZvGy1Q1VQltflbQgXmyaFvRTE/vb8cpGb5UuuEHTunscFw6dQLaqQ10NPlHqpWxEO30De3mGHCSrSLaZxAfEGmgfWc+D10zDh1E71imdQZO9TDgIRMUcWrNA4o6Nh6nibKpMPwUTpvTwQf0enFaxBjK1HiNf6t9osrTOfh31F6KGTUM/4595Gg+Q2rDYCGg2xGnS/e7/HcQTteez5bnfBGnltGRVYBknUDFZIHkYyfUP96FFH2WD2beRUrcKkw634P0PJllBTVk83IetHgFCn9NoHT9EnQcHMeqKb7oKI7iv3zfo6OxN/X6dKCzpcDd+9PR2d6AW06FoLNTJ/dtjkHnOQaOw+bkoPO8Sh7wdxA6L73B/dKb0PnkYuF/i7rR+ekJ+vP7FTp3XeCFykU4Q2YFVaYNxRlqpXz4kz7OENfw0AkmOMMykKITzuKMF2F08rQeutjrcJhoDro4/RTkvAejy7w6DilZii5L7/ADaRxxWR/Im5edQZe4PRS7JRtdEqIFUdlFdGl6wFtWeaCrxWq6EWGKrmO0KU79f+hqpcZDDl9D1zmTeFRBCrrWSM9Dljq6fgNK/+6BMyN92M45GmdWJ3D/wd/RbbKIwz8boNu82bxYbxi6LbDkfdpq6LbNg3pLB6LbvnssP6gE3SJi6LK/Lc56dZcVHD1wVmccrxfPQ3fNIZQR6YDuEWOpYuxx9ND4zKJ/6tDjiy7rzClHj1+9fCxKgrMVMnlGZh7O1kjmX88NcPbwQCofp41zNe5S9YL9OK+6g+KiJ+C8+g5Hy8TrOF/bRNh7Lhnne27l6F3KOD/jNyW0jcVFJ5+x2MAFPd2DWWWiPHpusGfZc53oebWTEhR3oefvFRT+/BV6VZZR7VYJej2b7/R8/lf0qlnOawu+oVftAtby70SvL+X06Ms49Pr6jn0/9UOvzjP0IkoXvbrXOUnMv6C3+jqnree3oLfGv7zI7gl6azrQZ5tk9DZWpqgbvug9/hs9Vp+E3hO3O+bmGqL33I3C9/N/o/fmUH7g+R96RwSzUowxekfF8KhrrejjPYmuKfwPfQIvsMhTAX0S2qlIyRYXdxnwuOAhuOStF4U/WIu+4WVUPb8afTNuUk9BL/o2mNMbZXf07ZkkaFlK23/YU9m9hegntuVrRyrRz3oFB/uq4NJGVarsDsJl2ucdhVnDcdmCf6m03hqXeb4UrpgF4LL4YZxk14vLF9bwBssAXFm0gP67qIurnvZyWchYXNWtx7++zsfVal/YRl0FV091piS1ubimLoKHtYlxTaOW9L9vgv4mUVTp44H+I5rZbG4M+ptV8u9SJ/Qf9ZGH/PFB/3FNdGV1FfpPWkzXOBj9HawoPjcK/f/Rpf+OT8R/6s1Y5psSrp88mi3Cx+P6hePo1rQcXP9d+l7H+OKGyfn0csNz3KiVK+wqPIIbbcqFtQ4GuHFhraC+JRY37pDjSKWxuLHuCb0f8Ri32/3DKap6uN1rEx9fo4bbA46wxbVC3B7fTD+zanGHh6703g/FHXPOsGbjXxgQ/oXi2hdh4KMNdMz/B+65lEaJe9fhng/pdKWkH+79S8LW50W4t82cas8Ox70dXVRoG4r7Ehqobd9c3Hf5Lj2f9BaDqtN5UMdeDHoey7KZW/Hgt8OstCIID90JoKieV3joiT/d/LccD33RpespqhhyJYlSml/jkfUzOdQpD4+EraHGopV45Fw2WwcYYejMADayCsUwUT79PN+K4RDKpvbyGD5zEg85lofhCxooPU8dI1XzKenQFoxU+x9P6WzFqFEVdPx7EMaU96Nrsy9hfHQrpUeex4TQT3Ts1gJMeGhDZWMOYcqeDpLsD8XU8eMo/7+FeDr4I51P/4Bpd90pYagJnhluSBdFVnheQ4U3rXXDC+ObqaC1A6+1MCVdbMQbL1Lo6D9P8LZVJcV9KsHM6er07Zo3Ztbdojj7KMxsEdGtmH2Ylb6eLn94gVnN2yjSyRKzryrRuT1xmFPSzXNffsO8uFGUdr0e89sFOnBlNBZAMqX8SsZCl+usHPcVC5P30e2hHliYeoGdahKxsDCcQvbtx8KiCRQxwg0lO9ayUYAySgKHciwboySjj/4zWIqSG2106PValLwnSjxnj5Iviyk/LhIlv4ey7JZXKPmzn1VjpmGRTBRbmgtY1F+FJ316j0VyA3iX8SEskq8ULo84jkUDezh/QB8WKWzgtXYPsEhRQi+WrcZ7ypaUUHQP71l9oA+Di/HeZEMqpyVYXNHCih51eL82mgcF38f7deUs93gn3n8zmr4XibEkSJDm/eZYOmUkty+1x9I0K8q88gwfeKdQ9GgNfLBrCkVNnoZlLlfpuNszLG8roPRL5f8HdPNTHQ==
+
+
+ 972.402465820313
+ eJwNxX9YzAccB/C7iiV3ipTzkLJjizDpQqg+n/u+0y9KV9HRcc5VfnXVI2Z+PC35sannye868bhrj1ycWalMWpL8Ws+1alO22KKnNLQtqvmxPbbXPy/hRKGJi9+lCwUfnqHGMVKhKLCPsw+vEE6NPkoqWZRQbBRTjUkm3BkuYcvUGOGu10kuczsk3LMqSPbpa8Fm3kP3JH8LzdYdXFTdIbR4eFC242rhyV0VdUQWC8++sZAqIkZ4We3NDueShEF5Mk2jP2DXUs+qoHo4xI/jNw51cGjdzLNzF2CYkycZbb5wMnXQvDHj4NQYzOONTzCyNpO8X7dB4hrIx9XdkFRP4Vi9HtI7cygncw1cvB5SzQt7uBy0422vxsJ9TwzlqNXwiIvnhaJqeE715AC7esg/dmXLsk7Ii0ooRHQQ3veLSNv6Gj4Bk0k6w4qZSzR84Ns+fLLKg0Z1V2KOby0ZkjXwc8misoibmHssix+GTMSC5zM5v28Ii5QBLPfYj0DnHJ4z6jICb6ylc9laBE+aQT6zfEGH6tjYvQJ8QMaKI5cRKvmAQ+MdEfp7A6sn7EeYTyylmqcgrCeNBq1lCNe4cXjccUQmHqYe3Q0smTJNaddbhaXhf/G2xXpEGZypoGM8oge28PZ7QYh54M/+xoVQmc7Qb5f2IS7tPcdWA3Glc1kSE43lXiO5Iv4llq9vZ6+hr7Aiw4kT8y4iwTWGzC0KrFx/ivzGZGLVtcd0c4c9Ev2TWJ6ficTef1n8+RlofhZRiJMOq30q2T34BNa8CKdfnxZDO+kti3f+ibUlx0kpiYcu4xavk/4D3dMuKizYinW7A4SICivWlYrhEhUJfaSZyxSl0Gfe4sOOQUi6ag4ZvTIKST2xglu3CMmTfqArihYkb24iqX85kjsrye9WK1JKLikXqcKQ0hpL5zpuY4OknGXXHbAh+nMylGdgo0jND9U92DijlFQpbtg0UU7cfB6bli7hA37h2PRco5yV8gipkxs56NUwpB4xKSVadxh0odxk64Xhqqvy0LhdMPQF822ZBWnRvXz1Wi3S8mxktgtBuouCqzb4Ib1nF/9UO4SdbiLS3nyMnRmRPH1sArLmV1LNiVxk6Rq4ZGAfsjc7kqntR2TbprL9u+3Ym/oRzRtrxt4CUXDX/hp8EeFF7z+zR653FZc/akBuWzPPF4uRl+5L39/vR17/KPJb/SXyR3eyyHM28hUSMpZvwdEru8mwtxEnF0WS1j0Hp7TFVPmqH6e3P1FaBo7BVNPOG5v6YV75JrhLPwJn17uxc9VbWHKSqNM+HZbCQnZM+P+KRNLIz6K0PJafVgk4/7yN2qUnceGXPmrpegCr5TRJk3S42ORL7dOP4usrz1iWbcWlgXpe4KxHxeUdPGH4AKqGznJp4VZci1vGFt8R+G5QzSmLt+F6ewWbawZRN/ICd/gT6jxXkVasQsMaf1Y0t6FxcippE7Jg8/djZ00YbH1GGjgW9x8zN94h
+
+
+ 903.851806640625
+ eJwFwQs01QccB3BNdpRD66GHNxXtKI95RCW/3///ldtNboRdJDUURSh6zWtOV1olj0rpIW6FbPS0FiY6JZEIlVhqTYyNSlKnaJ+PmGpSzSkTTokH1c3oSNcjMf3zt0KWxEjMOLme3M+li4Wjl6j+Ub5YrFfBfumFYsmcVHZ5s0K8puyjHDU/sTwridIc08SHJwZ4MW8VW0tK6GcThfi09geWjJwXnz3YRHEWv4hdZYU88+x28YXRBeZ/KsXuqvdkP7hC7K3IpIy1DuJww2U23HJVfH8xmEq8k8TPSgtSLOgUR+Xf0THPPVBZM54Uc89DrUtJRbvHQT1IhX6MacbE3C0UsFwFGuGx9PiBKjTattGt8S6YlLqJbSdtwje9K6gg2AqTD1rQujhrTJN50oPOIcxKvE95LZHQmRrKVnll0GncRyitgq6elFWfTofu9XGk87sceod3COrdZdCrTGInuRIGrtbOY7HLYDhrQFAUCTBavIoNut7B6PkBLmmygvHNRPJ8Px+zZ2rz/kQJ5kRbkK6+EqYnbHh8fBPMEnqoOUsOc3+RbkdfhHmXGb2KGcP8gDbWHMzA/NoJLNq+xYKuJlqbcAGW7lW8ZOpRWHZ/ZMcWCaz+XMNaM4ph2/IbG4mLYGd6mxQmRrC75symbWlYaDDIUcmWcLgwTOs/DmGJTy/rp7nBadiRXTIbsPSsC926ag5nN22+3EogW18q6LYGZchYMngU/OQNne6+AnFCIa8yTQNcrvHeEFdgzwjh8QK42ihIp+cmXA+sE6Lv+0C6e5yg9VMd3PRt+MyHMrgFRrJH1L9w+/CFK5JysFLO9HZyNVZ2tNPM15lw191PN+63QGZcz7tXR0C2V8lCrASyu7cFB6OlkI2M0mG7Xnhov+S6S0/h8fAqB0cNwHPeXvFkqB88/a1ENTEZXhvbxNCOQ/A6pSacVouB151KmhcWD+9t0Ty5Ygw+fo+F+DAZfBoXCybLWuAzEkLrciZD7qXN3k42kKe+pO53fpDXGPBspyr4To/mIf0R+EYmcGpBMnyPm3G8mz78rFX5oJYH/KdFcn/r1/DP7RfUE6dgzT4X6jBbiQDJXCH+9QYE5G8W6g3tEdBpR7I6IPB6l5gz+hUCn78RxknnIKi2mJqVgwjWnsIRd79HaHAzdRzQRliUBis25mObVye1Docjdnw/7andie1sSXkTQrA9cha19Q1gR1+DUC2/g506h1ky0Ru7ph3kZVvrkaTxmhOrLZAkXUSaEiDZ/QoF/vUrkiOyudRNBoUD061WRqqmKuVrGCLdaqKgERaGdJ8ELsiWIiPejv1WRSLjhB953tNCZkQKHxr1QrZvCcVZZuF4rj9VXF6JPNlpepXgBeWW/3j9pgQoD2lSZtJGKMtCuGo0H2cbDJ3/puc4v0SDDxyaiqKyCJ7deA5F7bF090UQSielUE7MY5SuTqOmAieUDh2hoaB6XHRcyFojN1AeEyJaD/ah/FiQsEvbFuXlCqozXYoKqTnVn2xEZbkrb5AClc1VbJ+Thj+Of+KvdI1RNbOHMibFomrsJfUbP8HN9qME+zhUR+SyRXgxahqvcp9KKmp6BE7ZrI+aT3co151xe2cE633pRe0zKVXf6EVdST+7rddF3RNT/iwNR91wO0fJ5uKeRjYJqo2ob6ijMzZr0aA7Q/CsjEOD/XKq3vnof916PjY=
+
+
+ 931.832153320313
+ eJwBuAFH/kOiibBAfFNVQ8idgkEMN+RD0bQwQVF9R0PWSChBBnF/Q+ezJkCEvNFD8dQwQREwfkQGtetAbmvpRAgao0DpASREDuWLQPWsvEQR1udAtbEoRBkjD0DBZetEJau9QWAHREQnfc5Azy8HRCph/kDIoiVELuSMQLyok0Q10EVBQ9cVRDume0FU2vtERAgRQZE5qERHm1lBIEHGREo/C0EoSipETojzP+JLbERO4hFBHOuoRE84DUF1ysBEUBWpQgDWOERUS09BOyhFRFfOGEE77DdEWEDSQYtns0RY6TJAXWcTRFlTmEInrWtEWZoLQKDu3URaAVNBhGYqRFp5PUFZSBxEWtXCQcZnRkRbU6tBS/i8RFxgV0CE77xEXRAqQSn1NURdaclBLBooRF3uNEFaTphEXi1mQYqXukRfy1BBA7ssRGAKSEGin+NEYGB5QBslDERg6QJBAXieRGI2yEEOMHlEY4ToQNVKI0RkVLtBm09JRGSje0GmpbhEZPenQDZ36kRua3VBaL80RHaYaEDZpuxEmB24QK4rMUSi/RRBg5FaRK+yKUCzbMFEtbGmQVfwsETFY3FAKNMSQTKzUw==
+
+
+ 730.800659179688
+ eJwN1PlXDfgfx3EUaV90q1tapJSiusllEvf9vp8X4iRaJNJizREZTcLIRFkmLZIpLqlUKpWmUYydGZpI36mmVM5ICtkZJibZvn56/AHPc54iMDeTzAfGi9WyVKodUSGinHRZqtUq4m3VeW6didhqEUfvc4aKrQ87qCNMTSQEJpL+LInYrrWYdGVjRJLZa9rn7S52SlNps56Z2KUno9OaySI1dUDpWDNDZMjsKKpvh8ioCqXko0fEPi0T7leVi33ZD6g91EP8lJmg6BlPIsukR6mZkC6yTu6gysKrIvvXQMXn4Hvi0IlW1vj4rSjY+ZL8IwJEicMA5V8PF8fdVKzdEyMqLH5gtxN64gRF0zVJkqj8dwpdOPxKVJUb0MhsY1H97Hc6vuGNqPmliBwsIsVpq2zKa94jzv4cRE8vG4rLNh/JI0pDXE5IpxfRq8QflY605Z+Noj7Hhi/JPcRNm3lkYe4pbiZZ8aKpOqLhyEpOftQvmuRycjLXFy2e13haWJdon1NGqn4SnWpx1LFuruj87Q6bD1KIrovuPOphu+gx0CNdo3DRU7qDYfFBPJg0hINvlIkH54qoRs9cPMqZTc1j74nHJePo2PY/xZOyVOr9yVc8MzlJ8nebxMvJz9lP11C8lnjw9MZu8cY1k5plR8Q7eRhFZ3WJ93JzXlmhIz5O8KVTRSfFZ7fPXHXzvPii3krNwRcwSFePXYxnYbDBFK7Y6oohUxt4nVoX1Ipj6fmypVBru8RSFy2oa/lTfm8K1A8VsHXaOQxNvsZa8auhETeR7uo+h8aFSNKVbMXwUQYUsOIIhs8fzUYp+tD8GhFJ86G9+DA3rN0L7UOfeNa4v6Dr94viS2AwdFX2PCJ+AHoB4WwUYgP9JOb6yKcwqPybi28nwbDxP255vBJG0nAuPNYG49UOHHPvW0gCfTnp6kJIdpazhncjJG3/KXVi+mAyx5b8l7vA9NRMpY+sBWYL7rPkSRbMDhZQSa4c0kV1bJn4B6R1pmzYsRvmE8s4rfg8zJdokdrUk7DQn8iS9HWwWP+eCyOtYFG7hXNjdmHkZEP6ePxXjIx9xvcctGDpO5MKXhbCstRJOQoLYfm5hWupD1Zuezm0JgXW+ob858ggWEcoeLnVDFgX3Sf5lQ7Y5Nqwh8IeNndfs1PDediWHFAuuR8G27uf2LO6GKPfTlKKhRqw89vK710A+/JXVHL/Z4xJj+co2+8x5v1U5f47CjjY/6D0vHUADj7Lud12NxwKUqixRh2OUjP2lARj7LAQ7jt/BWNn9FBnUxfGdgWw2ZkmONkNo2jH4XAq8uaAlFdwDnnHu7cdh3P1CD5zMRbOLyeSTtsQjLsxk0r1rmD8WRnnXinC+Acm/J3NWbgY/ag0fZgOl9h/eZPzGri0Z3Hx4BlwtXVg3S+9cF06lI9WmcA1YxA9UveHm/UHpcS0FjKr7dQc5g/ZvGXKQW7xkP0YT6qaVXDXa1F2tJfB3c9R+JxognvCQuVao1a4l+awUj8PE5K7Ke+bFHhMDFF6za6Hx+YcEZqrhEfRB+X0yRHwbFXR2DkyTDHtpOvOtphmnkjFbksw7VYF3S5NgmJurVJ1sB+KjMVcbfwJNPCIlq5cAqV6EOXffAmMrGXjL3LMNjrGOzXz4dN9izoCB2OO4jap6nbDN7yA36wYCr+2Jh6Wexf+bWtJ1T0EAf8E8ShVFQLvnKU877+x4Oomupdqh5CKPGVY2gyE9nfzncgEhN0wY591xxBh0EGng7QQke3K7qfLsUQ6mgsKArGsrIPyZZ5Y5d3N2t9kIarAmtViNbGm8Ao1HVTD2lI7eiY5h+gx2iytuo4Yt/20Y5wc3xUGUv+HGGyQScmiow9xi0YwjzqDjU+m84VSL2yy+/oFC21smfWWwxvrEW8DRc+1RvzgOpyP9Xpg+5ODJFL9kKjZy836X122n9egHonVrexrvBlJMV70wdIESc9SWKohsGPb92z9eAJ2eaWRvn0ddh0Ypuj1mYTksEDK8/yI5K560nl+E3swl20mj8eetOfk3zUTKRtzKfK+MVL2B/IChzCkm93g0a32SJ/3F3Xu9cJeqSdVSr46LodXBMcgw0vOnWFfXbRH6VqzDRnr48nP+zj2xWoIy+wp2JemxV3/AzLlA7zlRREyY0fw0xcKZBY1sHFlCLIibTn8VAOyti2lki5HZGvqsnHiIWQ7z2e1O1pQxfqTTtAUHJ62nkKH9SFnQwLv1EvBkfPdHLXqCXLT3tLvGlLkVptS3/6zyFs6n23jopEfd5g2pV5EfouEs+oWIP/1bspQtePoyUuKzyILRa5rSZ69AMXlHRRh34Pitlv0uv/q/wGAy/np
+
+
+ 585.9189453125
+ eJwNx3lAzYkWAGBFRd1bhkSK26B021RXvayd8ztnsqaNokgrTVpkDRmtmpSmGt4zhCwtUpKypFCXIYYoetJCKllKoluMSd77/vto+vxYzDIMIOnIDMBRh8k8wACjV9qTg8sBCLnZQM62LdD+uY5cFs5EacxacnVOAD0XW/K4qw9hWuPI2+sKql/JIb+Z+fDtbAhtjuoF5/rltEWyDH5+3ERbtSpQzaCNdky0hCgrQ9rpp4MlkzMoVvsIhvt3UsLEsbBhHlJC8mE0inlNiVFduL9HmZImr4Bs+WRKLo+B2HxlStXfANWrxZQ2ljE8+SWl7fBG+uEsZRw2wripO+iAXZ390NQzdODf+XBzzUM6qDcSkl7uoUNus1HZZ5COHCmDY7X9lJnaCbYrtlFWTg1k5xyikzPCYO39/XQqWwfilodTtl40SkySKa8yB4sMxHTmtDNk3FejfGkFiBS3KX9nLGSH3aOzLXJh6sqNVDDfFZVGTqGC6w04LkhBhZmLBetHNXTOfCeEOZ2jouU+OCbyMBWXtmJh7Su6EGWMhjZSKrGS4/TUbVRqOx973k2jS7nuaL12BF0xDYAdOVIqO3gbw8//Qlflj1DtTRCVRw8TZh6zo/KaAftnGt1Usb4STx1Qp4oyERio+NJ1rVg4LhPR9RxnEO0+SpU2AkQldZLcLB+dv84m+UAezk0T0y0VO8TUfLqj64opnh105zBjVH8H3bOrwdy3OXTv8miMHh1Hf00YgYv9ttJ9w16odlxBD2XL8IV3GtUmdUPF1nqq/foLdNml0OOVb9B5gzrVz+nAEs29VF++CRO/u1DD/AyoKDxGDefNcGFDMT27qMBkfV9qlMTinOIz1JjVhkY/elDLqnuYNb6Fnk+uxD3BEfSifTYOPk6kVpk67la7Qq1lt8HHHOjlOQX2RaVRm3EvHPINobaUKJxa1UBtiktCbEIutQsroeheOLV/bhScU/+ijuDFaOWUQp2Jnrgnr5VeZ27E3P4QeisdwhM2xtSV+VUwCn1OXUN7BZXmCOr+cxOu17Om95JmPBQSQe/jbIH3PaAeixS8tq6TegoPCQH1b+nDIrmwLtqTPvRUoHq5Gn30+oq/V1jRx1J1Mn1QTZ+oGXvi3elTpbFgcTaI+kzkuMzhOvWVVgsGhfWkcIjHm13/pf55m6CO0qg/NxiqnurTgPlVeHr2Ag1cMsHtY1Ppc/FtCH1fTp+/d6L30CP6klgNq5eq0t8yHVCo+tGgQyeKX2TR4KCJIPz+mr4VPoHyH1poaPw2kM/1o6FMH2FERDEP043Axp8WsNLyPpwefIuVbrsJzllarPQlRvD8eIyVgx0F8cNHrJzljwmeClZu3COYBO7i4VNWQMETOx6+ZizELXHn4Sf/EbQPTucRDl8FH/fPPKJXgXfdmlnF1Eu4kV7IKm5NQtWJz6zy6z/Cvt8WsqqGGKUPZrHq2nq0nvX/v/US5qnGs5pHriDLOsVqKSEYdqqbR+a5CRtsMnmU06BgunEVj8poRdL8wqMe92NOhjerz1yE2sYnWT06G6UvdrL6+SoI2/yN1fueYtOxZNY4fA331qiwRq0hCr+8YtEwfWG2fiWLTu7C7KGHLFLcwH89Xc5iSRqE+d9gcU4JepQ/ZnF9uXA8egaLBxsFnaxK1jS8KzS8ULBmqAjiNHVZ6+dBwaBOxFrZ3oJGfwGP1u4SBiObebTnR6HGxIxHx5dg5YzpPHZrLCqZxbGuqT1aDutj/SfFUNl0midNuY4XXpuyRG8ynh/XyJKg/cL8og6WHPRFjdZcNljxGHf1ytjgVQyKtmjxFHiL41SBp8i7ISswlad2fUCJjxVPa27CcxYP2LDYA65eTmejzt24Y+Rlnv7+PlZNesMmHxbBoxoxm7a7YbpKLpsVtAvW8efY7MU8jPk1js3HqEDHPGM2P7kfy0LL2eJ4KLwsHGCLlirBsGkdW7lvB9f4OpZNOgtX181l2bZ+OFdkyDZOp1BZ7xvbnL6LEm8Vtvn7Cz7ps2C7I39iWUwAz9IWo/u2OzzL7Tv2RObx3Jxh4Bp7j+dZSCCrH9h+ojXml45j+zWfsGjYKLY/Phx75CIG7XSQWnky5KmB7QxLxog4lP1Ry3g3F1yDelnQrkYt7yEWbjvib0/imVIOoXtYD9MnJ3g3sJTZ9TWuOB/CDjprUWO9ATu8tBS+lETyAqMjwiapMy/wlkHERmVe0BmIZD+fFyc4QnqdEy/uSoQfNu7jJVaMP5XZ89KZDZDeXsKOQh4ePZrEywIvQm1dDbtMuAmRrq3sYv87SnZrs2uvFux46MjLTWVw8fUJdjdLR1XLKl75wQUq8lbyqjWZkP3HHvbSL0I7/1D2OjgDXeoKeDXZw6cwD159SQk138p4jVEEXFzVw94/hkO3kiWvXdCCE5a0sc+kUOQ1C9lnfSYmTZWxz1ERZonnsk/3DQgdTGNfXTco9FjGvl52UBHYwr5tZ1Ai7WG/Vj14Kg5m/yWOOCa5if2LpODjmckBq9zg4fMBDpy4HWwNezjwjhgHBpN4nZ0CCwMe8LoTpzFHx5bXZ0bitcxSXn8rBRyjt3BQWBqOPtPBwT5SkC94xcFvmkG3ax+Hds1EA7/nHFZjhpre+znc0h5OqBlweFATbtVayhs3vILSrjkcMb4EMm595AjPoxhrHMURbSPgj7InvLlZAaKLx3nbhxmQkHGKt+fZQfKFGI6cVoA/5ZTxzi2ZcOZGFMfJInH4u6scV+2P/wnez/HjDFD0cTHvNX8DtvLJnNy7AZys73NGqA480534P43Yv5g=
+
+
+ eJwNl3k4ll0TwCMkhMdt37dQKiTtfS1nZu6HSCLesqc3rVpo16qSNookUZLedkkhRHaR7HuhhRZaUZHU9/z1u86cmTkz13XmnBmWeWAHf3jAimXGG/MPZRNZ5vUNWNTQwrLEjpNJ53OWpfaG3351DcvSaCYpjxCWpb2VVv33k2XphNG5VVtYlt43mmJzlGUdkMLfuhEsK2EVDqsEsawhBdpweT3LPv8K67mJ7JGGNUlJTmE56mJY9dGR5WhNJwuFRpajnYpX185nuZcysFQlnz3WjKVx2ZfZY+00zHExZY89xMl1tw17fOYWNtbvYY9j9gsH8ixZntoX8rP8wfLUP/CRjr4sb08CTfHqZXln72KpcBfLO9eAN7qms7zYcNoReITlDTqQetY2lq8byk98mMby9X/Tbi1llh/ciBkpkSx/7wXbsbbrWH5EEMZIWbP8i78xufIFy285QXqbHEQcokW/xrL857PsRiS1svwX2aTSl8/y/0ry5mv2sAKtDbZT9oSyAv3D/NInO1iB+3mh6mlkBd5DWGo/nhXsleHTJtewggvT6UR1uIi5dKb9Giu4PAKHTT+zgtxUmmGiwwpVEzB5XQ0r1JpGlhdMWKGeJZ78IMEKF0zGa1dcWGHwffLPXcAK91ynwNIuVpjkw7tsHmaFpcvxgZkaK6ysw+rao6zw9wp898KPFamHkc23P6xIx4QMv+9lRcZlNNfiOitKH40JXo6s6Os9/G07mxXraeHNzjOsOO43fii8zIrjGdbLvRAxFevzR7Dii9dsLRruseL2V8JDfS6sRE+et03sZiXeLljlqsBKtsXi1bBYVnI0GcPrA1lJ7E4+/O91Vqr5jRxf3mBPtNpsbdbVsydxtnynTi97MhSKp8/eYGVampiqE8nKtM2xL2mWiC149flOVqbzk9ZsnMfKPHdiXGYAK9utSAFJYqxc+w8mbgxg5XqvhfG8HCsXyW20xrDyaGPe9Pp2Vp5gy7tdHs2eqkbiy75l7KnmXkw/qcCeXqjEDIsOVqF9i2S8e1hFsDWN/iTNKvY42pq8D2YV59yx44s7q4jVoCnbR7GK4TyexHaxZ4EtmGkzlj0LfsJbj7Nkz+JW4s+8j6xSMxu7yv/HqrT0MOnRSFaVEMz33v/DqvWasermJlat/40u7rFg1Re06L2oDqqLh0kvQMBqNDvwmrg4q9GZJzSeXcVqDF7azmj3ZTXxSnRv7k0RL9C1uH9YTeIioXSKHKu57oOvjPeymn5F8mnVZzU/UvF90A1Wq30MB3ofs1q9lWRT1MdqDRfic7XVrPZMNW36eZXVaQ5ilIwPq/PcRk7Fb1ldnBX1OC5idfGf8GOHaP/SVBw4tprVe3XhWcdWVh9djgUmjqzBXpPUPrixRo6nLfskWKPuLZq1dhdr1HuCDfrKrNFZAnuO/GaNgRWY8NKANcbXUYy/HWt8mkRa7j9Yk6Y4HT5Qw5q0nOxM549hTToj6bCdGWtyvocpB56xJvf9tlHuHawpgDDr3UzWFLYG08LVWdOFDGFslQdret7Da92WZ806BuShbM6a9aYJO0eosGajJiFXfok1j0WaHi3JmvkcvDxyHmu+dImPiRPpJc2mi3rprMXAhjeeZsBaLkeTVNE71qpmjnWho1nr+WGaZx/EWn868LTEnT33UCXF2G72PKaaeqJmsheqwfh79DP2QmMyTTv+h714fodfkvKFtWma4pUWadam9ZneHIxnbYbitF9rB2tb4YA51MHa/rPC609msXYtJEUDU9b+TR+vtvmw9r5eMjt3iXXoPiLZhWNYh8E0fr2DAesw0sT2vHzWsRwxTT6RdVy+TSt6xrOXRjP4Tf7e7GXCXV4pzpi9vHIVa5Pt2csOW1r7YzZ7+fITFez9xF7pbSNBYTZ7pf8Br+2fyF4ZRmCZey57HW1Bp14osteX8vFuRAF70yEUig18YZ16Ifzqpg+s00OaBs4as872LnLTD2ddOq+p0OI76zIwwKeR81mX11RybTrO3uofFEo7S7C3Cwuxwmkme+v7mFrrw9nbCzPx8eND7G1CE0XbdLC3iXJY+ruMvRu7gIRud9n719r0uXeYdWtPI6dlzay7YxMm5FWynjuOtqYGweyj0ULSWj+bfZyYKdSct5d9TB5HLpvF2GfNLCzYZcc+a1dgQXIA+6K7H98rimh8mkxOPGdfEn7hzfZI9k3XAR9SHOsVvRN3sjtZ74RkUn/nwHpv3cNM8c2s93YR3qzbyXpfbiOpqYtYn77oPv5vD+vbp8h73FFmfUWBlNEpZH1tufzWLSas74s1HVm7ifX93Ycff1mxfk1Zcr0Yxfp1fvPK8XNZv4Ed7dsVwPoNV+Dp3D2s38uGps06yvr3RhD33oD1J1ThbbN17IfqBGzM8mQDBhPo5KXdbODyLRKT8GSDum3438929muFNybfyGe/El/jZ+tINrTdA+95X2W/D6hiwexANmx2G+8K09kfH1O86qXE/q5oxmdFPiA2ay/W2DaD2JJ5NGLmIIhtXEZX7nSCWPgGEhySBbGaGZj7Wx7Eq99jtYYbiNctwVwZVxB/44SPFP1hpMiuM2AIRm5xI9+1kTDyRjymxnMgcfwP1nBjQSLcmSQ2VYBExDdsORYLEqeL8LmdBUhEaWOymzdIJD3CtJ2yIMlxmOS/DSSXhGJp/i6QXPUKB7IaQdL/DnZuWwiSm11wwCkHJCMH8ZHtPJBMWYuD5d4gZRlGJuJrQSriPTY8awKp02+woO4LSHU1YA1LhFFOBRTjogGj7h/l1RTjYVTdA9KInwKjvnL4zUQI0g7j8cEYR5BeHIoVDzpAOmos9p14BNJvJmJ8sy9IfzyHFzd0gXRvJMmdnw+jlW7RwgNxIDOzgS/O+wdkFs/kt4jZg4yfGl1e+EfEbJruYQYy/16mRY2pILNjMV6xCgKZk5FY0mMBMqfc8ZmKFchEBGDHxm6QuWKFVSUSIDvRDvMWeoDsZEPMP9YIslsu0IRFqiB7xh+Lj9uC7INfWBH5BmQfllP3gU6QrTSnxrmZIPvmJo1+qAJyEaHCKHlVkEtJFErvfgNy1QV8vNAI5L72Ye2YxTBGMIIgYD2M8T2PSWL+MCarBssFhSC/7RhedfcC+R3zSH7vZJBPGcTbtX4gn2qHv8vbQb5yJSYJNoOCYjteWh4CCqcPY4u5JCg8bMWPgp2gKAgijbBQULTajH9/3QZFlxAcuFQEive6MHFeBQi4Sqw12QsC6++kGx4MAudP+KxFHAQ3zEh6bBwIcvVwiJmBoCQeb/aMB0ElR0ct9EBQZ4itr0XrN540ffoACPqPkGSgPwgG0knm9VpQWmJB2/UTQWmpKl4aNASlIDdMWWwFSrve8paO3aAUIeCVTx4DpavWVL0vHJSytpH1uTWgVOWDdz3PglLnWtJcsQCUum5g1cP7oPQuDx8ly4NSbyrJ7d8OSv3raOTVCFAaFMeBbSRiApmZJoHS32QsW7wZOPEs/NX8GjgpDksHM4AbXYafIncDN+YIpue8B07eBgvDNUX8QpJD2sBxFXjbax5wRu8xLcQQuMkmeC13DXC8C97aNFPEM5hkLfJnl0nTVZKAW7iRbLMfiXiPFukuAM4+h340/gLOYQM//W8hcItW2H2c+g04x+v8kePRwC0ux3eeH4BzUiENj+fAea7FoVKRvedLLA+0B84nl5Z0M+B8RX1Z3nfgVuhQ+tl1Isbxsj6+wPnl2pV/3wHcyh7+4M9bwPnLkeYZd+BW78RcZyURm7C7VRRf0Ha84Swh4l8alfkJuG2GNP6BBnDb/6WwW/uA26lodzBCFbi9U2nUKkfg9s8hMWWR3f4G7NNZDlxYBpb7ieI5/ozUu0R5nZhBsub/AXfqX9vfskeAi5QkaaVB4KKm0uF0P+AuWWKugiJwl1dgyStRfomLsN1MpH8l31YxXAy4pDSSumwL3DU/khk0Ae5mA1bGeAN3exQ+fFoC3N0MHLgjBO5+Bg4v+APcgwD8PloUR3oedj3JBC6jDXvCROdlygtHD6UA96iQNBMUgMszwlcbK4HLf4YVVxYCV9qL3Tq3gSuzJqX7HcA9/YOVkySBq1zFq0TZAVdVSorrpIGrHYddCv3A1fuR1KbHwDVspDGGq4HrsMZrJPL35gkNqWYB1/0W36ffAO6rEsmIOwA3aEZ6WaGgrFCOT7TbQFnJFFtrD4Gy0S3ecNFuUJ4xnZd0YKC8KJViNgaA8pJIMlx5D5RXzqOpi3eA8pVQirdrAeXCLdgyMAaUK1dj5T+xoKJ4nSZfiQQVw1/4vNYXVBxW8taGqaCyooG6cn6Cyg4ikD8AKseCMe2bMaicPEM66ypBJSKHaleFgkp1Nw40tYCqvDdmaKaA6vZGetbSBaonx9K6J96gGjGMn40GQTXRFrvKJEA18xS/btYCUK38Qj+rS0C1Kg/vjzsBqp12dObCOVAdjKWTwT6gpqBK4j+CQc15Ew6NvgBqm7aR/QMZUIu4RGEVBGqvvuGgXwioL96FD6OPg8amuSQI+Q0aESEkX24LGpGAN7orQct5H76NtQKtwBtY/kQGtA68wcdqU0HrjAJ9jywErURVXr5nHGilTqB0tyOg7TKaFLtjQUewBrtCpUFH1RbvvHgBOq61tPrJV9BZOZckvVxBZ9tnsqxSBV1lAb6dqgm6x97grdkIugUHaISXH+i+DaMjW/JAd6iPXAcXgZ6CHwV/qQY9gQ+NPH4T9ByTaarnKdALeotdPhtAr28ULfBxAr3+erwW6gj6nCUpGJ0BffXnmPRODfSLD2ODfxEYnJOi08TAoO425us+AIP6J/gjZjYYNMSQQMMGDL6r4Pu/ASKmYWzGGzA0iRLmq8eB4axBYfY4FTB0Wib09f8NhqtS+bAJI8EwWJGqJ60Aw9MbyD+FwPBsM35r0wGjrcWYt10SjHa3YO5nKTCqtaYHOQ5gnHoE89pqwGROKjVvHAATZ30a2GkCJqvDSfnZeTDZ048ZcevA5I85XjM2B9P78+j0hsNgWkek2awPZs4W+GUWgNmeGzR+YCqYHZ1JCz/sBLP4ZLqX/RfM7v+L94M3w7gpx2nw0E0Y55JAPV9fwfhpHngpsgTGz7lJK5f8gvFCf1q6rx7GO4+gYx3TYLznQ4ry/g/MuW7s5T+D+axZWFTvC+b/TaKPrr1gfssBMwNEzI6krjtmYF79g5Jb+2GC2gKakUUwYcljfDxpPUxYupUW7k6FCf+cpBFaQpj4wYykrNpgkuAvNiu9gkmq1eR07CFMqj9E7iG3wEJFnzIsQsHC+iB+l9kKFlPO4S2VVrCwmUTSPvFgEXQcb6lOA4ut2hg3wxss2oNoukQMWHxQJ+flF8CiLxc/nR0DFgNSeG9DK1geMMAPvXPBMmILyWX9C5YxVzDJNgAsM49hYrI4WB2+h5XRwWAVOYTv47XA6uI0fCnqW6zqbuEjgyqwGvYkk5dCmMydpA8tfjDZdJgMpZ1h8pzN2LttFkyui8HazL1gbZpIp4o0wXrOCLJYFgxTorJp3JQemJImTXLfdMFGBbHqqRdMva9EwgMCmFo3lWK2/APT6h0wv9UMZrTsICmzUJjxPIJX0LoDs/reC5d5FcBsZTGhVrY6zJ6iyR/Y5gGzXRRoj/l9mB1kTC7bDsIc5UR8ZXQa5tzXx6r5R2BOXzTWh+yD/3H3CK+dg/8lteO1k6kwV/R/B29uh7lnNmGZ2g6Y5/KGQuTqYN5ZhsXqE2B+bIVwT4U9zH8+ii+ZKwELtOaRq5c+LFh+COtGRsGChk6SfKIJTNUYv7peAbbUBBN9OoE19GLhpfMA5p6Yqv0R0P0rCS4MAXrN4h9dkQGMCaFpllKAF7dSWdtOIDUXknfVBxr/miYGJwLtf4ZfPncBv14bb1i6Ad9QjH8u+ILQaAa5ym8HoaU1zb07E4TnbbF4aRoIm65g0YkYsG25gBk1KmBntJFiV5mBneVcXqBdBHZzVOjhXyWws+3jxw07gJ2LFp++8QzYueaQU2ob2EUtpaqRy8Cuv5bGD/fDQuXXNHprP9irjcTcGzzYz1Eiq3hPsLcTp9xgDbB3baDr/74Ae78CCpLMAPtNbqQlJQv2e+Zhw+EwsD+2mAy0GNjHnxc6r3sE9m0v+DNL08FB5y/taHUGh4kheEFwChymHKTZm/8DB5fZ5GSRCg5px/BKlDk4fNyI5X3i4PBzGkmvUIRF0UgC3gYW5cph3t8ucJyuQpnHG8DRlacxb4zA8R8TCtoiA45BufiyZC047jhJeh7nwTG6DS8q1YJjxlW8730CHBvtsVB2NzjJS2H5Rktw2srR4sx0cDprT3McwsApbQamafXAkm/atG+sKSwZ/sUbNrqBs0wVLz6cBs5ql+md+SFwNvanQJvr4Gyli+9/NIHz+TWYrLoalsqU0SjBBlhqFYqJMqng2totPF7wCdy0jPgvXfrg5u5FFQfLwS1tBeYs84F/HnL4ZEsGLF+Wg18froHlUVWEjpWwPFYcSxuOwvIHuSSr5gjLv2uQrlgWuDudoH2ZDeC+2ZRcnBLAI/olBXx/DR7pfTTxqzl41K0lB31L8GhwsTNL2gQevWvJwxvAo28lrY1OAo/v/nZq41TB4+d3MrddAp4q/rYP436Ap0UOpv+cCJ42W23VfE3Ak1zw3eB58Fy6TTgtLAA8l13CF+4Enls38JbvRfKzAaS9ehg8Y6bi0LNE8IwNwuzgQvDi1LH9mzN4eVrS9N2a4LVHNBf9iQCvtEP4bno3eDXMx9JN6eBd9422Z3WAd78yUaAG+Fh3YT3OBV/1d3i5Zz74Th+P0QucwfcfDgfkn4Hv/XBSPPYRfH9MokfqIeA7xOPTD//BClVPCirgYKVWolAeN8BKpxy8k7UeVrq/52d6fIWVccZknesPq9YXY5a+Maz6GY7ZzBFW1//idRJKYfV3BV4vXwXWqEjTeV0BrLEZQX4XU2Bdtg82Hk2A9YfEMbmnFdafV8PP77Rgg1E0VnJRsMGskDfo14QN49fQyU/LIKDVjMJgPmw0LcI2lbuwWT0KPxT9hUCNZD6qOwQCZ1TzsU5XIXBZNe81aSEE7mymqAldEHg+myx/ZkPQYQE2Om2GnbPnktEcO9jpEUcKHothZ/BZGileCrvkPPDT7jbYNV+C6jZPgeBHpiQ/txCCK/aTePEr2P8oHPsfT4YDckU04dQ3ODChmEY0a8CBBTMw29MIQhovkrr0dwhpz6R/pZog5O01muF9EA5ttcPk+b/hiONsLKPdcCRoB8mWnIPQgBLs6RgLoUcUsDimGcK+fsHGqY1wYpMd+ZXWwEm/ary11RROLdLABrNEOLXYC58bZkP4ySJMGeMBEVwcTdz/HSJeJ2HtqTyInDSO5MYKIHL6R0oRvIXIuY8wY9UdiGShFBnbCZGLJlNC6QBE/vOaFr60hEi/KBq96w2cXR2IT7jVEM0VkWubHkTP+UAjjBsgOlxUx9Kb4Vx2jGjOV4b4itlkFmEDF7XnY/aq8XC58hiW7lgNSZZlWOT7CpI6tDB7vjPcUDOgM35+kDw8A4s+V8Pd+21YOZgGKY6rMLPHAFKuvsKUPjdIwzeYrXod0reMxLtSrZB+sR3vLvKGjCnjMa27BzLmTsAaA394OO8GPn4hB9nlLVTaPh1y7l3HF7cKIXf+EDZsuA4F9kew4ucsKIh3w2pRX1hw8QfNl/4AhTvGkuwORSjcPZ8O7o6AwuDb2E2JUDg0iI3vlKHw71zyvtIKReKzKGFSPBRJtPNPqwiKpKJ5sdf3oEhmDbac3AVFcjPwV+o3KFJcj31rwqEodxiLxztA8dTbJDiyH0qUl5H01WwoqdbA6wVCKKnxwo4FHlCaUkrW6wRQ2niDZP2DoLRzCrmZKENpF08j7GKhbNYkXuyhKZRLjyK5QxehPOwHlk/vh/LToZjS1AxPJ3/GhrGX4WngFDLQzfo/bT3iZA==
+
+
+ 597.210754394531
+ eJwNxXs41QcYAGCkI4dzXENUlLKaEEoS+r7f99Ft5VAoT8lIoSzVtqJaF+S25CgJtcnd0nkoXfUkJNU5Uu2ZTqVIpZssbaUbbe8/L82YaAXJ5qUks6yFtrNttNzmIcD0mbTi42GUtq6mVR4i1I4UUWTYU1wSF0OrJTsh43Q5RYd64/5UCcU03EZPh9u0490cqDLVpF3B+uAWqqTdVVH/n0mJ4WLQLzlN6eNGwdYAbUpPXwoCalFmuzdOXVxI+3LsYEV3NGW9VKDk5jSSFzjCE3cbKnDVBcWeLjqssMB8x/tUmDME8oYddPTjTQx7s4mKJzVCeUECFQ92g2XCYSqzCoHpF6Ko0iwL+cRbOt5WiH53HUiB1TApU0qn2i0Eg+WtdMaqB+20p9KF+Y2QpyemRucePB2uR03iVeBWdZaa8ragx1A+XZYnwSmrSGrOL4H+o810depVOJnaS0o9F6izn0XKymqI/TyPVEcfgl3SCWo7Ho7yXBmppx1C69BoUud8wrSax6Tu/YD2okXUMasa0k7KqKO6CqNcbtHDhXGC2EROnWQDYdOPUecNFQY/3kwvTMsgW91DL16NAHXiVXrpXoQRcfH08lgSbC2Jotcmv8E2VTy93rQOtRbJqa8yASV9+6h/owzzNBX0b0I76tT50gDGwafgsfTpHKNJagV9zq1CnZ1v6EvKeyhcs40Gn/VA+0Rd1jD0mX3FRWCNrr14b6Mjawr16PFlAmtedAJpQQRrhRSh9et41kpcA1WKaNZqUIF8phkPC7kBP2gn87C7cfBCt461Y0biwWUVrF19APfWy1hbvQbWllTxcNdaiE9M4eEhNbBy4D6LJsfDgDiTRRtScNexBBZVdAnfiKQsupMh2NoVso6uAZ53sGOdwFgMrE1hnWfxQlrrCx7x2g2aPMJZdyPRiqw21i1IQc3iXtYd2gqPTLeweOE9Yal1F4urGgSTE9ks7jvDhskC640fB4/DzrDeq0uoGn2O9X3LhXmbclh/iz/53n/P+v0/oYb3IEtsQuH6AU+W+F1ARzMflqTloFHLQZao/hLk7gEsdW7B8l1yliY2C7Ydz1naS8BqEzbw8Jr9qDWFDc4ZoVVXLhtm2eKE0BFs2PG34NJUyEYSH6F4TB8bzW7BFL/1bLTbRUizM2TjUc8gpjyCjRe2C0POMjbuSxT26aSxieUCwevVZTaZG4jVTn/yyDmvoKxzFJuP3IHG35aweZgKh5XN4VFv/PFycSOPbuwBS0stHvNMAl+f+/NY13OoIVWwtY43amfPZ5tBW9y/OYbHXQvEXzryeHyOARrOV7Jt8K94u34zT1j+CNLu1PLEHKVwcoM/TzLqhLehgzz5fQxqit+xfZ49qooy2WFcHzSYB7HjyjzBOaCInUbGYqm/ATslX8T1jzPYJU4pzDvZz64Vg3jGLZ/dbDQhwDOS3YqvQOlu4BnXo9DNZiu7mzdCu2s6u4cfgty4bvYcGMDc37XYK9MMmro72TskBZ3yBhgm6GFgxkVG6UqwXNvBwkALtNxPZt7ejOXDi9gnoFywuqViX5EuRsmes29ELGSX1fGciD6c+6CL5/rbwqkMX56Xbw+W/U95gWknaiiH+LsPy1B+oIZl3UpY5GTGAeYWmJ78iZd0++B6/5kcXFoP6ktTeNn+U3jkfBCHdzRgsmc1R3hVgr71E16FNeg/25wj1y7BP4KUHHltMTzwNeboKTNRtqeL1x37HotSm/lH2xKIrrnEPy+VQPbBGN7cehcn12/n7T1JqAiy4J0BtmCZbsC7o2txz7LznNb3FZ7+8473qidD4bVezlrQjRbhDnzkkB8oDi/+D4aJWWs=
+
+
+ 487.733276367188
+ eJwN1fs/1vcbwPFClFPczmc5M1HIWd7X57okdMK0mKV7qLXSMDWqh0WoHOdQQs6VQmLcrCQ5dBgVIYdSSVSGsfp2UJrvfn39Ac8Xiqvkg+NiN5QXfsEKO5VRzTiSBXyyQi3ZehbS+wiN1kyxuOgLuHJNjvP8m7dorjDFbuciWvCsYXnMHNpYroPCcC+0dbjFBs56ou2ba6wrNAsdZCSh1bAJnTcuAoPCSARBH7vq6YyuhvvA3fk4uulI4FClDrqLbIFx+UvoofkQFo3E4ObV0xBTbo2eIlfBKskMfS4eAClOCL9RegT1a1Rwm0Q/m8rzwQBrHuRaOGLASD0b7wtGvtdScBP1Qf6XbjBM2oKBeuVQqXwEg6aHuddO+zD46Qjr3i6Nu6AObGa24E+GkZzwOQsMO/Uz7NYJx58dz0LiuysYYXabnZiNw/1rSuDZNjk8YB8Evgt6+Mu6YUj9yMdItRFWMFyNhxxaWUyCMR6eusbuHN6B0a5FTPVIDcbmxnHaQZJ4tDYSSiKnME7ClHnZGWK86g6WEHsLj0nbQVq8Ph6L1WUt+vZ4XHuSPfPj8HiZPpMytcRE3bVwRWwVJuZ/DTr1mzF5U7Hz89x4TK4bApPhVkyJlmSSJxZjmqw8p+xXgmmJ7pByowTTzY5Do1M0pl+zAD+1aszIL2DBIQLMtJjhqt9FY+aAJDM6zOHJIzLsX7c+zC4xB5tXgXg6fS1r09uLOZ8fglhLNp6Zawepvp2YH/4DmMqVYIGJOpNMFsVCX1HOSuMGFusBpJeZY3HWKCh2zGGpS6vzczk+llaqss8rVPDsOTXWueIxlpm9dP5yqh/LSv1ZbdgsXihq55RXmmC5pSoknU7C8lR/tumBHFZo2kO44QOsKDXi3J73YGVcK4is5PDS+eXw1q8JqwJ4cF/tKFbrtcLapn6szq9nkkcbsUZ9KUhe/Q5r5gvA47QD/n70OvDF5bFWM5OL69qGtXUcG7zEwzpzdW4FLxgFCqOs7YgpCj4Fsf4gFaz3OgS9YlbYoDgJrq5VeEX2byjxiMArO+xYnu4EXm3/jAnCEdiovQ6XNJVi4+31zLp0Aq8rI6eZL4PXqyfBYOkcNvPOs4xpEWw++4SrDY3DlqO/Qf7CKWwZSWbTu6qwlTh2J6IN2xYHMGtuJbYlpIHomBu2fX4A7oabsL20HfbI/og3le04noIR3lIYh9TsK3gry41VdZzE2xJRLDPpR7wtmIGuWU+8EzoDZ7zT8E9eNWx99QX/PN/MikK+xg7NUFA2uoEd6ac5K0cBdloOQVZ5IXaePMctEvoO7+6uwYTABbyf0cylpO7FLpF0bn1nGXad4UFS6xR2B/BBv2At9qxKgD4PEezJyuIsL5Zh79IaGOufx779xlz671HY9yYKsj8M4cNzsVAiK8B+qyJOZyIN+9O/BdUDTTigL4Xduv/gQL4yF9CmiIMqMVyW33Ec/DiNybmpOHS+kivsT8FHP1sAf/12fCzLh0yNaBze6sQZp+Xg8H031jYahU+OnYB/9q3Fp2Lfs4xcE3w6ZAzeSjb4zIIgL2QQn8VfZl0KO3FEN5ez3fANPhdaDUdDt+Pz3GyuolAcR1V+5QwEQjh6thYcm0fwRcVb+GIgwDG9MnBzf4xj3Ws5ncgWHHfpBbawDsd758E5OBdfuljA9FeELwvuQnJGO74yCgb59mh89f4JJ2PfgK8LUmCuZw7/uuiBkS/mcFJ9N8YuasTJvAFICjXHyQk5Vr+mHqc8k7jo0h6cvhTLKafZ4N/m8VzqBi+cWZKPikuscSbGhpZf8sWZ1we55TfkcDZbHJaoG+L/NJpATbAM32u9YR2COfw4c4/5/6SCCzoLoPNBkRZdmAXLmTBaXNrM5m+40eJhL2j68oSEtu1lkpejSKj3BXugX0fCXRwUyvuRiK4q12gqTCJbVWHrqSRa4ucKVrJ5JKpQzdaNfU+iyQPw2LeCRNsfsJyqcRIL7AOp/J0kVl4GU1ukSOxZJzTqDNLS+0XQ6epL4klFsHWVL0kk+jh/GT5MknJ/ofa9tyTpJ8rtTntNko+q2E8O4iTlrQWiNfMkdSYW9joMkNTIANPoDyTpVF9mLetHy/lq4LnTnmTyG8FwiwvJ5pmyOAlH4sneZEXeNSRXuYx5apeSPL8F+h5KkPyde8z60TAp+DfDQtggKYx3QSBfkxQ1G9mZtLek6BbIrLUiSPGXMFYUFUeKb2tA+GYsKWnYw5+vVpOy0BXY1yBCyoGPwePzLKlYXWNVyYGkspDL5iTsSTXoDQy4RpBa3j64OqdL6mqf2Q7rIdJQPMSM50tJY0cRK0gZJY1kDXi/kE1aPDmUKRkhLQcTUNphT1phsmBh/wdplX7m/D/YkPY3SaCgvYG0G+zYuDuRzoTsf941kq7XXWjI+YN0Y4tBJ7Ka9NRsmdpqbdLzz4Sel0akd2KCM/+lhfT1nkN53ALpp8wx1Y0fyUDhJnyr50kG25Rg72UhMujpBcG+k2QoYQFazzrIMGMNaB35ioxcb8IGuwNkHC/Eecy7kvHAACvyjCETq2Vw96A0mQQocXUTrWSSzePMVlSRyRSw9O4/yHS7OJcW4UmmRRv/+3cbmT5MgPJPv5KZYj2XsuoHMuNHweUQMVpl8B4sO3VpdUM0LJMOo9UTy5l5XQ5ZBOWwvFuPyCLjGnz62EeW+z3AQCGRLEvDWUCdK1n2zrKowGiyVqjhjKXUyNpfl92YHSDrFxasSsqRbDYihNxuJ5v4YBB7l0e2GgNwQcOP7DR9YDdfhOwuLWPTimNkryvBBIt4ZJ8TRbk/JpL9oCW2VOwhx6Jp1n/zGjn2V8L2i0fIyWQPjOookNOBPFbbsJ+cqofAKvwMOb2cgh6BD63V+w1M9T3I2YcP6VVdxEp8YM+HcgIzHizWTSTYHskCa98QFLuAo+t/vfcjWx/STuinA3Z1MYSZMqAt6COKEmd3rP8lenqMNYQcJ5evIuBg6AVy+U6bE9Y/Rev8M2DDzX5y3RUOZzR30nr1NpB5b0vrvYtZ4z1tWn8vjlUERZPb4ylWu9BG7gZKkNhRRe7DaSCte5k8bKWYne9B8si0ZTlGKrTBKMx5JGMbbfKN4yTeZdFmyW7O5frvtNlPi7PY/Dd51V5jRYfKyFs7E0x6npA3v5gVXA8j79xKlnFDlbaVyLEx5k3fqk1C4kQ+7aIsJt2l/3/CPjE4
+
+
+ 931.326599121094
+ eJwB0AEv/kOM8xNAYIhGQ9cyLkD9CLtD2xvuQJq+bkPr/mJBOSnaQ/XKLEDBVC5ECZ2CQDXvY0QJ5gVBAQTWRAwYlEEDUUlEDYILQWI5n0QTKjxAoL4ORBVHoUCYXUdEGW3PQQEmV0QbmPxAC5PNRB/Nm0Cgvb5EIlScQIXdokQnydlBAinaRC0nT0Cz/ixEL5ivQHuVpEQ8LFVBw3ZWRDx2/kEKmJ5EPzNjQLxLQkQ/0s1AyAzxRECsCEGOWgVESFbvQLrWuURIlsVBvvE5REyA1UA2gzpEUcTNQHAmLERVdZNB9bzdRFbEUUH0bS9EV8YDQNkHv0RYlZJBCKefRFkaU0FGC21EWzr7QFNYVURb3NpBggNQRF18A0In9EVEXaQ0Qck0EkRd3UNCAVTORF5kp0C8sXZEYKUTQdstsERjJlJBhj1PRGNezUFsVWFEY8rVQhHTk0RkEXBBaBkARGRbokKN155EZI+bQVx/8URkxb5CVCBjRHPC4UBRvVtEeG39QFDv80SCj11Ai8xURIagc0HgdD5Ej/pDQaHDt0SSlRY/4cbTRJbZyEC1wXpEnUq4QOpbaESvvglBIEfDRLwjBEFTTdVEzFnrQKMUpETYlRNBhov8vWPD7Q==
+
+
+ 622.281005859375
+ eJwN0fk/1fkewHHZYuxHchCOJUXICOEU7/f3866UpUXZSpIl27iRVJhKTiFZSsxFijZZHi2npBqXTHKPqaRocEspRg1aFJWkbv/A64fniy1Unoezim8woaEa2PKfsiU6GZB8cZK578yDsrhMts47D4UiRebTUQVvHFSYv/IbDN0WxQKmmsEx8zgL4x3C0OoXLNyej/JPQ9gW/nnQjbRlcYIvIAoSsgRvK8icmmA7rB5D0dUOts9hKfqoOLH9bwZdv97rYel8FyCVdpY+eBTpl6csZ4E7Gp+JYLlViWAhDGTF9UdBYrqOlRgJoMJHi5UU1ENKVD47ZvwRlJOqWKn4q+uUioCdMA6AiiyOlR3sA90Cc3b6lSG8DAhnNW2DoIs6TKzajkWN35i4JhxNxofZZYsoEM22Ytc0RiDrHJ/dcByEigwt1ujwGRu/WbHms9LwXv831qItQdXxtaylThfqSwRM4tKHRkqzWevQV0hRnWT3lj1E9WuLWFv1ANRr67P7p3biISdv1r7QFIqMS9iDEAs8VuTMHnZGYWGfFess4kP3/Hj2aKoTppzms+61xeBgG8N66t1ApzuWPb52BXePZbMnmnawZroX6zXshLzyANZ7bBBlD8xhL66MoVDgwvo1opBvsIr17xrj5Lc5sMFCO6xp+MAGx//E959l2cstKejgu4q9+uGobGLKhgyVsWywnQ3XDsHwXB322mwFauj/zV6f3oh34wfZO6dzKLC5zkYd1mCrQxsbM+Fh8RITNtaUBxL/RWx8tgVetH/LxpvPw8TGXvapaC5utMpnE5vCceV4LJu4+hT7zv7Ovuh/hKzmCjZpLeE097exyfoqjH+3k03x2zif0d1squ0oDER3sG9ux/HK9jSSIh10jb9AUpWpaNl7kqSeS7gNxt9JOlMNS210SSYvmxNUFpKMRMSleI+R7PQazl3nEskGxnF7X7wh2bwlIO4LIbnNkZiYlEByXd4wZseR/G93UcoimaafacSs0TJS4F8GUdUJUkjYhcYnfyWF8gIs2JNECpIR3HswiRQNAK8n9pNi8GGQ9OiRYr4/Kilak2J3MfIVI+inh3XAJN2kZDnKLYz7QEoB0rhL1EtKmZmoJ1YhpQ5r/G9DBilbTnGB84iUY/05t6ZdpFy9GRfdiSeVtcrgFFNJKkVZaCsdTqr687iWezdJdVUdp6FeR6p7FOF1WgepVsvgrJFzpCafhK1uSqTWJ4YjHddI3c2Vs6poIPV4xP5ps0nD0wJWl30jnl4uFy53i3jZTjjQmUe8hsUoeMYjTZdlmLXmFmlWyOCoej5ptnVxqq29NIPnjnJFvjTjwksYm6wnrbnTcPof3qR1t5hLX8ijmUZyePdcKs1skeEqa1NJW+MBNxB6mLQ9zSDnK5B2ciXavnxE2uJPOH9zHGlPbGXBt1pIZ44Xt3+mgHQ2NDJNDknn+FacQAXS/WcQVfKdSS9nAsS9Z0mvNQRzo6eRwNILmjJGyGj1B7if/JaMnXow/bGITK4+huGAETLpbUXHej+aGyjB3NpsssgcAR3Zy2Tx1z54ZrecLGtSsbTbmaziDmJAw0ayFqhBl9lxsvZcCfsKNpH1o1xU0bem+REM/nBKoPm1R/GhbyfZaLajwL6cbFb3cHbKzmST9gADbBvp5zdxOP3BNrL1j4Sg24NkW/cWMq9sJTvVRvRZ1kP2PW1wpZjI0fYa6EpHkmNwLdw3FJOTXya3PyWanNKTOZODteT02gjzC13JOfQf/LpAmpyHFVh4jAUJTVIx4y2fhO/6oUx0iRYlyGPgyT9p0aAMd+TDNlrM08DhU4tpsVct5uhV0OLmaDh0r44Wf2mEf9+eIpfAQnZaYT25ZLdz9++9J9eCVu6GRze5PiqkJqEZgdJLbv8TU4KQy1iU3UKYZ4fjUkRY/zNesFcizvwRpBgWEDPq56w+5xFrMOOU88VEe+3YUduTtFQcwpmvayK3zCQ0PxNLbhMGKDu+lpavz+bkn6XRisku5FnakvuBO7iZicnDoBTYR2vy6FoNta4e5LnjLTSFppPnX/qQ3NNDXm4XYcNrH/I6dR/YeAx5DemiZ2EArS59iivLJsj7fDNWn5tF6+qkMMT+J/K1nMRY5+3kG30Tvrd1k5+3luvzsHLy52fB99wIChgeQdMMP1o/5AFBQ0tpk/EObunARdrUv4AzcflMwRvMwcG8jTb/rYlSWm0UqmIHRUHuFKbmCA+EahQWJoAnA4YUIX0HDT78TpGHfvQzaig6dgc69+VRzOyVsMbzPcUE7XXt2yKkWKe1GLXbgGJLdODE6HmKD+4AB5Nxin8lwQipOtp2pAvsb7+jBD8+KCulUcLVf2HQ9t20vTIfqtPlKXGjDsrf/A8lZq5HnsIdSrqQCs8aeillzjI43GBCv57UBFLIot0LCIp+jNpjKodWY69oT3QaRGudor3LeKh1uphSwzxQ72EMpRasQOFZX9rntg9iV/lR2kwRXjb7H6Vd4qFLZSSJ9HRBMiecRF6WaKKiTqIqN0hNFNCB9Au4vOw5pWu9wiVDh+ngxyoYvS5DWZv8UcqAKKcmCre3Cinnkw3O5PVQSeQvkFmqSeUfv2NwuSFdkvSjzLcZ/wf7rWJY
+
+
+ 843.968139648438
+ eJwFwQs0FXYcB/CkTSsa5ZEoSTdW3Ep1qRx+v/v/ehSJEhUO1VIpmZKMxUQibyFkI9Fj3K0OPWY36aVMkyMhJpUirc7JVUnPfT4ibHAhaxg7iri8xTQl1kkk5V2nv0OcRLJmG13bFiZyytPJcEQhciXhDo9Si0TZ7jZ6WOYgynN3saRMIU7r9lJ892ehmHiGzY6XivOSSLrjWCn+OhZEspCPovZ6IMXrvBJ10o88O+ycuGldTR0m+eLW+GaOpTbRcGMHXTSKES02dXTNi8Xdin/ZYrVUtC6Mop6AcNFmUEs9xSrRXX+KUtMKRY8kipK7M0TvjQjKVDSKvtIkwnfhQiUSedQbHaHKcyOLojoxXPGcQn8ZEB9stUkzL018GvWOo3rDxJfWMiqo1sQYLzPKjtHDmIxX3GhyEV8Xt7H58K/QyLjCYa9OY+zR7bzyqQrjC3bT7Yo/oNnURSHNRdAap0cy7dHQ8i5j46xoTFibyfM26eNbiT9VVryE9n1HWqKMhI7YRytrgqFzfCpbjRvGxFYZKbNsoe9gzJ7hM6EffYGPRmyDQfVS1g+1gqFhOGt0JMJwzQ/sWDIDU4LW0RO3ZzAy+kKytX4wDrhH5+KSMTU/iXLMlsBUMZ6ck7ZjxiN1topug5lBMEeUqmCWm8BSp2sw619Ct2zewzzwLO8tnA4LLRMSje2w2PgPq3vtw5xrPfTY8jWsXHtolaQSVqW6ZBE7EdIqQ1Lu2IB5nrvZ28MY88v3sMTaDvPfjOXcvk5Yex+nJzuVsH5SKp/ZUYeFm3xozX4fLPK6TG9PXMei+zN5skEgZOrP+JsFCsg2Ktln8S3IGjzIomUHbCeFcdSsRbC1f0Iflpdicfpzrn7ZCLuSOpY+yIJd11Pqm7cf9u0tvDXmEqhhLmcO1oBN9tFPerqQdyfQ71amEMkpJPutFyj25IDeGXAMjZU7eU6A48l2qsIInE3vsU3lNjhvV2P91gA4F59l3/ZXcO505ZSVoXAxl7B1/Gq4lLuRdtp6LLMspJqE81i24xRjOBzLR8s43bcfrvJ2so1qgatyCim/fwk3w/+opPgyVtSFsMp1CO5+RvIJLp/hnrJMbtNeD/euI3KPziZ4TP9KfshwAzyqh1itoQbrWqJJ0zkFfq4LWO22AQI1zLma+hHoZ0XvX2ciMDeJvF68xWYTU56+dC6Ctn6koatNCGqyY/WVoxBiEUv+w48R+uiZ3N59E8KCBzmnzw57V2uy5F0PIlccoYoXfyI+JpEdNp1BwlVLvnxiFg5saeYxMT446L2LI9qacTAqmBOdJuPQnBFevzYeh7qITfqlSPnxCHdaJiN15wcuK9uD1KxaLn8fhLThAJYOfI3MiDSS6RxGVvJDuZbCAdlxLvKQgWBk50+TR/pbI+f2GYcKkwvIHZtMkYFxyD9pLL/zsQoFW4pozWELFETf4mmqn1FweidLvfVQmG1P9ea5KBxJopBJCpQY55JQ6eL4lh4OnXcf5X4a7OvvifKIdG47tRinTx4jTdVdKC41sv7AKVT5DlK0tAMXasPYalIiLl6p5300DUpzNU4x/oTajEE+MBSA+geDfEmvGje7NlNDyWfc+SKld0Gz0V63ipThLnhqcpNlzwf/B7KeJzo=
+
+
+ eJwNlnc8110Ux4skkvH7yt4ipVCJltY953x/RssoZbTHU6lol4qKxlMIFTLTeIoWGshekcgmSaKibUTDeH5/vV/nntc997zu/ZxzLkv1Pc4fMJzBUi+WY3MIz1KjpvLxMoYs9T8PfDRlMktTbuedHtixNNXXJFcrZGlqJXg+6ShL0wimWU7jWZpmGKbmjWNp2n/ITnkYS/Odiq8mi9ajnpLxBj+WFleMZ/KKWdpfA1r4XzV7qjqDlLg+9lQ9CwvHtrKnmgcw3DadZSg9xsJVb1mGuhktPNTEMjXXY/2ejSxznwVear/LMqMiMT9hNMuM6cL01/kss8ALH5wZYFlqQbSg5wbL0p6BDQneLMt1BI1uzGZZYWesR+jXsazw13hPpZVlKzfTCJdNLFuli4/1/cOy+SzsHz6CZR+5R5Z/trHsiCB6fRtY9u/FFGAQyXK0Amjg42eWs1sREwt+spyj16wnFA5jOfWmeGdBgYi38XGtyG44RYtv7mA5jcxGf1MWy3ntRf4P/rKcIWl+dvAHlqt6imQjfrBctaXYLbuZ5arvsvbW82K5Ouf46QtVWa5LnHD5zQyWe1TARy32Z7lXZvD2ZkdYbmwnDUu0Zbnxahgz+yLLzcykucpqLLfQkWx8zrPcRsTGwEKWO7gfn6S6s9whRyzaO8TylPzxx9qdLG/VBMw738/yvB+R96RrLO/IfbL4Zcvyrm3ix3EeLK9/O21+4cDyVa7it/I4lj+ujTSe1rH8sD/YrHCF5UfMxtQDWSw/JheDu/xYgfpVfL7zEyuIvmM9etsZVvCmQ7j5dj8r1OZ4X42lrHC1EwUaxLPCiCN8otZrVlh1BwMca1jh1w0YkqPNitS+kdncR6xIWwVDb6mxoiuyeO85sWdqf0nGrJk9U39vPW7cbvYs0okf1NjMiqWP44UzgaxYw5kkxBxYseY7fmVPHSs+9JPW1+9kxeFzMbtHiRVHO+JTr2pWot0hDGCMlRw2IrMOFVZyaRJ1b1nPSmKX8FPcjrPnSn40WtaEPVcLIfVqI1aqEYgfZeaz0iPLrbVv9rPSCFWaKLmelQ4U84abg9gL73LeJTmCvYi8QKRF7EWrEd7NjWRlqh74LmwEK1ObhF3OFqwsQhIL/3vFyqPfYYR/LCuPPSEU617DXmoPYelIR/ZSp5sex81kL68Y88pSHexloRi56Bqzlz+eYVHibFahFob3M9azCk0Umu1XYRU6UZi5V5JV6H6yNpkdziqiEnnJMZms4qoT36JvxCr+O4TxJhdZRY88pbVdYRW9uViY288qdTrwZVIVq9S7THLnLrPK4FZ6/fgUq4wIx+9qxqwysgsj5NJZZVQxZgc7sMrGDcS9a2JV6iFYeTedVbkdI/2fzawqcg4FOyuyqmzCR47EquqzMba9hVWruuCliRWs+rIEZp8sZTUyXZgAi1iNuhmmNWqyGjtT/PlwE6vlkNb6TWW1Wrlk0vCF1a66S7otItuH8KFMAKu9PJ/EPLew2ojFZNM/ktVGNVMBTWG1jyZi0m9/VqeURyNOnmV1qhFkbiTP6tRmU/rTWlan7mwz1fsYq9P4Q7HqV1idZj3RZ57VaaXSCinRPpcz1vHjJFmd2yhM7VFhdSed8d1VZ1YXsQ9Lwm6zuitZwuCKeFYXy0hNagWre+CLhV5nWF3jF372AkNW13WcMrwlWb2mJfn3NrB67bnCTnFPVq/fKuQ+MlZvYE/7ve+w+pib/OOAfaz+mj3VeHWxBm0/fJEzjzXozuNde/eyV693YFjlNvaqbxU/S+Eqa3RswARva9YY6oJNNxeyxrAGnisez14rRRB2u7LXqhZYON+KvW68z1skWLAm9R5KrrjHmvR0yO3FPPYmro7MitazN93tNMK8nTWLztkUtI016w3R8UWHWXNcPMk/3Mje6s/i95kGs7exD6l6eTp7G59P2+csYm+b7cj/5zb29u0gGQxwrEW/HKPVmljL6l+Y3G/AWtbJ4buWa+zdpVk09+gJ1hp9CQcEy1lrs5B/YPKCtWn78abGZqzNVYYqG4m1rS6muQu7WFvkavwh6g/vNTvoZO439t59Iilvc2fvQ20xdcY19r7XmUzS0tkHref4/exe9kHnX6FXhw/7sGYc/tghzj6szaCaM4Psw5V/SUq8k32I7eXd1g1nHw2saV+YM2uPFseW2tes/Z0sHf74gHV0XqDg3WfZJ43DONhbyz5PzMZqPRf2+Y6ztU6OMvsyOU9ooBPJvtw1pnOStezL83jMcprOvrxZid9N6tmXZkMM0/3Ivq6rJuUX59k3jZe0WkaCfR8XhL37Bth3dye8Om0T+7GuGW/dd2Gde6Pwi1kQ6wy+gXni9axLQxKfRVqwrrc7aUp6LOtqWY75ThNYt04cHVNqZt3H5Hmh/yDrDl+Eaa++sO7YpRgTase687fRfs0RrLspj7/VMo11f59Nh/19WI/WKH7kLjXWo6tNKp0GrMfdgM41XGY9+xuwpv4B+9k6GttmHGS/dK0oYv4q9ifsO6n5VrM/Efb4LPkKG4i/iFWaK9mgbgE2CvTYoP4UrBnZxwY/JmL+dmk21IpYqzOCDfXtxl9CPRi29DKmngmDYZV7sc7ZD4b90MHns77CsN7PojrOhOE719LVLYYwPNCf5FZOheHB67HZ2A2GD/hiepkAxOyVaJJpO4h1HqARZf0gbj+HH2/vBuJebrTrxwEYscsV7+/fAyOC3bG++BdITDmH77fdBIkllVg80QkkNg8jhZJvILHrLuYtfgkSno603LIWJC5sxvwYV5AIlSCZtUtAIikaHy11hZHSkXhLwQJGmvmQouo9GHnciaRXicHIYB/8dacNRtYmkYyjB0guy6ULlvdA0kEKK165gOTRf/Hpn68gGcRjyncTkLy/EH8VZIBksj/vWCnyV12jPHWRv/sWtpR6wqgqKXyPh0FK8JBOes0EqYpoTJ64GKQVfmG5UgJIz6rj+U+pIL2UeDZCH6TXy2G3YIWIcXT00A2Q3niLTpRYgfSBV7Q/dgpIH5amqfmfQPq8Ez5TtgfpgE3kX6EN0vGmJP9bBaR/yGFK2WcY/aSJZ+WfYHTZTF4sog1Gt16m2E9uICMbiEl9zSATdE7IL/ACmQuu+NjhAsjcv8bXuJiDzMtyXjdfFmR+tGA+psAYhS78e6QRxnjUYa94Pow5/5L0xKNhTLANVlvYwJiCCHxSagGymU+wT6sXZEvK8UFGJ8il7sFKH1+Qq1yHxX/rQF7Bk05XXQf5KZk0MvkzKHDvaNv5zaBwazoNmzoDFDIn4KupvaCQuw/DU06KeBPDDweDQo8EyW2wAIHsXCz5mQkCe1NsmtAMgkMf+TUae0AQpMzPXOEAggsLsCAkHATXZ1GZHIHgYRtm/DsPBGlOtK1BCILiAbyu3wKCcg+SaBex8hoJzhiAoNqUdNrugqB2H2Zk+4Hg1Vps/LgLBG/NsX2syG7zo5wz60DwPpqkvswGQfshMnfqBEGHJWkdKgdB90aSiXwIgh4/vGN0WsQ/on9tFQh+/iLxiBgQ9BbjJ005EPwuoE1SE0HwZx7WTUEQDKhiUbiOiNV02kR0zmAv5tkHASdmi5HW40R8j2++3QROPB+/PZ0CnIQ1vrk6DLjROvjsxWngxvxDWimmwMl2kNmxDcDJpZFZwBPgOAH5zNAFTuU0xieNAk5VHX9VOAKnlYJ3nI2B02sgq+6twBko44uvV4AzH0mam38DN/0QfnBZBJzlC/z6WAa4GZ+xec5G4OgkJkt+Bs56Oan8mgScTTkpJksAZ+tJoZbngbNToPltrSK+53UT/YFbtIeHrD7gFm+2lSmLAm7pOoofFSFiCc1PqwBu2QSKbPsuYib59G4HbnUrPlWbANwaE1LNmShiO/mlywK3Vo+Off4B3Dp1XvmvKO76PJuBY2+A25hMB01XALfpFAXmzwdusxLZBg4X0YfED44Hbo86Fn5WEzGOxPWygdtnTpsvbANufxAVRdkAd1BgEz0QCNzRNWQgzwF3IklUN5nAnTTD30OieP489knLA3euntbcEd3r+eOU1ArABWyzkZu3G7jALZQy1wq4oF2k/Eh0XyEXaMkwLeBCF9EytWTgLq3AZ88agbsciLevyQEXPpEmJqWKmE3aMi3ARavT2JJy4K7KkvTKncDF51s7vvEG7lolXQqeA9z1dSRVLvLf0qZp/srA3VHBbHN94O4m4BdbSeDu+ZL0qRDgHphjplENcEku2Pu8Hbhkbxy0tgAuRZdk4jRFrKQJ924D90SW1PxTgEvVEWpsFOWRtoSspovipN2kWRr3gHsaQCZResBl+JF0XQFw2Vok9X0WcPlqODT9gIj38LPnfeAKErDHUxW4og5sznoHXPE5mhZ4EbgSJYKTonxfLMH8SyKdlE2mGW6i9yprpMNTRO9VHk36c4qBqxQjicgZIt6j0RceA1djRoo174FreIi33jwCrjEc69xOAvcmn8SSzwLXHIHfmChOizXJXv8XuNYAcrcoAa5dDdOeiPTWIcDq26J8v7djar8GcL+lyKxNpO/BTvxbw0BR5gM2Oy8DRf2HvM2BvaA4cz4Pu1tAcXE2vdY+CYob5tBKUAHF+ChacWUBKD7ppBur1UDxTykpdV+CsfKXSM7UEMYu+odfOHkYjF1XyetlDcDYA1PofMIJGBuUTa2DeaC0/xVds1gGSuftyHPmIlBKDeLHRCWAUtkgPTzpDkpVOpixMBmU2haT5jw1UPp9G3vbnUF51wmaQQdBOcgfa5K+g/JjAbbsqQPl0hAaJ94AKgoL8VP5bVAJnYQlg6dBpXIhdgUMB5Xuhfj04yNQdWjCt5VjQXXXSuLLi0H1uD6J17eDapAf4eIMUC2Lp7DzCaDapkf/aF0B1d/+WCXSh5rsTVLvaAP1YHleNfsLqF9Vo3dTY0A9aSplW6WCeu5sctnfBZrLS+iRczFo7mujEZsWgeYFd9Ie+Q00L3Xht6v3QLPqXyxIWAZaWRL4fBiCVr8CjdrZCdpyOyg3/RxoL8kmy61bQHvLekyfbAzae0fhwDA10L5oSHNNT4J2oiFmJvqAdjfHy9vtBR1uIl1ctQ90/PpIqc4HdMo68U5pBejUDMfIGHUR92NkzxrQFdWb8t4E0L08hWTtSkC35imJWgTo/iwnf2Eb6I39SCOtJUHPMFz4Yecv0BvfgG3+k0Bv9oDw84o80FvmLFypZwZ6m1L5mntBoOetxOv0O4DehX1YXTMa9Kr+I3ExY9Dr3o+x+/aCfuU08jtzFcYJNpM4MweDxEgMv9YHhlYPqdZzEhg6mNF5wwYwdGzBH3khYLglgIzOSIHhnj78PdYWDC8qYdWIq2D4zIS23xsAw8q/xMX4wnilR6TkWQPjLcow98cTGJ88n7YMpIORgzeW+xWC0ZFw2pbnCEanF/Py83eBUXA/Zb08BkZRiXRi6VEw+m857XhrBROGW2OFoxdMUGnArBZFmGDuT6mHU2CCVQq+rHwHExwvkpXHF5goXIW9YztgooMm5V+cCxPdKshy+gYwth8gFbHjYLzJEx9K7QLjGxbUtP4rGKdH8rPnDAfjl42UWXURjKtm4G3vc2D8wZ28I1PAuG8lqb6VhknK/tixQREmOZ2hFTlhMKmvEb/uOgWT4zdhU9R+mJy5gxY4tsDkqlTauPgNmCi9oaD7E8Hkn4Mk2XAMTI7WEDvxHkzi80hdtw9Mqp3I/NE8MJ2WgdU3WsC06jrNdHsCpm92U1N9M5h2KPNjT4aAafcLnvy3gOmgAzmdigOz8T6YE74AzOyNsSLxL5hViZHkpTFg1jWAj88Yw1QukNJGxsI0BQ9Mu7IXpo0PJWFtIExbcQz7D7rCtKffSbF3B5indNM4N18wr9yAT8pUwbz9JebdCgTzXw3Y0+ID01VS8VGRPExv/4tdS9PAYnMq3mrtAYtkY9rzryRYDplh+fC/MCO0DzOCLWBm6GLM2LsPZtZYkM6OTphZa092TQ9gZr0Fvn+yFWY26tLPG54w60cRFobGw+zuTuG6nBMwR1FaKHt1NcwxN+RX6++EOQ59dPL2O5izR4NkrXRhTqgSdkzzByvFp/T7owpYOfbTjsCpYJVsR8NjLMGqO4/WzF4H8+zNKeJxNswLPoelll4w3/EDnbZ/DfOrfbB861NYEPFSGHN5DCx4cQq/5LbCgsbRfJbpA1io7kpHNRVh4aqX+FZbD5jDKFI4YADs3S9Mn/YJIH4I0wsHAd3n8/FnNwCGBZNlYRVg9BF6KB0G+CaQlP7ZCGSsj0OCPUCJMpjZ6gL8XlkakR0GQqUEUqkKAKG+CyXfyAGh2QQ64bIahFbK5DLZDmz0fcj3YgDYmC3h5Vzfgo2VHm9qnwc21r/pyNTpYOM4gbffuhFslqeT/kp1sFkfgm8+moJNqAtdOt0JtsqK2HdfD+z0g/Dxv3JgZ+WF6WsDwG7XEXLatg3somKtp2ckg11TkzCg5wks0lLgVz69DIvczUi8UQUWX1pJ+27MgyUzdGgRPIIly70IW5VgiTOS1t1hsOTiWhKcHQtLUsrxw8yHsNRUD+s/v4KlKzqxZUckLD3nhUXn9sIyZzt8EnYGlu2VIpsBbbDvnEy8dxLYD0rS79Vx4CAFWHv5CjhIl/JaEb/BQTmGmu8sBAeNHKy0kQOHg0KsV3oLy5W+YK2COSx/1SVMKbKEFeqThVIaG2CFywpebkwBrDieQ5MGLsOKKzuw5/1mcK7LIQtjC1i1Moi277CEVaFOJBbTD6uqa8no+l1Y1ZqIGZc9wWXZafIclwQunuPJ/kwZuHIGNHr5f+Dq9hcH990A1z13sKKtC1wvlVPjot3g+qiLytY/A9fKf+ik7CZwrXG1mebVCK5dmVi9YS64dh8mJb1v4PrTw0b5dB+49lXTzvu3wY3zIy5IBtzGelg/jhNReQm2nGfgNv2QtfLfX+DmdEBo2fge3Nwe4LPQReC28w4mvckCt71evP57SXC7qIzdnzPBLfoG9nFV4Pakg7RWXwd3NxvasvYEuB+JIwfTmeBePYR/sr/C6h55crGrgTXSBtj5thDWcEPYF9UMa53dacwzLVgbEoP9B+7D+uAKTNoYBBvU/+PvSgzCBmd/kv7MwQaXHzznLQ+b6o/ji4SlsLlpJlb4PYQt1f287bwQ2PJTmTdqmQr/jJ1HBVFe8M/04XRuZhr846SMtzp+w3bFB1ibYgzbVc2xdOR28NDbgwNG4eBhKI+PLX+Dh9F3fkzfM/CYNIkCpk4GD5ORODRSGTym1mB9gzx4hCthdK4/7Aj6iA9W+MKOV2YU0+0JO9W2iuZvJXiqxGBDozl4NtVhXX0u7FZ9zOcb/YLdMwv5wq22sHvlV57phsDug6V0XlPE8BY6G7oLDsgJsSXUEA6OcsCqnmdw0DWcbG33wCGBLTas+wiHpvL4eNIUODRrKtVOVgXvRFP8zaTBu3QZ6VyKBV+ZDqxvDATfQ27Y5pYIvuc9SLzpJ/hGbcT+DfZwojaCxmi9A79JrzAlrAv894gRZ7IcTu17js98ZsBZlMYi0dw+u8gdi/b9gn+X2GOPuw8EjJmPtwPHQBB3l1TLd8KFyanY5XQMgmVcsTSmGYJNFLGq/BqEmFhQ4qk0CJlRTq+sbkMIC+WV5x+HkMUL+bHRjyDE+SNFnnwDl7gWfBWlCZcUvTDGGyBctRPvhtlB+FJrfCF2H6541OCLKdch6nkrmdhuhWgDUb3K90JMViXe2foJYr864UthP8QNtWP+eie4OmU1fvRQhBu+gOWjNOHGw3OY09QKNz3jsFCoD7eUtSloZBHcPhyACRr3IcFsNBZXZkFicgxmpryFxE4JFH3P4L5XN0lMmgT3E2Sx/NNieKBfiA9nqUPS8AQsS2yHR8qmWHCiEB4NlWLl9e3w+MppEmuyh8d/pLDa/Sg8WTAOv152hbSzG7Fk+gNILzlE1y+vhvSWHCw6HQYZX0MxKbUYMueLY1NDO+TayNDoXEvItbUhidQhyI0uIV8NZ8iNcyCXz78h75Aj+WjXQN7hNnKMmwF5+Rp4+8dqyOv9j2Rs50DeQDqFrJkIeUOfyLLDDfKHz8NE3zbIH/Gaj/u6AvJHSfMK/XsgX9qTKgIqIZ8rIGORngoVLbHTUxkKX/rS2NmWUFR3jjT3rIeitmMkJqkGRe8P06yuCVA824BXd0yC4oS/WKqWByUPtmLL/QJ4rs9hxfmHUP4gBeteJUClaQZWRO78H+YCbcM=
+
+
+ 703.639343261719
+ eJwNz4k71vkaB+BKRWQkQyKhxchLmayVyfP8vh96hyZLV1Njb+EUOkKJ0qqyTdZGkslSeUvlpKIpIW1jSohcjMgJaZISTYtpuc65/4NbrLFTYpNRmmL30R2cvT1K7NH34jlB20S8jSr/pB4tko/IySpURaSknaUSzycis9eanVVWi190btG5Md+Jo+rOtN/EWeS9ceOEXRdF/o5iul1fIU7JdHn79UhxPr+Pd3jridLTuuxg7iAuwZ4CQieJ8nnDZLo4SJSnlXDCLT9xuWAVX78McWXPQtZQ+SSqNaqIVQvFrSObqc6mSNSfbafk1wrRGBZEh0c+iSbjAcq/t1M8bJ1PbZsHRcspS/ZekSv+nL+Pned4ig65Fy0YUyc6R29jl9/3i860u1yMM+LxtggaepErukpOON6ZlyW608dSbcOPoo9VqC3WQvRduEs3y1RE//Rh0ne4JF4cKqK67C4xUF3Mla3V4uVILh3eNShe37vFlZaeYki/it0ODYmhenfq/VEh3pqVkGntYfFOaTcpfi0W7xcNUJhLi/iAIo4/4Sf+Ea8ocbe/+Gh0nj7XbMLopZaOnzuGMFbThWzTkjDu2APWO5mNcT0HOKlXH+OjnlPyeXMonwjni0rBUPVIoPzn1VDTK6SGVV9Dzd2VNu4rhVqiB6+J0MVE1yLSK/WCerw/d7b+hq8KjksGhr34qnUDWdn4QMPoAt3bEgMNt2Y+39AFTYtStuPD0Gy7zXvHLsLk5ec4ce94aGmYsV3hdWh5VVDR9i3Qajah+mfToK2VwNN8hqGd84yjDzyFzlsteno5BlOWvWSbmR2YkvAvjp/yAFP6mUdv0IDuISuWNWhgqn4nT80YjanZr9jdohp62pdZ7Yo1pjWG0r5gbRhoR/HbIDUYrGxgnbGdmN64kKfWXIbh4mxpWmMLDDN8uS2vB4a9A5yebAKjYy+45L/tMLofzr9eS4fxQTc6WXMVxn95OfYYxmKG5SvKy8rEjP0O3NDggRmtqezWuRwzEy24KTUOM29coYnRbZgVb8ORQ5Mx685kDhqZhFkvz1CS7iPMHoqlKo6FyZYiDnbth4kijSPO9sBkYCcXrejAN+2jpLkBv8HU9D2XHHLCnEl9UvAEV8y5PZ4ztfQx56UGK/nmwcxyhEv99WC28SFz8yeYKRT80UkLMtUs/nZyPmQBfVKZvhwyxWspxOQ4ZO2Z1DV/AcwNNnGmUw4siqukm7EBsGixkwzXhWOuZg5ZGynD1mcZpQ8ehZ3uQ9rhXgW7Lgu2T+qGfbDE5vIlsC90kGQ/TIJ91x+OT5IqscDAj1cprmBBTiCb/5uxcNktso0Jw6I10ympXAXfpYfQU5qIxbvU+InOXTiu2UC19clwHHKRiicYgUwL+FzSXFD4fygu5RioUVlMXP0D6EsFHXiWBnaI4N1XzcCFITws7wB/XCLGnbOANPsz+8X8Ccl3P0dHFAFrBXWcrobTikWSR781nA6W0u+d6XAOUqaRmtlYYvZcktU2YEltKvXWLYD8ayX2fOQFeVaptO7/T/kzdW4yq8T3y0ulVjEG3+9Yy3Utj+Ey31A6UukMl8A3/MUuEa75daytvRiu95fyBwaW2iqzd/1dLP0SJNVslMFN9TNfaZoHN1sDDtWvg1tiABXM14FbjxLLD2TB3bGZTEtewXN4hrQ6ww7LfSt4ZaA7Vhhkcdk7Y6wKDaSLTwbwk6U3tw9+gvfLm1KQVR589Cuo3rEePgkDHPvuDXyVZvMjn2D4ehjy8pQc+PauJNNT6fB/UUqmZdoIUMTS1dfGWFs+QCFborFO0UN/hG5E4LQlUlj/DQTNNudk7TCs/1LLReeKseHhfQ4oy0BozmnaPz4SYSmXqPLOTGwy38rOy3Sx6cxmDolpQbjDWTqmUEekXwGnlndgy6pUqhFXEfXsOo0kyrDV6qBksv4xot9qku2dcuwMtGL142uwK+4R2a5ej927rlLGGHfsadakpqefsNflAi3U+Qtxmv6kF3UBceUpxMonsE/xhZNur0WSpw0bRqoi2fVvXrrNGz/rhfDbD0/w896Jksw9AgddEvjAzDik+oPtu68h9UIua/e5I9NtQJJP0UNmcBOnXvRB5qF+ip1ggl9eR1FAfCmytECZql7ILjjCOR5myC7rZp/RLjiy85qk6q+CnFHd1Bnuj1zrfHbaeAOF1aMoQKUBhd2DbHE8Fyc9W0lxMQ+nXFbw1hsvUJL0nou+XYZyj9OEeXtx7RtN3l5ljdsP0ik7Q/4/Gbr6Iw==
+
+
+ 542.806518554688
+ eJwVlGk41nkbQEkPgyzJY+uxhiKUFEXxu//3jZKkhKGIrEkhTWOkQZFUJJVEKgyVhCYpBtOUDMbSJkuDUihKSROpeL2fzvdzXeeg2j+r2Ykbvqhr7cbiebtx/jx9ppL/EPXs7jKVzbK4SFeLNVkfQVPhmczbJBNXrR0E0YeEJGHLDvofRGuNfohqjEQbgyOspywKbX/6DkLmErjarI9Z1RXg6rFC0MstQ2ftMEjx34UuouHcoVWy6CptAyIhU+hmdwVyvOPRQy0CxJ6ZopefGTNQc0Fv41q441eK2wzLmaT6NNsrmGm5LPpqR7CKUBf0MwxmRa6RGOCkCHuz72Ngcy9LmvwDQ4ZDmV7pAO7mB8NjK2EMX3YQZbY04E+zDoHMkl/w5/fibNfhTjyguQ7KPyXjgSkh0D+rjwlp/uySQgwmiu1nDgEleEymjvUf24PHMmugJd0Sk0S1WRn+hUkHHNmR/hw8rl7GvJxH8fiF3UwlcRueutIIkq0P8fRcO5bSo4yniyfZwQBzTFPcB0IHruL5RQVsQUYvnj+3id37NQMvDsjCSdMxzDkxyJIStTBX4xBYcNWYmyHKivZNYb5SA6QZNuLl3ziISN6LVzSiICkwBgtk0rksDSEsyEgFCdUUvPokjVPOjcXC+eaw6W40Fn6yg5QUFbx2zRL40cNYJLgI2vuLsSj/AehWlWCxaies+fgMi7NMYYX7Vvy9IBiOheTgDcMgLjLWHm/kfuQWojiWaulDcuERvDmXwbZTvniz3BcCvzjgLa3fmc7iVrx1uoL1h9nhbSU51t7RjeUzYqCW6rCiMhlUPBdipcE5ZlrzEKvzJUCspg3vaPizXT7/N/iBFTaV4b2scZhVsBZrjtuDSPYA3tc6DF/cnLHOspfFS1tjXXMJWy9Zi/VnJVjhl0XYaNAAgTx3bEz5CN4xOthUfwyqu1WwWVnb6snrV9h8xhycOglbpEThUZI3tpyvYRe3R+Fjfgy4iATgk5wgaG7QwFY9G/aNr4ytVYUw5mmLT+dvA+Xr7fg0PoPjubljm0kpJzflgW33PkKijhF2qMqzx573seMPfXja34ydhofZiRVy2JkwgxNKUcBnjv2sXVsMnxUnQ5Xve/zXf5xtXHwV/32gDVaPrmGXtzvE1adgV8k2FnfyC3Yv5UBp9iR2H7Zn1m2APbNroTJiCHt2poO09Dt8HjULIkJH8YXGXU5UwRVfpD0AED6MvWpBoKvghb3FXly8SQq+nP+ERX6Vx5dnU2F1uTm+wjuMIg2wzyQZBML12M8GIa/LCvtrfoevEnb4OrmZs/xPE98ETUKCqhu+6d3E/po4gYNLPoO5+DTP1MG14jk4lJwG6lk6OGw6g3kFBuBwlQqnV/8V3+dOckFZovjBPxVs3CtwZKEvlOrq40j1a3hUz8ePvr9yogHhOLrchfv58m84mnEIBSKT+GllKhTF/YCfzqfC1U0L8D+5c9w8+3/xs0UFmE57+tx3l4uWD8MxUw1uhswIjuVVsCKHMzi+1hfSeIvxi+hFTr9VGr+cCwULiwacsJgJBqv24URDKqdktQ+/6vYDvyEOvzsZwbOIdvx+2wj++YNwSjGfU1Pcg1NZ3Zzn+hESshNmOcZ8Ekr4AY6e9iOhP0+wBQYhJPQ6gfX0nyfhM1dYYeU3mmHCg3S7RJrhDuDKTyIReWV8Hi1KIpuEua7GvSRyfIANZw6RSNd28Oi8TjOzfCAmQJlm9neCelwQ8fyvYuJyOeKdv8t1DtqQpHwZ8H7aS5JbLgArN6ZZcb2sKqmEpKQbYDfuIinnFpAq6SepM8dBWvlvkuooZffuupF0tBWcLpogGcEKiO2VIJnqOBDUqpFs1hhkxrbTbJ05IDSRS7Ptw+HU5xaSc3kPgdIDJJdtDkbjYjRHeSmnUFBN8vbGoG8iRnztN+y5mC3xoyq5tH4i/qVitPMJJ373MJdWLUoKvtnsnmsNKYaLsKe8NlJqKmaFO8ZJ2T4acvWPkvKFDyAuuZBUcAMju0maezYUVEPekSDsAKycm0aC9FWsokqcBI8ErKsASHW9Cys9F0Sq5S2sqOIJqf8YwEYG7Uj9VBesc04ijVv3OO1bAtJMTAKPjsekeVMSThT/SVoPf4aiv/aTdp8SyHV10/z9inB9bjrpaQWwp93XSM8pHowEM0l/3hyY/DOUFq5cBFan3pGhpROYvVYjw5O2TCV+FxlZPgbJDRm0WH+MdcUU0uKtF1lLnTIZa6qz4PwfyXjvfnjzjU/GJaqsbW85LeEPYPidQ7QkBDkH1wkyafsKF15cp6WmY5AVLUtLQ4uZ0HxnWrZDD2a7qNGynjUo+y2RTAUxcJOXS6auuWy0z5hMU9ez0VftZDrwH9tZXkhmnhtYXqEFmWUoQvb1zWTWqg4iMSa0fOgNi1d4TyvCxOCXtdZkYRQLjrXDtFK0g50UUiRLnTBIFdMkyzRPFvkxgay0fYAnsZ2sfuSxrW8VyCrLg6XmaRHTrmDte7YS8xmCS0FaRHdiYZOtB9EbXXbs2iWyrnsJ3uafyMY/Hg6MDZKt0kU2/imPbF02go/cLVqd18TmiuTQmpzt8MuHZbSmsXT620Nkp6nIgtWryc6rHlxM9GhtQCZ4P9OhtW9jrXo33yf77B2AZgNkP9TO2gxW0bpMKfjbaR6t6xyA4hf65KBrC45TquTgnY25OrPJIaWEUxIPJofuPazO4SY5qlxmPQfjyTHAAAybU8kxNw/uTI2T4ws+65O1pQ2bV7NXN6Zow8t5rK9JhDZeWDD9UBva2BuCPIdhchLsYHg0gZwNp30/FiXnljbwWOFCLj5NLE5mEbkULgBBoBu5+kaBvNAOcp3YB9Jv1cidHwbhL4Vp89HbbGi6qy2ifKhtQdpiqwyV/EjyfJ0JNZ6l5OUngJ3iI+S9ZRksn2lIPpuPssomf/IZjWChh3aT3/MHnNKoH/krtkPeOxsKyG9llHWBApWqWEeUJgUG8kGqI5qCPB5yjkY2FHTOAFWPvKegtzw4HSZLwclnON4uDQruH0M3EKedxoXo+L2HQtQGYNZIEoXszmXpKoMUtn2r1ZT2KYrIuMyObrhNCW1iVvdPlv0PolcQGQ==
+
+
+ 686.929321289063
+ eJwNzoszFHgcAHAKm0dY79Ymz5UKXZSWyve7vy/jOlEpz610lWqw4ypadY60VxlElPWIBuVCOkUPJectPQhRnXTlRKQJUyoZ7j5/wYcFKjZCmDGfiZ1ywampmO0Vz2LYqw/soN0guFnsYtJvdq5v2xxZvIEUbgxsZknxRYDBQywtXRNy47gsw0EPul3XM7mdPWxuzmWZ1vtAq/ZnlpvViHpV+SwvOxi+h0yzC2nlELGcxwqsX8NYlwO7WDiLFkzILqXrAG/IiJVkiDCgz5GVRl2Ehvrz7KqpB6Qrc9h1PSUQ/6TCKhq0oS4hj1VutoPF7vWsem0SuFlVsppUgOz9Z1ktpw3utyqy+sR69LDaypo8JZCu1MNaVDJAMseZtdRtdJ1BEbt/NBA0wjRZq/EaVBjMZK23U6G9Log9KAmBaWEve1ikAOFH7rLHro5oe/8Ra7fa4trcYc6eFI2hYOcj1jF5G9408lnX3AgY6FVjTy96gbeeA+u54Itu4VL2zKURDwQuZc+KT4AQJayX3wm8mjjWW7wesk12sn7bKOjr9mUDqoSDfmFs8PI0ls5Zx4b/f+/9xY2NPdCBz5ues/H4U3gp1pJ9ETiCV0kz+yp7ClLvIDZzOBh1/m1jM1M8XLQX2ezpZricyCEFkwsi7sE2UpDdxputV0jhuQ0kCYtJ0XAH7rabIsWvY3A1F0lJKEF+pxEp/a6E4qp7pNQoBV4nkfLLbvwojicVfgKWlBeTSlIVjHfvIo4Ww5VWccTJeglp9xRp3p3fgFSvkKrXLpRZnCC1HGfI/1FKao/L8IHckzSij6NnwjLSKJyPxYcVSLMuEiduEmmts4cdnGTS1rfFovxq0k7hQv+Ss6Rd3wvyN2XE3ZmGPtrjxO07hzMrp0iHX4qhUatJt/MDLHZbRXp6BSib6SM98QQOPxSSvqQQfTjRZKAVgC4CfTIQjbjOrPAmAxkTCVp2kKF5BUx0ycgw6wwEbxkgw7ZeTLSyJ6NrbzFV4y4ZvaiD4AAhLVAWgSxUSgv8CuCPc1zipTqLlqZmEO+WHD+5zCNjCsXMUSkZ596BCc5XMu5LgZ7QWOKrHIN8kYT4WzswaCCSFs5LAXmFMpmYBuLUng20aM4QCsw3kan/rOjIuiIyzbfEWjV3Mn0ux+NftMhsTjjUkSWZMQGqeaaS+elZ1PwwShbqWbitJZ4sLqvj6Es9shg5KJpf5E6Wh6Tw7uQrsuJl4vU7/iSAGziRVknWBq2iSScuWfuOixKlh8g6TRVtC+JocX8CdqUPkc22PaI1HhFkk7MbY7tPkZ08FHW2B5FdRxfUf/egFWbRIBD7koPmETSMGqDVFf7Ac1Ak5w1muOdaErkEVYHAqoHWis2gUq5M0K4Pt67/Rcgvh1Vtg0Q1fqKFP3iQh0MMaDzj03qzf3DD3Gvk6b8EdeKHyUtuATSynLy6o5D2VdPGFVkocllDPpXTsEUUSr7RWvh3fzn51c5iqvMTCpjIwgNN9RSc1468JhntnsqEBp1+2v9RF/ryRii0bBRN7SZIkuOB6o6LSPLCHn5VUqQI8Xv41jhOh/bNAu/ea4rM/RPec2spymYuhoQ4U3RxMlRMbqKj1ULQ5MZQ3Hgcunm707HsGHit/pmOP43BldIeOmn8GSpKy+iUri7Iyioo6cUkmuB3Sg5ajnCjhpIjenDZcBQldw5A+KdoOt19HqaHHCml9iFIhgvpzOMhWPXJh9IHIqF/YSydXRuFTpM5lOm0FIQL5JT5zsd1dnT7f4pARlY=
+
+
+ 592.557800292969
+ eJwFwQs81YceAHAcj+N1CsXIcUp5pcnyKJs6v9//93OS1yYVjSSVuh+vKZpMzaPVPCLMjuoWK6aYUjetqRRntwilMh+7sgpJV9JD3DS63y85tQdChKyZlrzqhEx5Eq2aHwKFt2vIf4UZ2oR10lo4BfY9SRTsPAoGr8UU7h+Di0d1aNPnQ/B+tg1tnTmIoppZtE3iCZWnJRT72grQw452ihfKp+5WUKrsPGQdfUFp6k5gr7pJGSea0aK8njLNG6HGKoW+t9JGo5R/UU5JItSVFdKhI3mYv8GYCrys0T/LiQpKAuQD0SFUJBdAEdlBxywYdWYXUtlfEky/v4PKXV6irU8g/ezpB42Jr6iypBvnbF1E1ecUWBtwimrMH8mnOrZRbYMnDAQYUL3UG2J7PqLLo55oFlVH1y5EQV3/C7quTIWI8NvUZJ0r70s3I9UPuXAm5Rnd2mGJ+7QGqNW/FjeerqLWaoY5i3ZT2/69eHwkjNpTD6FW+g7q6OuDMw9c6d5AiqB54BZ1euxHN6mYOiuvo2OLK3XJfVBnyWbqKtPArelV9GfsakwOPU89+mvw4Kcf6EGTM1ZIE+mh0huSfwujR4o2jHWLp75v+1Aiuk1PzgugvOdET92TIa5ojIaswuHvxiU0LH+OsuosGv6xBO10n9HIlATu/S+TXrSMo/qCrTSa/RIc9ubR69Ml8mnHYnrzTyvovphFY8pI9HTVo7c1Y5jj8ZreTu0SRAahNOGYjbbFy2iiehy9k23oXb0tqmsl0nufcFD9GkXv//MX7LtHNNXbJnz27AuavnFcEB0rYTXNbKzIVGO17UngNnmC1Rp84TsdU1bXWi8YV21jdWrFa5IqVv/6IcqSsln9wa/YaDOTNeb04ElXBWtsaMII0wzWuJOANgn9LNIV4UpnKYuW/oGc2M6ipH4sc3Zj0fQWqNtjxJrhjqg0FLNWogTafxlkrfJe3BlxkrV6t+Ae80zWNj+KARafsnY14WRzBmv3MtRF32Gddc34X+0tLA7sw6v2pSz+6TDqvexmcc8UWsZ+wboLPMDde4r1gq6iTWgr6/WLsG3XMdYPeYotwizWb7mB1VFfsf54ILZsH2IDu3yBGw6wQXo2ONgeZkMxoHt0FRu6hGFG0wY23Gks/+CXyoadjlAcJGGJ5XpU+vyDJfl3BZ+bxDNyarE7ZIJndAuCd3EPz5R244emMDaqzBfqyxRs1HdJ6ElpZuOPb6JzjgnPyruBeiHIpoX90Lj8CFsE7kaHCTWWlk7Cdx8lsrQ7UxBenWWriWIoVTvCMsUVvOBezrKHm1BkYcNzHXJRs4t4XlsRVEzvZWuTp6h/dS4vOKQE1SU529rtBRj8lu2/t0Pn2jNsPx6MO188Y4eL51Dz4xB2ClfgWZ377HRmE+YM/JsXWw5Dqb4vf2L8OURUf82fbDaFwtIJdglajnkmT9gltwVvd2Sz2zprsBgcY/f5+/DcZDl7iEfh+M3P2OPPcbiYt5Y9VWbw4Y+l7Dk+DvY/JfNymR1m+v7Cy1Ut+C5Uj1dEH0CxoTXL16lwy5HVLC+JhI1Zw4xWi+BQ2wYWjB2gwIvZa58rxkmvsSJWCcMOAazo+gZPGZTySh1DbFgWy6t+NkLdNfN41cgEFBVos9/ut9jqsZv9TjzGwLQs9rv7Br452cn+VyJxYb0nB5Smw1L9cA78vQbeb/fi1XPMIP7Ucw6quASdshoOen4HLJTAa34vl0/fcuO1siH5E8UNXhsfDTwcyevmB8FBVRcHb4rHPQsTOPiRPiyz9OX19ivB5aonf+mfChcWVHLo4wpB65EJh6VdRgPf6xx29jDGbxzi8N4R1ImTcYTuD1iq18CRtZXomlnEkc+3Y/DYJd4WYgPH2605xsQMKip1Oc50COK8FnP8/RhoLMjlr44dRf3WKE6wOYuKNHtOqI2BywdXcJIsCQ9cOcxJQQ54VCnlXbMrcfbgTE6OfIyDcQGcGvUOFRk9nHq/A9U0NnPaPBXgiDmnF1fhjLmWnH43HzomT3L6G01IPd/HGX/HoPF+1/8D3oeaXQ==
+
+
+ 558.887268066406
+ eJwN04dDz3kfAPCftE4lDe3x00m7UFJIn/f3/a78pKTT0pISiuoauMdZhdaRyGhcaUdUR/REOqlEIipEQ5FRSYlc0z3P6394ocYSY1Dry0Q9jets10ACGin4smvR+9BkhQo7ozUXzb7lM5XkELS0T4Hg8hxcuTgUVmUNIPa4s8v+VmhnYMIsBrRRwH8FJ3sFKGjdy7KqxNBluzyrOf0Z3UQugcBuP7qPqbEY2c/oPXyWScn6YOCTVeB8rg6DeBZMb54vho3oQW5XN0aYfoMDaiYYZTLEzu95izGAUGmagUcncqBLfzPGrlrCakLKMHbwEOOiRjHxrzKWSKP4R/YUK/R9hcnaCdDoXobJ11xZycNEPBU4CfM73mNKSRVL7v8F03VOMMmCGcxyGQWT0K144bUQuzBQijmXV4FdXjvmnjdnXg93Y151D1xsnov50l5s5qM1FpwpB/9DHljwz044dP82FmeUwwafs3i5KICbE7gSr5iJsi6varySqcZaMQpLl/LYjbeIpQc72VNPAZYVBoFVaTj+9Y7HnAOt8WpSO8ypK8FrlruhnuqwvKOKDe6fh9dNz7N964TwxgUvsIpbhBXK02z0Dwf8b9EPVnywGSs38EGqJRBvmozC4tf2eEv3CTjcbMZbJWfZxHgLVsnshsWN1Xj7zxPwvekiVt/eCbMzCvHvU45cLRVhzXgntLk7YZ1ZGNNtrsS64xnMq+AS1gsWgdlHYbzXsJE9VerBhpw1kDFpjA9U5DnFHXnYmDEX2s6swYdP4iDRUwGbTt1gg1Kp+MhiL8i02OLjhB72SHEdNveMcFd47/HJmwwQxGzEFg1b0GyzwZZ8Psj8moKtpeeheuc+bEt/D9G/qOIz+XFWe0cPnx1XA+3W/+Bz027OV1kNn5dEQvydInzBPwaV4xy2x2dy4q1t+LJiErYmtWBHUCMb2rgKO756cdKS9tjFK+H012/GLs85UK18Bbv+VmDfLJywO6WJ1e01xdcrHkP21lB83ezE8e50Y0+MCsx3OIC9X3M4/RZ5fBMUyPw6tfDt5scgLWeBb1+1QYzcJ+wjYfbAbhD7PvE4Ff1CfJcaCbkWa/Hd+E2492UaP/y+BsrVHPHD1GO412iC/bJt3LFdk9gfcJXTzAzC/qE8iOLicKBqDSvMeYCDhkc404lg/GTyEawcH+KncVtIDJDCIbdosLk3jp9/zkG+uxl+Pm/LpnrCcdj/EDd39kkcrlgIFS+McCRgHmSJauGXtEDO0NQRR3VHwOIfYxx9+J2z+hCNX4ucId6lBb/JLAQdTQkck78EOcMXcKzgByxOksHvlj4wsuwifq+Jg8zxpzhuXQVJZ6xxvHgFHHFfgBM17tDTZIyTNj0wUqOIU+c0oD84EqfFfdjwBn+cHnPmDjy9ijN571nMlhc486UThIL88UeFLbfm3Aj+e/kzxxeRJR5/Jyf9Rpt4oQMwdTaZeKUGMLHnCc1S3wUWwxdpVqAM52YTRLMe3obo7StJSM+Eq0nWI6EEGy4i6DEJ/VWIwqv2kFCHNwb2DtPsBVPQMLaPZsepcGHtqTS76SH352g8iQing5usFoksP8kKeJdJJPw3CAg3JJHMIlBtUSFRuR5oclAmUbwHhuUnSTTSg8uWLyHR5mBOQt6PxLRCUMnNm8TWV3N7734jsd91YKgTSGzSDoz9fEjc7Do7ENZN4ltmQe5MD4nfKuQaY1vpJy8Bnl2aTj+lvgB/a2P66W48KOVHkLTzO7bPp5dk3Bexm/vDSaZjHxjGhpBs7nc2JfuF5OYvg5InC0ku2pR5y78kuYv7YVH4d5J78TsESufQfEkraBf2ofl9lUwqoJgUDHpZY/pyUjzVzEhHgZQN7rOmzOek/IcXOBiJkIrEXUhuFCJVlQiIaQ8iVY8oMHtsRarn3TkF41FS/XSQNRe/JrU0EYgW7ycN9Rp2eXU1aWziQ2VyMGnK3UfFudOk6agMNzYbkuZEC5d7OoP4i5Yz1lBDfL+n7HqagPjtQ3BcNoi0sie4dR/LaKFzPbtf/w9py4hBYnUKaQ9WsUJPf1o0IQFRvDrScfn/uxAV0uVHc5Xh/yFdh19BYvkN0j1xDrLeHiE99VkswU2N9I5rM8kr06Svtpyltg+RgVMR2Bi7k0GSEkt9006GEcJwuNSLDMtLIbVflozWctyWhFdk/PYR/KJ9i0y224JesjktMTUEGd82WhJxBu6VLaWlvFZoUZKlpc4O7MizYVr6zBdipT3J7N0z+OH+ipbdDYV18IrMZa9w4s+Pk7lnJSwIE6PlJw5DrpcPWQhegkRfN1mUD0C3wyyy1KmFXRVvaIVfBGS/L6EVrQu5tU77aeUmJ7ggmkGr3g+yowtOkdVwAbhpxNFqu4XswW/rafWHYHDKsCdrdz1u7HADWSdawoM4C7J+OQYZvVLE9Ge4gFA+MVdF0JwyINavA14/FxMYAtwvLyWIWcbMFZ4RfHQAqSY14hIOMpVBIeKe3+LUu8IJNWrAKVKY0CsW6ktSCJ+fYDFprkQuuznpPhminANwPyWSbIiYSucU2WpXMFXVbrKzs4OjPT1k1z3NHtmV0Zq+CM5UI4wEh0xB6dR6EnSWsqriTlprkMT85p+mtVkm1j9MdtDaT0dYsJU22Wuas1aBOdn/LQC7gDRyUA1haWGM1hdkg7KIJW3wq4ctG/ppQ5s6W/FiPzkrXwcjezdy7tEBpVAb2qhVC1ovd5OLjrr1Dy9JcilNZCpRN8lVcT0UHG0m1/wx9kDJhtz034JRSAZ56O5gfc6x5BHhzmp7I8kj4xbwPPrJo9abmZMyeWr3s9q76eQZvQC2T2WT52spcD6cRN4K75j59znkvS0J1MzNyPviHlYtWUg+uoVgKbWNfLX2wL/D98l3cy17/iKfNiedZpdW15OfqgTE84+Rn+tyOL1JgfwuKYNAcwX5Zzzj+J8byP9TFlMZQwrItASdggHaqq4OSV3XaGveMk69P4kC5QXASTnQtoA62D4QT9vGG9hTRxHaYdAFTmqrKTg0DK76W1JwbwfwXIRoZ8BXNl4fSiHK9jBHWILCsi1hp2E5hXUd5OZNx1G4oypYC7+jyMp0UN3WTlFfBbAlqpv2aLxkx7aO0d5NkszvmBPt25HLZu640kEuj+0ZmKRDaSFgFH2c4ryWsKPL8v8Hc7w4+A==
+
+
+ eJwN1XdYzt8bB/Aobann06KetpJISEgJ577vz9NjtojKyI7I/BqFzDJTxE9atqyUtvZeJE1JQ8WXJJVk9PXrr9d1nXOu67zPfV33fViK/yE+JPImSwk358POPWAp6REYVBHPUtWssJXWs1SNDn7h478sVfscthbUs1ThNdL5bs1Sdfvo9ISfLNVfieT3bGapV83xUWI5Sw3vxlyKY6m/NTDdaRdL64nF39w+9lxHFvv7rFn6tTwsP4osQ7gA73psZBn7sjAgPoZlXGnE20YVLCPyA2bCWZY55gmNPLeLZQYXYWE2ssyrp0SfkuxZZthNrHO/yjL/c8fCTw4sS1OC5glpyB7+9p5vLMsvhmQLuljWtZN8XCfPsn7Op0vPzrLsMR20870fy9Y5QZ90R7Hs/aqY6JDEsg9F24/NlWTZd0/g09enWXadmGznRLLseo5GHT4w5H4c9Bw612AnnvU7kGW/3UPHj/9m2Y1F+KU1nmW/E5Pdnics+688b6xxluVobbE/u+cOy9GuxeiwOSxHxw1/fy4asg6fSdxjOXqBvJfzL5bjFi5yeTqC5RxS5h8YrWA5Yfn85FEdLCfqK+lmPGE5GbkkWu7Dcgp4qpF2ZTnfNEg1aJDlql/Bzwc4lusbQ6d3+7Ncv7skaI5kuVfHY/iW3Sz3f6sxnj/Jcm+t5UVJ9Sz3z1Z8J/mR5WkGkvPmVpYnHI9/No5jeUbv8XOaAstflozBUkdY/vVe/DvsEMsPP0uGad4sPyLGXiZWzPLfdYhEMWWsQFeB135cxwpWiSnQXsAKrvny6RVLWOGYX3Q+8AkrGvOeNk/UY0VaLfbTe0xY0RV9zN01jBVdX8I3VSezYq3h2BBxkxVrryLJk2WsWNgiktS9yIoPSlOcbzErjuDp9K7RrES3XXS48RArOWhGkqVSrCTUjJ84PpWVhMmRlOxZVhK1iB/9LJ+VqvuTxGVjVjpmH/ZPMGelutoY33uclR75g4m211jpiWp8tDSflWnfxXTlZlYm/Bf/l3aIlfk52U9o9GBl/ll4RRDAyq5NpOFrF7GywVweNi1n5b7l/Mri4+yF8kmMPXmVvYw6zL9tmMQqhCqYVSzPKvR6yb5xBasQiTDhlgurCDOhwn+zWEX+IN3e+JRVdEdjRKwXeyWcJzLpSmev9NvsxyoFslfhtlR314y9uuEiGl7JsVd9AnpeMo9Vaofgw7AjrNIAsaTciVXaPyDFEHVW6TUN79pZscrgt5S7dTt7rd2EVz2N2WsHO0zZNcheXzelzJwPrEo7kLQiq1hV6Hsar32EVbXqYv/zCFYdfQDb4lezGk5MelOsWI1OGnkFqrIa3R6SvFLPapwUsdQ6hdWsuE9PKqtYzSpFLFh4iNVcW0qTTv5iNeH19MCpkdWU3iTPGzGspl+MnwY+sFqNCHwk1GO1msOw8NsAqx1jR+vkylitlot4eICI1Wp3kuXYV6xW5zPpXExltXo78UHkYlbrVIMdTg6s1i3AfsVgHKsNyxDZLt/Aaq9H4Z0j1qw2XwYTDIWstqGTV+OQ1fb48SbPj7I64Qo6X3GL1enOEg1Mk2V1hk0iOTFjdWM9aLSXHasTjaTxRsmsLjKGPzXTn9XdWkjPne+zet0r+EkthdXrW/I6j4+y+j3qpPK8h9W3K+HDGDP25ocjb/W7lTVojcfiBRNYw9UaXiqwi71VDyetnj72tiGBGqqDWKNWGTkbPmCNBrIU6D2SNUbJ4NNVjayxQZKsTG3ZO61x+OZ/HHvndJiEb7ewd31CLN/2kjXpNJFQ6hFr0p/Ouy7jWJNBHz1ODGBN0WnYvziFNRvO4sULlVlzVCy92SpgzTfjyGXvWdbcBDjQkcmaWyTpqF0razFwwScP97CWCwcwvfsgaw21IdO1r1jrtRaSzdjM3jcxflzLEdam60eLYz1Ym9sgqXt/Zm3XPUg+ahtrezdAx9O/sLbvrSQReJ61C//Q7tcDrH2NIUZEm7P277+xvP0T69A7JfrfMi/WsSaF9oZuYB1RPbzPll+s491YGu+exD7obyfFrTnsw9jptK9gKvvYOodUl1qwf6tVsKJ4OPuk7YJdaRz7LNbD1PY89nmPI7aWm7LPj5ztxw3Nn07DRWQ+UM86Jz4XaSSasM7HMmQ+WMc6m9xI7n4A++KZj1/Ke9mXiAxSgK+sa0w5TRwzjHVpZ2LTw52sS7cA028cZF0GiqS33ot9NXpI+lsXs54JmSSfmcR6oubiMyNF1lOWiQ2FaayneQdFix6zXr1osp1gxXoPa/K+MhGsN+8cmfR4s97GIv5YUS7r05GgD6ccWZ++A8lNCWZ9KyeS9Z79rK9gKnYe62TfrWNphPAa+x5lham3FVm/2j6MYeNYv/E5/FWnzgb0eXr8azf7JezFzFWl7M/aY9h9MZz9ZzgJO1y2s7/vFxH38QT7+2MZftAPAolRnRgdHgAS2z1J/n4iDNvuTt2xJTDswjpMStCH4Y4G+HJCCUg6zqGua3YguX0CfkrZAJI7PUly8BNIBrti8Qs9kFIOxBihC0gFvMc7Jy6A1JkmzJUtBKkL97C8Yj5IXWzHlhnfYMSG4Zi0bNeQd7H4vA2M2OFI/jb7YUTQalIQ8yBtcYJsBkaC9FGkZY9WgnRNPrne3gYyDgW0eYknyMTq0+gdPSATH8hfVfIBmde3+JGjI0GmW5UUDT+ArGAf5g6/DbIWq7B6kxnIXpLBzkQrkO25gAOXT4Kcsg9ej78D8tYtvN4Fb5BfYk8u5w1A3iGXImKlQX7tLipasxbk10eSZVoKyO/bRWfzA0D+XBnmjfUH+fNIlrJbQCFOAr/NWAEKyTX8zgM+oPBiJu90yAUU3kfR5h2JoPBtKqV6jAeFH4cwNJ1A4aeASHo5KKrMxxKn9aA4eSt2p9qBoqMvNtl5gmLQaf755yZQjL3OTxq5HRQrSqlxohhGepeRZtAbULKUxFLlBlDa+whjc+aC0j4z/DjnOiiVn8W2f2Rg1CUJLLhpAaNuuONzwWhQVtlBgWUXQVnVEiPPOIPy7SdYr7gJlKtsMKTWZchbmJyfBCr3rUkmNxBUMgywruczqAy0Y9uwGBA4TiE5qxQQHPjEz06bDoIgNX7yCiEIbk+jKuNoEKSuIfucuyB4+QBbCg+AoCYeP79pAEETEesMA0GLP/7e/xUEbTuxc7QTCLq4oX/2Owi672C2xCEQ9KwjQ72HIOhXxZiPXiD44Ys3gk1BMPAEqzxbQPDzBq30VgHB4E4sPvMQOGlVLNaeDZx8ML6pcQJOMR6r9dYDN/IrPrWRBU7NjIZ7PgJOR54kZ58GzuQcDf80FriJV/BFty9w5r1Yd6kZOJtPJGdxHjj7j6QxMQc48Twy/GcHcPN30+9TScAt2EgntoUM2UulEWrALVzHa+kcAm7R+vnSFg3ALamgCKUu4BzEPLd1FnCOHjg4TDBkKQVPXwjcKkMaa1c6ZByN0a0FbvUral+wDzjPDF5JPRu4tTni5poY4DYIKTwyY8gwavV6AtymKfj1+iBwm6tIgk0Dbo8yBbztAG6vFh0zfjrkNrJKDhryJ1mufwvcfhXx2e6h9YPKeM/KcMgWCtzyEzhfF8xacgW4wyNp9oLRwJ0+TfIHqoA7u5RGddwB7twa7Ggbyn3eSyybXw3chXg69c0RuIsLSLqvALhLVlQVPrQfbkbGS2YCF7mFFPd/AS5KjiSGGQB34zG5GGwC7maO/SzxCuBuX8Ke3uvA3YnADxt2A3fPH5tb3gF3/zqNOmIM3BML0q66B1x8E/bkD+V95onlRUN5E7IwZupQzuTxpGQWAFyKMf/vzIPApcZgUtkr4PICaAZZAVdyH8uj5IErXU9qO/2Be2FF6eVxQzZRiOtZ4F7207aOoRyv7MlaKALutQ9JwBHg6puwv2YucC1y+NRv6J6Pv0kuZOg9fXtx4MtQPQYv4K20caAq/QfvzW8FVeXrmHTsFagKPEja9V9QNXzE0/YXoDpzCj929QNQXZRMj516QXXdPJpdIALVm2fogVc/qCa/J//vj0H1hQcZy8wANeV9+PdXIqgt3MT7bb8Oap6veOltm0DNKx5/q04HtX1KZNPyFNTOnSDz2i2gFpRAcR+KQG3gFRb5vwL1f+qpPLsd1G88oKuVmaCeOAzTQn1BPeU0NT/YBuovPtONhlbQ8PEj79T/QCOoAN92R4NGkgYZduWBRpkfTX9RCRrf12KWlzpo/DDCPrVo0LyoiIn2m2G0jyNmX18Poy9WYV3bQRjdpkgnrZbBGKXHNPmmOYx5MYakulxBy2csVh2XBa1gdd6oTQm0bmjz6zTzQOueAj7YdgW0YnlM27sPtOIm81z0ftDKmUe6YZ6gbRmCuTG7QLi0nB8Z8wmEe1uoaG0zCPc/oqm2I0F48C/+uZUGwtCvNNnRGXQux2G0BIJO2hb8/k4EOtl1+EEjG3RHudFyhW+gu7sKCx0UQTdBGgfmNoNurxr/cE8J6HEz+E0aK0FvKlDwxkOgX32P1/ceAP3vD+l2zgAYqMzBKF9zMFB7SUb9XmBgHCrKkBCCgUkOFkZ2g8GsP6J7fyvAwMFNZJX1DxhsyOCzdY+Aga8kZR8OAIOLS2m74mow+B5G+tuPgSEXiRntLmBYOYFyCwfASLCBBKV7wdj2LU3WaATjIlnSDfkDxpVFpPOvPBj3dGPi9l4wiZ9Jp43mwjhZM5J9XQnjVjHM7gyFcQELKdNmIYwLEfAjA+fAuPBEeuZbBuPuMZJz+QLj4qVpzmNNMLUMoogpL8DUZgbW398Mps63yODVSzC9nYaF4UtgvJMmeWs+ATPHHFK7LAVmdyx4o1tOYJYWQZE2nmBW0UmrZ1wDsw4fGnnmLkz40UZ2veUwUeMNjfv8DSZm+JHoygOY+DqfzJ1+gLl6CSlmtYB5XzyNMBmESWqm9NA3Cia9jqHw0HMw6d1a+nZ1JUz6V46XblwHk3qzeKsZ+2HSf+vpkuQwsJDTJomFNmChTph37idYmG7BlwXvwOL8biz3PgUWQVvI1CASLF6/wJSO+TD5/iRsDI2EKdwlqu86DVOWzcfihg8w1SQNf+60hqm2I2je9Jcw1fc9PgtaBpaXCsn0yx6wvBeLg1EnYNpHMe07/wes6q5hegvCTI1KTPDdCjNrPtFx1XSYWZtMwZpTYOYbGVJIPQMzGx7SscjZMPNtGKXunArW/S8oamiOzlJPwd+rJ8As1Cet9gSYFb8Hm7++gVm9naKppS/BRlVOJB/oAjaWOrzZxFiwcZ5NrhcCwFY1l9+Vmg22zgP00yESbONnkFnwHLB9vY2GbdEG295qMkpWgtlnfmHKaF2wczSlz8fzYY5zK+X49cFc1UaS8T8Kc6+Vi+LiN8DcBlmRxJLFME9rMYUzBOb4Giu2vgW29w++b5gPLPQP1sReBFajRHqa2YDOFfjiv1GAbgXY66gIuNKOvyG8CxixnXI3bgE+0BITvswGkdxTLJXaACJ1H5rgkwcii5lkYZ0AossnsXJ1BIgN/ejAbQGILez5iLkPQWyryQtSvEFs38+PmmwHYmeOercPgnhpCZ1QOgHitVdIdcoSEPutx/bcDyC+BCT0KgBxVB9pLtYCcV8rvgseCfP7jmLy0suwQDwc+8wvwYKl72jXnEOw4Go+vshcDQvCw+1z+AhYEJlM+ieyYUFjlf3oeadhoY6saKz9bFjorEveyrKwcOVUKij1hUWhbrQl/X+weIYRfhT3w+KlznTEXBUWu2pRcGI8LN4dhu+jd8DifdtIJXIvLD76CIuMY2HxZRX8kaIADnu0KNlbHhwuy5F6/SRwSNDFz/sTwfGbChkeXgaOg1/5c1FW4CSfRd8rVoCTRhQ/OUQOnIwCyMukAZzz9uOzyG2w9E23aKntY1imNY4vfroVlrm5UeLyHbDsaBO+z3CFFcv3kHWRCqx41kXDazNgRVU7qR2/CW4OW2hfaBe47TAjT+9+cAtqpdEFO8Bdej4m7dQDd4swTJKtAffdZ7Cq919wD00VjXh2A9wTK/l0uV5wL3+Ilc0Xwb16uXiy5Rtw71bErwkI7t+3iNXmRYAHF0jySgw81Lzsn2sagoduCzktfgQe0/6xH7XIGjxcdoocsn+Bx55/eOm0S+Bx+QgtN70CHlfiSNEnClZyFqRScxtWehiTW3s9rPS7Q1NGzYOVEcNJYlM4rKw2IqVeTVh1NgczjPbAqtcDFCLZB6v61GnR1WpYo/oQn010hTWukth0YwGsCZbEdBsxrLXNwDLkYG1KFWbsNYZ1Wg95a9EZWOfWRGefhsLGd+9JylAJNlX9oSypNtj0XY9f5xEJm9Wm0cuMctg8jaO1dtbg5boNU9x8YEuYHnbvbwNvg1RMtakAb6M0/DTOErxN7vDSkmLwNs2j9H4f8J4gIP+j/uA99Q7J/1cC3n/0MCF4K2x7o0ruEYdg+/Fj+OXPKPDRFGKz0Ap8UsLwme5u2BE2BQvCRbBzkju+mhoLu0Yn8sleItg1s4RPrnaAXcvLee5jC+zaX0NHfjnDrmt6xCm7wwFtbaw4qQAH7CwpwtsNfEVT8f6xevBdcRzTv/4F3+dGFD0gBb5llti5Xg2OHFqMGUU3wV+xgHZsCoKjkxpIeGcRHE2vJpVhu+Ho4FB/mUvDsZpo0h7qm2Pv7tOdifPhWNdT/Fl/Dk4dysWfkopwqu8rtmR2Q8DCt/g5bjsE/DqPT+O/w+nfpvj9yjE4s/Aa5oAWnOnwxidzDOGCXw49tk6GC3emk8pGE7hw3wu/OJ6ACw8Msdr1CVzISKFCpwwI4rLxb28oBE/KwZ5wBiHmmiTMtYGQGW/pqa0shLAQKpnsBiGLbCjh0zIIcf1K8//GQcjbdCx2KoZLHz/gi4CZEMrp4LcUGwhVnYMvXedDqNZSzNmvBqGTAIu2CiH05mRSC5eC8HIN/HG6DyKUqrFgtw5EzW7EnOwciBa8x+Kbl+DGy9P49NtluGUdjTUjXeHeVzVMtTKB+xpjKFrmIMRcMMT6/hPweLI/PqxdCk8MfbAz8AM8FTaRREQzxD05gdliZYjLvI13VL5DfPoSGpV6E55t88bcO87w7BjDN+nWkDC+EItECZBo+pwkOhZB0pQEUjRzgyTH3Zi+VABJhYewUn8HJFWUYaxdIiT9asfPkf9Barcl5vYKIW3HY2xpOgpppWUU/TcL0sqPYmcRD893q+DTcwJIv9pNCqUxkFH1EuNUqyHT3BNLb86GbNEajNF0ghxxP8290gA5EaW0dJsR5B5QIPdjyyE3PBi7Tr+F3F41krpiArm/l9FIOU3IHWwk0T/XIG+YEYm6fCBPMp0/fzMZ8kYo8j6uLpCneJh0CqUgb1Q5bf7SDHmqSaTSaQz5ltm0ULsHClRDSd7NGAr2LSWV5dpQ8PIr0YQHUFg3hzatGQmFbbPpn41SUDy2DBMD9aB4lgkvUbcZSmT88Bk3FUo4I5I5lwilswbwQ/ttKN3xklhZI1QEZmG2Vsv/Aa/nVzY=
+
+
+ 808.753845214844
+ eJwFwQ88FnYeB/Dkz8OkIjXy78n/B5N0Qsue7/f3+1DLKJXNMmUW65ZKXXeImx5rEl7Jn/J4Im5OTFdm1GSnq7SKlYhbkdJFr66ec3Nhr6vO3Pstd7heYoXHt1KjbKHmkSVSUzIg1MUmMk8ZIVy3XZB5X3lxeNSULF3uRBtm/iZLp9WU8aajrNTl0oO0BFntl0xNWxplvWcY5UV9LBt+/Yg/LfmdPPOik3RuC2XzKiv2u75AtvbqhEFCj7zg86G6PJzlRbedlN6eIy9lr+HNCY/l5YPP5YrzrbJr1V7a3eon+1r38e8PnJD9Z+v5/s9r5U+ygBrdfOVPDUmkC2mXd79RqkfUV+U9I0dO3Dog79X7qB//OC7vq4gG/AvlUNURjtrULR+45bHhUa0cCX7FprZb5bOazRSn3y71W3R8cvKOHCubTT2BsXK83k8YHgiQL2iQztQmy0l7G1bPHZST2ZkcVLZF/rJvEdmFBsiXVfupJPionF7hTCXRKXIGfuySNSFnbuewe3MRZr2rJotwI8xKHWWjplgYGL5kzWggDPST9PK2IQxj6lm54DmM5g5wxdgpGHvbsb9FDowzt8rFaYYwbtDxP99OgqntB/wNdcK051+kbfCG2dEG3llXBrPe0yLxk1CYl60W0VbJmNMwRZkTjph3rYNPT09gvmUzndIaw7pugpOtumH9aBmnBjzCoiXD6pkfGrCoPZ0/MAuHrZmWM+xjsPiVCQWtm4Z97nLSmprDwS6di+dUwmGdDeduXA9ljC+dPd4LZefHHHW+CM5/jqCH/42A89MsumtiDRftLepLegWXsa858Kt1cN1oRm3nh+H60JPqxlbDTTlIje7hcIsp5JrZUXBrucDi3+vh0ZVPgUPD8PzhfXI6FgPP/3zP17V3oYq+ydcT9PBqnKIm2yp4RxjwZpsJeH/rT1Xv9sCHPUg/chRvGSm45WA7fFWWvHjONvjeCOMK+ywsPTzI4Vafw797mrurDOD/eoRbs4DlAW3UNfkKy1s72Gn7bgTEx1HjaAZWBGXwH64sRGBHEhdvHkCQDbF+lw+CdA6s1CcjeO85scyoBsHVHfTXvu8Q3LmWFSodVjpdZPfK97Ey8guu3GmMlWUJ6pG3J7HquT0Vr72CEIfL/EbRcYRE11GfXQPUlg94+2/6oY625Yvxv0L99IAobbYGPUxj4ZMLtngm3BKywNzJlVfTwFoFv5eoBo/3USgmILzyeFHYCoj4k3xoRydkZBQrD+mB6jdIdS4KoSaLRVzlY4T6Z/DFzhGEFn4vHlYbI/SWqeh/rUGY8xDdSfPDGsWgmL/QHRFzScSN30CkzoUyL5tjvXoT12TmY/1vkylnehuidqxhze1N2HBvWNCOCsSGuIj5514gdnhK1E354CPbjTQW04Y4u6+526ca8YnhdFf1GomeHnzj2k0k2cWK1NRJfHq6ljOa2rB9TEuXZinwWeBBlk8LkPysjrP9/oRdJ7xJVbgUu+/fFPP89Ug5Xk4WQ0VI6TLnGte/Y0+8uXB/9Av29LOwUhL2WvTRLq9KpC5bI8rfGkNazKhQ6K4gPX81+5q/h4z8Dt60dB/+2PUzO7gb4fNhC44cyoCmcQG3JG3AF5pM9moyw8HGHFaYt+JLsUTEjh3G4VvWpHvSi7yQcVb97wnyWu/zX1QtyI/pFy2XHVFgsUVYPUlHwZ6bPKA4hYJDP/KZT1JwJPsIh63qReE7LezkrUfR/nvCeN5SFPVUsGXpHBTnjoq+BH8UN85l8Y8qlLq4067RKzhGxzjs6jJo68+KFiNHlKfsJ9XWaZQ//o52xvrghKM1lQRkoULzJtu0t+HkvAA2sXZGzTuHSDc7G7XR3WLftTzUfvaIPUyVqNXNsM9CT9Ttt2NtsyXOxFpw6aUIXEj6kAfuROL65AJhoun6P47Tc9k=
+
+
+ 686.597412109375
+ eJwNy3lYzHkcB3AqXZSdjtlq0jXKzlPryJFY+nx+37djD1kqtVJpGfIwtseDbRWLjkmubIoMXSTlfOw2PDZHbTueNnpCcnTY2CRPHo0ktdLu6/+XWM27SB1xRySsDKY9Uo5I9J7LF26WiWTfC2w1vkxoO6tJcTVS7PK4SalbmkTWp8W0vn+F0I3R0aucWlHguZN6uyNEkXYxrW+4L46vOETLjRbihPcEkhQZouz9FlYfzRKn952hQotUcfFyEY+slMRvvjn06EyX0AceZoc1U8Tva15SoVqIyteZHK7qFH9ovTjG5bio+f+tr2gV9zyfstm1jaJhXh41RS8V9z2PsMeQTDQmpbFmd6l4EFfAXTkvRFPpDeqtWiBaFmayq2KraJ00n0zsYkWroZ5d/jIRTyZeplS5p3halUIhSw+K9vwZdK7nkuhQfUGnxr8THZ1LqHyJn3h1JYMqzt8Vr7/ZTKrr3cLob85m9/rEW794GiaXid4jq3hm1D3xfpI1x4V9FO8z5tOR8Pmi39eSBkYfFR/sm+nxwUYM3xfPyiVnYfKjMyfJFsGkK5ftYv1h6nuB1lbqYdpymyeWNMDs8DSaM6IGI/6u5RdlD2Hu+jVNufgSFoXerE1oglV2GTV/XA7rtRM4LS4a1q2m7Jykx0gfM7b7JBc2jUEcXl0DWx8dVT1ygG2kKdlUlMO29l+qb9kJWWEM6f4MhexOEfu09cDudDMphkbAPnNS0FDdMDgEZ3H2gCUcIwNYvtgAx6t+XHLyF8jdprLXAyPkK0ZJuun1cEq5TTeua+Bk2CJ5dJTCWTnIxtnmcC69z7NmfwmXxzX0tk4JhSyWBxw+QPFzGKU/HwlX1vLeU8Ph2hrImfpQjNncIRV35mHMrVx6ELcfbh6mXBQ0ALf9dbyxvBhufQv52/xYuM9to9RtGrh/aKCutZHwiF4tTZ1gC49fWVoVMxGeuWrJKjodXscGpWOj2+FlWEQJpWug/GmHZN1jD2V5sWT+TzrGypTs+J0cY49fYiftXnirs/jsnIPwHvpKCkmzhU9BIo91/RzjbM5JffVJGBeawPpNqRj3bJ7kXjsKn3l1suu1cKhmFfEJ/Qmo1gVJHZ2Z8F9lzTvk7Ziq6qOAwwYEPB1kVW0+AkP7OblbA54sUUl/LyRdHtPdHIhNiRxvtIDoLmGrPnMs9Emm1+ezEbLhIjVWPESYVsPJTSYIa2+jOc1PEPEyli31D7HMLpyjTvphWW8bFUYZsdo4yKPnDkdclIIqKqdD41Qc9MzlMX5wiSSV+WTEW/Xw5OJkxBcoeVHIW2x4E893Gq5gk8NMUm09hMSj1fT8jD+2y7dRx/5EbNfE8owCA5LXTaMWXQBSAm9RgKRFSo8XL/g+BanZVdSeX4u0On/qWqqH9t1zlqlXYrejgRfgEvbo01kdYom99qPoQEMmspc9o4hZ/jj0pondbYKRW9VLem/Zf7W14ko=
+
+
+ 703.809326171875
+ eJwNxXlczfkaB/BkiVRjrVNpo0WbRC9acJ7n9/1MUqmoKKpROGXKNihLFJUrcpPm1lC2ihaVUTKRdWgTE1nnonO1XdQxlhhTdOe+/3kLxa9v6bDXbLF750Yqct0nUvMkXlpqJA4etePw7Ovix6nbacbDFpF78Ff5/+K2iqNnP1GKT7U4PnQz1ybvEXln1OiiSlcUT9tEXaUtogS5dPyrQpzOHEX+ZudFmXEjj7/7WZypvMtqYRmiYsYAxbtniEq9Cv7xSI+ouu1E20eZiQs2JXQ+oltcnJHHWvfSRY2hDs24+lZcSfOgtVbF4salIqpOyhZ1OTL2/TRVNM79jTVSfMTtPGc6bHVK3LFoYxvDInGnyJgnOawXT7Qm8qR2mXia40yhYZnimYkOp/Vpi1a7UzSh/JhQOqRRtP4DoTwTQaqAFtGWeY7vLzgk2r2T6YTTPNH+3oMaemJFxwMbfqF8KzprAuj6AWPx35+HsEmAnnh15hF1RO0Vr6+eozUn20XPiN10XvZJ9GTcpO9zfIVqmh2dcTgpVJlqtCLGXbz7S53rFa3ifbolGS71FL2VMrY3fy0+Dt3FsifJov9IDH3V+1N88WqlsiWOYsD5M/XFN2HwtSMc4XAJQ+7+QR/y7DC0PpYuaygx7EEhvZMVYniDPo9MDMGIuWqU9HgdNEd/pb44dWjuv8+mqckYqdErGYzQx0iXKlJVpENrURaXf3CCVp6cdY7+f2UcJd6pg/aDLfRxyjDomM+hb70XQid3N/t99sY3RhfY6JAfvqkL4NDE5xiTFcijO30x1uQ6m3WPwdiSBTxWsRvjtC6S74dNGCfX55xCTYxve8hudAK601WSga0udD/XsYt7DfRMuujF2HnQCzWme7c2Qy/bTZKfGg1Zoj4vrl4E2b/D6ULLT9DPbKVT++OhX/OM7duDYSBTkwwO3ITBDhMpaF0HDJS65O/+BhNGV5KTUSkm3H3MsS93wmj5n5LdxHoYTxtCM+2UMNGo4rAaTZgsKmCdhCqYyn5hDQtXmAY3cEGFMUwHouhr8gSYxchYs1OC2cM75O/XjYkrNkg2igJMrN7F92OWYdJFX0nbwxTmOEnX3yhh/sN+vrbSEeZtS1ltviMsDFZR2mobWA5TY98FnrDsjOXdA86wWhUoaRoWwKpgPp/W8oLVx37Jf9N5TO5uJn/vAljbz5e0t5vAOnQN71XegnVVG3Xd2A+brSop4XkDbOcfkMqDW2G7t1gMr/kdtudSOSTUEbYqN545cAl2pT50z9IV9ju0pZSxCbA/Gym97U3AFN3plLJtC5xygylcVo2Z2bXstkeGmXUNbF+lBxfdTsq4exYuOxql6U5ZcKnazeU52XD1NyG/4EGYtXEwj8o+jtmT+9mxoRCzu6bx6vwDmPN2JB2OWAj5+0Lhu6INJFfnCTsHg16oS821e8BaV9n92WVIc2PIMKIDwtKFo46WQCwcw/n+FfhWtodra1/BY9152j5OBY/b76RB/4zFvOpwKqtygKfHWilqdgW8mu/zjX3m8PryD14cGgPv1n6u1m2Cn1oVFdW0wM+mn75LSILf8mLe5KOFhcezeL5dKxY+XinUMjTgr50vkTwQAcObyXDL7wi0WsuSXzEWTYmk7jIJi4s6eer9kwh2fSBFXjZAsPKYvGM9sMR+JVmbEpZ+8hZz4vIRMutPScdlOkION3L5X3sQajmLi09bIPR2tLw0yA1hdgm899wThB2z5WXnurAseh83bi1BhJ2cDA8aYaXsmpTQ54eVUWWExOVQWGyWslLUoPBu4itBTlCUBEmu6kug+JLKN97PQeR33RRubYbI8iJOirFC1E1feV3lc6zSesqaNz/j+5CHHOx9FdHGhbzLuBPRSg260hePGMt/sXnICMT43OPpF6ywZowtu3n+hDVrlTT560Os/bJUssidhnVOj3nQgsdYF11FveFxWD9XW7K+9Ro/BCynl4Ed2FD9kcdN9MaGbkcybO9CrMMXSpFHIs7GjVJWrEec4hq3WBxFnPI4VzaHYXPTRjJ8lI9tow5wn38pthXW84pHBdgRuZh6tiuw41o8V4eOQUJ8DE/ZZovEO/08aJg9dnoGUfwbW+xSgTqbS5A004kMyRzJzr/xsaduSA4wZ9nqZqT0ZlGr+gBSq4LohKcP9gYs4pDMl9ir0uRJzl7YF3ZTCvjUhrTNvdw0Jx/7zxpL4xtckR5QTv6N5Uj/5TSdVRgjw/UGqR55IyNDnbY0OiJrgik7WdfiUL4z67in4tB/9vEu5U7kpP/B2tsDkZvUQ9EbD+JY/StedaIMFxQq1rE6iJsdCur9uRe11ZbUoUpFfZOONOpK2t+hoQxO
+
+
+ 674.298645019531
+ eJwFwQlcDvYfB3BFIh1LJXm6dKkoRYeEvt/f7xMRihBdzhQdrpHJi/QUHQ8qiXJGW01oEzlLilmLUpGXjMZeDSt/uco1/u+3DJ4axClqU+Tiks2s5/5cRup5UHztGZn1YQspSjPlnomffG6Srdx7eDaZNZ+Q+zS06POa6/JQgR0VSGN52HEoB/eUy6MGx/iDIkOeGDyAB0eYylKTfzl4l5/81b2Bruuelb+WlNA9h3x5ofgW6TroyUuFaaQoKZDVx6+TzpFdsqZuPy/89FHe2NdGe2bWy99naVGBZpasy1bRL6GOsn76JKocvEbernKkpScbZUPuED5WYSzvZFVRZ7yebD5UwZN7U2TLkVg6n/pA3jXaQAUzY+Q9U8HL/vpBtp5KpqbHT+R91wpOqe2SD12n88D0IPmn+RxOapsvH5cYstG117K9dQB7eobKp1cDKa7aTnZcnEemA7fITnsXjqholF2lLnRjxC7ZPWQ1B42ZKd8YTmZ17yvyTXURz+/XKt/leVBSiK98vzmL/tmcKnv886hi0kb5abMbK4f9Jj//mCL6hNyRX6xX8/lF1+TXF1n0ZHUg+oQ/pvLTseiTY0DZaa+hZmhLOl/ToR5+kfjVDKi3l7PtnnPoa1XDvpcy0Dfbkzd+W4i+zV5UM+M4NNIs+VG9FvovMGOTxOHoX3CFFH4L0f9+JwViEzTn+Andt3XQTMuhU32fQ7Oskndq34Fmpzc/X3IVA6yaRB/X2xg41ItQ/RoDm805Vus9tLR/8fmW0AMtv60UX3wXWg3TqbFSHYP8innM3G4MOtDI/isSoW2tpCtti6A914ifWdyGtsqFjo9KhI4igMcnfIOuvS076j+Gbk+EGKA5D3pBrVTbXIvvekvZcdJ26K/9mwO6XkK/w5P03Ndj8IJDVPuUYFAvqPb4KhjqN3H2BQMYhj8QPhQNwyvrWc+wGUZwFyZO92EU84DH1XlhiGYiF/Z2w7g5kG+V3YWJaT4n7wBMIjdzx8NImHyoE/ZL9mCY/SAy6pZQmG5k655/oYiYzw5tlVDcusPlX76HoreR81sewTTkHflmdcNsxDXWdFeDWdgTVhbmw+xsuBjuXAmz9mzRry4W5nN28ouTT2Ge5sR2CUthofQWBjo9sKjqx+19jGDxJVIorQ7DMslT3M7zheXl/dw50hOWbx5x3s/XMNwvk2qOnofVihj+uGQFrM6Mp2PX42D1Mpqjv86FtfEqscGvEdbFszlXRxc26qvl3TFDYMOFYv0fmbBp2s7OvuGw3ZQlSrbkwLa4mneeiYXdtNUi1X4c7CqyfU5ub8PIoHscpZ6IUZVRvOHH7XBq0OTF/p1wnp7DRhfU4XwwUWzVdsLoEZK+Oc7C6G5j8R2NhIvJSp4SfhEuTZlUq7YSYw/409F1znAb84w+XqqGu0UAe2RZw33fQ26ZqYD7i17e37cFHuV17GT7AOOy33Jybg+8RjsIl78t4bXppfjHyQ1el0soZcJJjB/7OznMOo3x1ebCYvcoeMc+ZFsRjAmOCZx0KgcTR0zhs8mfMPHqZd4V/Ad8nOp4cehBkNpe0S+EQHkaPFlxCnRvnch7swK89z0/8V8DMShDJFm1QnRlcOvWt/A1LhKiewImB27ji8XxmKJdzJY67zDl2TYqmG2BqW5lpJpfiBm6dmLa1lwEHvHm5vpnmF3/WlTFLkOQSxu7mi9H0L121n9biHn2u2lRjQLBo0zo4+mbWGCYy01lBxByM044drxG6M9FbLFeA6EPXoixbISwoQ7C9VQMwqDyaV45G2HKSHHC7SAixrWwXasNFrmlUsH/yrF4Wgmdy/qAZW/y+Y5HACJ9n3HQpauITB5HZ9c2IErLlmXpV0St7WZv+3OIzi8S4d9XIbolTrjsasAKnVzqf/4TYqr+Y8NlmYiNS6Mj1iFYl/eSumyykGAfI0ToKmwsdeD3UcOxybyLJ0RsQ5LzU1KLToByObGbdy2Uqh0i3uY/KD930MfMk0gJ8aAggyNIzRnGQ37KR+r5It6f9xXpPxiSr50+0v8qos93I5H+JZSye+OQYcvCJHopMpVFvLs3GaqB7hwVZgfVCAveGVQG1cwZpIh4BdW6QtFv8A6oMpJY2Z+QPXU5xY/NRM7RMCpuD8BedxVraLhi/9FVbBIwCsdq0nhQ9CuUZdewxfEO3FigTgX6ubhxVcn+pfR/XhDPMg==
+
+
+ 525.286926269531
+ eJwN0fkj1YkWAHByKYlIjMiSfb3XlHFlyTnfcwjZRomnhHioiCZPNROVComiacrLktGVrdRr0ajppbRIU8qMCimiTRRqWkyZ6Q/4/PSh6SaKsNUvl/SNOmBDXgkZvW2B4PxQsjLRBj1PW7KdE4EKDfEkYRGobukgF80BFOdF0by3o+594irCORfc+5LWEjnJg53qKM3XvIAF55XI21ENdY760IJpG6GpN5p8Rck4700IBaEpeFamUbDS9/DrK2darPUZ+j9oUYhlOkgLrlBoAEPP5XUU7m0CgnY2RemE4ZQHqhTjJ4LW8WSK+1PXvb9DQisUXsLqeiVaaXMKli9UpgSvR+A4Uk1J6nfRJ6GFkt8a4IX8WFprXA5St+uUYrIPigeB1ivPhFyLQlr/sRIzdgF9Xy4HFUPqtPmTLVT80UZb8kfwsU0nZeiLcOLkV7RNWxV6smspSzMTzquMUNb4KXh6zIJydCZDWcgCyjm8ClMt1ejHPT2Y2W5Ge+umwB2xjIompoCaeTDJVlzC/PhCqjC5jRHz1alyQg+C8TGqUl4KVbNyqdoqBaXVh6lG2wiaTPKopqQZpM73qfb4bZw+/Jjqqg7g69HndEJLDT3+kqcT7R/wQN8QnbJLhRbHtVQfkIuZ1qN0piQX2x066ZfhNtwcaUwNuydgY3MYnX3ni6I5e+m863Kwnl5K/y9WwmI9DbpQng6risep0TUXj2T1UONpVzyspEYXw30wNsuVLl4axXe8jy5ZjuJzUKOmz7Nx05ZFdMWwEL+z8KQribcwO+A0NWt+QKXWVmqudcUDZeepZW4Q1DvU0Q1PIzTPjKDfTuQIWjkddDPrNiokDtCtaZOgTq+IWv0BfnP9D7W+LIXLev50u9kRRpMX0Z17w1he8ie1lc6GZ62N9LtEB8I376T2vB6Qrhyhuwf3YXV0IN1zXiloWgXTvUPT8F/9idS5Rg5FcquoSytWcKoOpK4nPrj/q0fUfcxBOBpfRA+nxSNaRdLD54Fw96oKPUrbi5dbQqjnQQo6WOyg3riZuDV1AfU+9yIf9U30mDYKVanZ9GTOUjx4yIWeBpvikPMoPW1wEsz6S+mZnj0mDPTQs4s1aOGpQC9smzHyj0v0ovYVbjS8RS9z+nEgfTINzhTTmiQZDXnVYLLTDhoq90StnU30yvQ4Oum/pFcby3BzWAC9fu0DVcZIw+m5aPjGl4bb/bF7rTaN7KxHE/F6GuldjKb6QG+6WgTJlv301i0XejdX07vj2cJ3O/bQ+y+PWqJ2el+VKsiHvqOPYjnMkJrRx5LJeHy7DY3ZL8cDHyvpr7NfvMEB+vRtijDFZ5g+BwjC3IdH6HNbDOme2UzjVuru3dNy6O+6esHaZhnLOUUKK+sdWK7wB3ySvpTluuSFfO9yljeT0GvnDJZf0iOEJ15hUedu9DESsWKAMpr/VcATGwIgTVzEkwxlaByTzpP2T0WPy0tZOWIHqG05zSo6yrC6IpanprtBXe9CVhcVwLa6NazeESTMQ2/WUJTBL+clrDlrAPI8B1mzNBEbbKfy9CwXCHo7gbVOWUHSPIG1++ejw5LP/FWpPEjV4lhXKRx+trZn3cJwnCA7yTM73PCQrhbrT0hA+yUNrB8fhNJaYzaYuRWLyorZIGwV1PkfZYOfLoPUxYANhjehY1UkG1YuQge/FWykOgSoO4ONTn4NZ20TeNbUTcKk1do8a9VFQa50LRvrXEMd5yA2qRZDz40KNulYBHrXJ7KpykGoV81gU58CTJ6sxqb7T6OGswmbGd3AH26+YHPFO5Cku5zNi/QwbetVNr+pjwqP09iirxdlV6awpa8itLSK2fJOo/vfnqlsNdYkKOo5snX3BTwzcoRtqqXwk7iDbe5PhQKMYzsPExgPS2S7vBW4fftjtuuToLRgIovHIiDTtIAlX/6z22JZcmYJ/r7Mh+01U9BnjxPbR8dh584HPLtbAqUDCjxHkIfKERE7yOaj4rlCdmxUxhnvy9hpU4Cgsu8Ez60TQXdmALvEdaGGrJ1dCrpgu3cvuy47hBtaDdj14TXIN7NjN8sZQqBlGbvFVqKn+1meZ+cJg2adjLZr4JhGG2OcijBm5s54OE1IFTYyW7ih7Ocx9rA+CmVRceyRfA4i5UrY4+jXaP8pgz2eSfCbzEb2svJDu47T7FVk5349N4G9ehqR4v3ZW+c95jfE8IJ8FRAUxtlXNgirsx+wX3Qc6O4uZr/SJcI3n1zZ78luiLrXzv63+lA6nsUBA4Zwp2s3ByYVw/11Ofytxjbcu+sGLzyyDRbaX+WFL0+i9o+OvPhkNp64VsIhzo/gYGANh1RVwPHgMA6NXo+zdvlyeGiTIEm8zeFHhjD6ogJH1v8K56oGOKrCUMgN9eOo98O433aQYyIUMOCYOf97Xa2gWnOTY5cPCv9bpMWxMishRhTP8V1bYUx6lhPM48BqpwMnhPwX6qzFvOFUOEgX7PkH4SMpmA==
+
+
+ eJwNl3c8198Xx80USnzsPUoSERrSvuecN75KRstKO/Vr79Le9U1kZId8iUiFiLJnKXsnSimSlVUqv89fz8f945zXvWc9zmXPVWqx8nwje37+Cudf8J49D5vLHV2pzp6PeuDwLDGWodDLrQs1ZhlKdRRsVsMyVMOI912XZWj8If2hPyzj/CLMm1jAMgI3YtT0cywj7C9NmTiDZSRoYuDYUpaR+w4zdp5hGWPa2D2gyzIVEF/u2cYy/Y2w9bYPywzqJtUKe/ZCaTaOe4eyl/L5mPmumb1U34HpVqPspdMDMtx9kmWp/ETfiF0sS20R/repi2Xda6YFHt0sW14R38SvYtnKjzBu3yDLdv6NDwO+sew7aVjmPJ1lB3pbDt9ex3IU+slEaIDlKP7m4jf8YDmnH5KhyS2Wc3cMBxbsYznBXpaegrtZzk8Hui8ezHIFz6K3WgDLVR7jDMGY5arfoXLZJpZrLoJNr1VY7mkBDLV/xecJzOoxZ7ln4q1MF25nuUHfsG7nOZZ7bxa2lAyx3CwdvJK6huU2NJFJ2wjLbbxA576qsdwmRbpktZzlNltZYwbf/l0pXT48jeX2hqGfRS/LHZ/KzbwQxvJUDlqFhiuxPHVpzFTxYHmaPpyKQTXLM3JGH0cdlmexDW98tGV5663Ru1KW5TkHWa6HYZZ3Rp6LJb59yBKOO5vI8rLKaNP58yyvaBXtGA1kec3byeG7Hcvrn47dacEs7+81bPLZy/LGnfDh10CWf0AfI5vSWL5nAe2VmMLyT0eTYd5elh8aTOLPylh+9BFugfAElv/7DH4X4bECxTv4PmuAFajNJsnPj1nBtDqSmv+JFfTlk6hlBysM/YHFI6qsMDzZSvjsH1b4XAEDJq9mhe97LVdm6rHCtm94rcudFWkocxu3abGijetp7p0jrCj4MldJJ1mx8heafXaMFWt64qN5kaw45QJeDh1lJSpfrRZ6ObGSu7p45b0JKwl14b57d7GSYX5+llmwkrE1mEDdrFT8JqZ7VrNSFW0MvjiZlao60saeAlaq1m2Z8eAvKz2lQKdcM1lpkCnGOl9lpaGLMCb9JysNU8FEtSpWGm7HXR3az15Jl+PtJ7PYK41vlgfyW9irUzr8ut3OXvmEYLnqbPYqYCE3/3QyexXhzCm0nGav5W+SYrQGe618HzuvT2Gv1Z5i9Jf/sdcnA2nCfjv2OnAB/euowMpOO1vNNiZW9qeUcyxk7I3nW+6o2xv2JtSTts/UZ28GvdD3gyR7q3QZy3u02NuRZIzbJcPK1drxeXwmKw/fj3H/mLLyiOvckP9kVqHRT5OlNrIKzS4KyWlhFSFz6dp3A1ZROELrSwNZRV8JZgasZZVqNpYLHxSxSs1EzHgzxiq1vltprGhglWFanLSEGKuMWscN+t5glS1ryWWaB6scVKGkyDxWpTgB01aEsCr1eno8YwWr0i7GkdYuVuWiSjtJnVXdqaGBEGBVza7kq2TMqpVPYEmhJKtWCaJJli9YNbXhy5jprNo5DWtFdFi1XxNdFL7AqkMZbW+OZzWqPpiVZMdqXWbhg6NLWZ16E00SdGR1Gl0k189YndMTblnELVYXbEaTdOpYXYgQecY1srqwTgp1NGJ1Ea8x3/U6q3udQPsWq7K6vu3oVZXD6oY9MJ02s3r54/j0v8WsXskFi+bv5/MnqSu6sXqVjVb+3b2sXlMeCz/7s3pnfysR9zZWH1JiObErkdW/E6Y3ov2sfuA05/FHjTWo7aG00iOsQQOshOJsWYNOh6WwvRVrsJxC8XJbWcO9RC5/1k7WEO1OpR/9WaNSM8YmJLBG9acksEKfNWoUkpTOI9aotYxbKP6TNR5RJAF9YI2RJSR+1pI1KbpgVJUSawqtwtZzEqxpxJVzO7+BNatMx7cxbqzZzwDHXRRZc2ATffRawN7Jp2GX1zr2rjmTgm9ksBbtiXQtToe1bN6DrxT4bNbBV16R7P2gIrHsi6xVPQSrTZaxVi3itr8QYq3aQ/hTUpy1RqaR+fzrrPV9CI7GXWJtqoJYeXWItalfI4HVBaxNx5rb3DiRtUU8IePBN6ztfhKpiLiztlY78vw1l7W1faUZSfLsg8YlzFzjxz5oNdPEHabsQ3gnRm/1Zx81gvBhfxf7GGBCXvsOs4/BeSRyh7GP4QYY1kPsY2s9xm98wtpdK7CuToa138vCmPk9rL3VkXJ3Z7FParfxv+VH2CcNT5LO6WCf1b6QebA261DvIY1bAaxD09vy9g191rHpBfmOyLKOiDFun+M19kWrEiN9xtmX6SvoqvtR9lUrlKbvlmGd965gVOtT1tmfSLrNvexboquV9tFO1q2Zj7H3s1i3YbGlklgq634EdLDuGfuudhfr+XP5++ZWHNlZyb7fL8QHkxVZj2ICNmaKsR7lD/jnbjrr0Z5BhneHWc/mQyQ8P5v1TrLAIAVh1qt+m8Q2v2S9097g2LFY1nt/O9bGiLE+JR9MVO5ifWEu+O1FDOuL6MO4o9as3/oDJvOWswGDDNq5WowNtB2inXXV7IdmIU0+Ush+uBfhi1B19uOsGrfHXZ79KNiLD/P3sx8t5dy54m42qD6RE9BJYYNaHKkUvWWD2hn4W30HG3T5g6nCJWww8hS++97DhhZexCo9jg21i1P+3gI2LMfvz/nH2bDOcjqaVcGGdWOw995aNqI1D9/PKWQjmxALo16zUa0VlJdxiY2OyGOeUzz7tW8H6e8VZb+CxPCVrh771WhEIma/2Ng0MbzvRXw+xQSBGjY+QxATf79i4x9+Y0CUMhtv34u5V3pBQLIA207Kg6D0WfxgYAaC+9aSt8h8EPTqQh9DTxC8fY6Us1VAcEAVM78lgZC9Ojm6yYGwPVCz/VcQPriFBH4VgMjUazjmMA1ETHZg4vo8EDlQTyJzfEFU+jaJT9sFojwjrFc4CaIH1pHvhwEQPZiNMVb/gOjQJAx73gQTVufjmNEOmHDhON4J3wQT6jLpf5/nw4RReQwt0oUJ4yaYpiQLYnYpdLTeAcSCFmCy9wIQS/bivDcuBrHqJG7GyWoQ65PFoe9/QexHETkppcNE4z3Y7DUPJnpfwVbvWzBxIJQMpt6ESTLJJHPZBibZNWFoyDMQN+7FF5pPQHxhC42pzAfx1VaU4lIL4na5nJj2TRDfcoGSOvVAfFs8OVvHg/jxE2T+gW93ajI2bFwP4j7jlPpHFsTTIzCftEDC0AEz4ktA4mAgLfrRDRLp1dyOjnsg8XYJZ3yvGCTag+mlbBxI9M/lRPp9QeKnMv6uMQNJ6TV0Yft1kNzvhk/0c0DS25uLftQOko8fcyLjajB5TzVJcidhiu0sElTzgSn2ZVi0zRSmnLLEaBt3mPI4jwQ19EDK8RUJJyiClJc9tj26A1K+bpgkyUDqfjy+XrMCpNqfYnFUL0yVPkL/+CrD1Dl+GHV7HKY6eOGzkDSQ5tliyqVLfH4nSVs+47RIbm4ASGfp4eDCSpB+OxfbZSJAuucMhkYLgfToVf6crwMZe0OyruoCmZNdnF40gIy3Ajet7AnIBAdjys9MkPlvEcW/PA4yqRtIRCEdZDKcSC0wCmSqyrGn2wZk6hzw6edLIPNxJQlV/wKZrnps/uAOMt8qSKB8Hcj0R9OEcReQGbhIkv/0g8yfBJpelw88gREsfBgGPIkKfBerDzyZnyTSMwQ82RlYraULPLmd+Ha8GnjKnSTp7wc81cnYurUMeNqP8dnK2cCb2Y5pNjuAZ6aOjbqewCNbjPodwuc3HFrlAzyrDHy7bTrwrKVIdiPfzz8qtFZxmM9MesgVAM9mKq05t4rPfHrm7QS8VR7WX1pHgGebzRlv+gE8u/102WIAePavscRoBfAcVpPgxkY+hzFsogrwHBFrzq/j8wWGrWsFnvtJ2nwtFnibVGi14G4+n5PFoAfwNpvRrppwPpM5zSvPgbelyLrIbz/wtmlzFg5JwNtuRhp2msA76oCl2/h6R6tossQ48I7tI0h5CrzjonT3YhfwTihYn4g9DryTB6i+81/gnbpCKnKjwPOUIvDYBzyvvVbjReXA843A9FZv4Pktp/OXrIEXcpxE3/DjG9aP2ZFywAsPwac6/Pje242xH/j3v19qpfPeBXgxZdhYXgO8+Jv4m2yB99CbaOov4CXkYm1VMfCeDuFQzTzgpYrgrx1ewHv2GEtuHQFeWi/mrt8KvOdGXN4wP5+Z10jsSjLwcnkksFQaeAX3MeeYDvCKOslA1Rx4xV6Y0pcAvFdLafLfFuC9nUr+Aof4fEoxG/KAVyFM4gcBeNXbSGcr/1wzSqqbpgHv3VpSvMbXaQ2laQ/VgPf1Kb4a8QBZnTRO73g0yJov4ySc3EB2VS6l2Y+ArP1WzBf+DrJbl9LMRYkge3AA44JyQPa+DyVliYJs+ig9kpwCsr8KsU7rCshNjcUW3WyQ0zXH9sXvQc7MEeMm64Pcyl3ces3/QM51hPbclgW5zS3crLFGkDu+FZ/99wfkzuli3uRxkPPOJ3EdG5CrlMa3Wn9B7lc6tiuOg/yxdsrIfAXyt2yp9JYfyEeF0L7l3SCf9pdEl2wC+ee+3NzlS0D+7S9uZXYYyH9yo8tBAPI/wwm9N4DC/jN0VHEEFLxDyO7kJFBIk6EJ7Q9BoSyalCVrQEn2IdbURIKSQzv2Cv0Apf17yVTfFpQOheF91QpQumBA0zPDQcn7DD62OQBKb2+RabsSKH3aj2/s3oHSz90kev0lqOwbxNxtB0DlDo9bbiUOKr5S+CxLClSidLhTL0dB5akhN0XKElTyGE0I7QRVRwUczD0PqoeiMHXDCKgedsMbpzxBTXYN/nH3ALW1DZx5ixOobd2Avy4tA7Wjw5QUtQjUPAXw73ZZUPPn8G33Q1B79gkDu/VAfZ0cPgzRBvU93pjS/RXU7/ST6ecZoJ6djv85N4B6QQgmCz0DDanLFLvUGDRs+e9x1QGNw32kNnczaFT64t34LND4ocY9uj8Amrz5XMAuC9A03UqlD7xAc7c+xiv/Aq270mQmdwu0ahO4JUPCoDWUTw17HEBbrglf94yCtm645ZWdc0F7kaCle58haNttsxTNLgPt7RlckJQPaJ8apBPL3oC2z2qsujkG2tVRmPN8K+jIB+Hjx09BxywVM0JHQadqHl2UWQLT9hpg1GAyTBt8iI/Ki2B6MkcCaAa6i3PoiP5l0HUwo5q0ENB1rMGqRB3Q3XmbrmnyQPfwMI6lGINuVQep7PcE3cYlWBphArotmbR412mYIV9NFnr7YUbyFprovgpmVN/GPKFHMONPICk3rAI9aX1s0VoBeqdDqGFsG+hds+OUD/SBnu9ETmaJJujdfYkD2VdBLyyQpmrkg96DfZiy7BHMlNbCkXppmGmWiO0dvjDTMQfjHyiAvuUp0q4vA33XdtK5vAT0z/7Eij2ioO9vh71uk0C/Kh8zNC7CrBgjaolIglmZARTPdGBWRTtFC1nArI7FJMp+g4F8Pgnp64DBmmj8rLgGDNbHYJnYRTD4ugFTZHeAwUgQZogTGPocwWpHEzB8cRD/E0oAw8rPZJCVA7PPBGNZuQHMrrmJJT6HwUjsI2bPCQAjuVkU4x0IRnNX0+Rjt8CoOpvunF0GRu89KNXrXzDi608Q+geMOrVp66A7GP14QxmaC8Do70067akNxpOmkemXMDCWX4JvL+eDsfcRknmvCHNkf2PxwhUwZ8YKfJN4A+ZsdyCdGW9hju8o5iQdgzlxl7Bz8DiY8PzpXlEjmDh8IEnHT2A6I5lkV68E08WCNONqKpgGemBFdC+Ypkpj/uNMMJv7HZtFVMHMr4oOCW4Bs5QxmmlpAmajH7DVzQ7m/onHGPd3MO9PA47rXYH5ilL46MpqMPfjSOlAMZhXxZOw/jkwr22ggKZbYN50j+6ZtIB5cwrN602HhcPlVJc6DSzkP9GFxdfBInkfNiUHg8WPH5Z6o4awSFbaUuSQMywyM+GczobDIkdtWmB/GhbLFltKBjvC4jUCnJN+Ayz+UUvSffNgSW09ProaAEvtDWhbTwYscxymD8cvwTJ/PVI76grLZQuxf1UQLA+utSyJnA3LmyW44UJTWKG8jg5ozYUVKhsot68VVhzKxpC/sYBuHHf94jzAQH/CPHHA8AD64vkCMFcB++7+B1i3CmOCpwO+jyOhXY3A1YaRmrgXWMpHkNb8HWCpc5rOr5ABq+vx2H3lJli9+IXPt3eCtc4peslrAmtjR84iKwOsF+txO4MugrXVKA1JpoG1ow7V8k6D9dpu2u8aCdZbosns6G+w3n+CbvpWwj8snhydXsA/Nb+wXF4UbIw7sPifcLBZW4gvfTeDzZZ4UjnwEmzCYq2l7c6Dzb1hmjp3Jdi0NFttPOwMK9WnWHKfImCl42ysnbEEVrrpU6fzQ1jptxHLy/phZYor1iXHwsqxqSTTkwqrAraT3E9JsF2gRMaaEWC79iTZbc0B2/XzsczpJ9juWYsdwgNge7ieBAengO3xf/Fr5iWw9cskpfI+sA20J8k56WCbEk6Tcqtg9Y8UjJYtBbsj8uSf3wl2/hzNOWMOdqmLyelCHNgHl+PYRzuwLwvEXPdOsO/XpnTvNrD/84cSoueBg3gtZ33DExwUIjjhC4/BQeskPikUBodpt+jOJ01wmLOD1Jp2wlqFpSQ9awWsXRCP0ZtdYK2TK2b8VoW1J0cxvDQb1jaNWgryJGGdijl3uOgbrHM+TropYrDuwm+aWnsO1vH7IdTvEqwLssKkQBVY/yoHm1X0wUnVApMHRsHJ1AKfZ3SCU+os7LyZCU61EiRtHAXOdlfoX3NNcD6whaZciQSXgAJL38lu4PKs1XK7mCO4lJtj75g0uFQew+Rts8ClaistyjUHl2p3CpJ4Dy61W63Vmy3ApUEW+/n14/LFEJM/LwGXr9rY7WUALkPHrCfUPAKXsRl4z/IVuPw2wIcFheAqd9Aqxb4XXLVKyGJ+M7jOPWcl2loKrmvuWPJyKsD1yFlu4a814OqfSbIKTeDK/7dLhfiBa2gShkR6gBtvAS08HgluqpX44H4MuLlak4o+D9xOh5L9wRRwq92Mnc2isNHvDJYUiMPG6l+0T+QTbBxkpOcTBe6y82n6yyOwyTeKRH4Jw6ZAJ/wpIAabhpfjSIIFbJbfRRb5I7B53lZS3CMPWw5exDdhc2HL0w6svxoJW1XiuYmxHrDVuZMufS2H7RdSMMXGH3b4DGPi0gbY8X4jCRW/gZ1JcZi45jbsrJ3Igf8g7BzS5SRTvcFDzp583vWAx1xd0lxbB7u2DWB0bjbsTjLAuq5E2KP9iCTO7IM9ukXYz6+bPXoB9PBuGOyZ1UxB/4rAntmxZGEYCntMYzHn3HPYr6iDL5TvwP71/2KYmA4cUOTvS50hcHDQAdt8J8EhpRLuCH8OHTKv4NbYd8GhDZ85eaVwOHSijzbIb4BDQbX4jr//HXk3Ez9/XAbHZDMxOsERTrhcJ5JWh5NWRBl768EzYRqtHpIHzzJDUpEXgrNLtmPhdxM4+78b+NevEs7FT8E3ImJwrswDh4SfwvkOA6xY/wDODytg27bbcOHDIuyyMYSLdbGUItMBF98/pEkL7sLFng/49rQ8XBwewbInbnBp5Wvss5KAS67F+OKGPlxJ7MD8vdPgel8KdhqVwK3NbZicOw9uvbfG+kcJcOfpDlJ9cgd8Z+vS1RZD8DVJJrWfvuC7oJ0+Kc8EX3adEs+ZgO8qcwrPPA6+6xtJ7+gC8N1yg3Q2jYBfTyXew3sQsMQLv39Nhbs1h/G1jw6ElX0mIYsEiHhcis9rPSHy9mEsuLYUIu/o0NRuE4iMmkJTun3gvkA35hnLwv1ic6zYXA73yxiWSIdDtIwjxh4ag5jHDGMe9EOsQxI++vYe4hSk6LplMsT1OWOq0DmID87HV5k2kNB3AquV78HjjjystFwDTzQCaOrLSZBmtoLsj9VA2m8n/KSdBOlCXzCr5j48D7bHFxLGkFk6nWZ3z4bM1xNpi00+vGidgxmrxuBl8C3sLjsMWfnpmDNwFXKWLMfU662Q+ziEYEwJ8myOkt2SY5AX4UGBUrcg/1QYXYQByD99CLtOh0H+zxjaGWcK+X+Cya9/JhQIrCF8sRsKhBhde58EBSKmnNqZKCgQs+D2XquFAvFF9MjxGhRMzseP0QugYOp6cr9sBAW8DhI4eRgK51mQqsoOKHwgjE2uBlDYkoBlItZQJG+Moz5XoehELfaWJkBRZTXZT6yE4sY+svA/CsWfy4ljIlDiW4pv7f2h1GI2NzUjDF4f8idd1Tqo+K6C6bzc/wO0YoUK
+
+
+ 844.169006347656
+ eJwFwQlYzgccB3AhOly9HVSS6O14K62301H9fv//t0N0eAhhUnhr0sL2NL2UTtebUq+HJC0edAoboRTmWmRylcxRKbOILKaG2ucjblVFknvKaXFbZx+1eN8Xd3uVsVXOJLHI5DVH/qUrHivdR35hgWJZaw99/aopVhiuJdtr28VTja/47g9bxDP9s7hAmi2eW5bENvcsxOrRNtSy8rZYO2o0D/VqFS869nh36q4V689U8xSFs3j3Nw82mSOIT1QhZPtgvdgxtIynWzeKXf17qDvLUnxzxZctnYvE987gtJqt4ocdu8nWMFT8eDietS6Fiv8OBFDthAKxT5CxpKtD7CsoIbfuNHGQm3i4gSmGRBcJw3JHYUhxCl1cMA0jOq+z/IEaWn7GtDbhBLSNHvPk5MfQ/WRKl6wlGBeipPyNrtDz82KdAT/oFcZQ8R0zSHQS2CWhAJL6QNpzrBv65i30aGA/9P+w4HVFf8Lg6VnB9OFWGJ6t4tQ1t2DkIKUVr4tgbBpDh3IqYJywiH0nNsH4sZx8pO9hauTJSR0nMLG5jfobX8EsupwOnKrEpJZrVHb+d5hP2MDBbb0w/06PSo0qMCU7nJ2WPIel2a90clUdpDtEPrL8BqyU9nx6HWAd4UQRK9ph3apB6vWZsBnvSc2R7yGLimHDuDTI1GpSa3hB9sKCJc1DYHchnD+9A+wl4ZwYeA8OJsvZMO0fOCyr4BpFOxxye3nM12o4PFCy5aphmJbqQm7PBuB0/AblG3fD6W8pn3zbBblBHS9IzoY8L521JPPhHBpNH8JT4bL3Hp/39YKry1I2yhLgWqrm9JqbcP0Qzj7uSXALe8rOzz/C7aoX5T/LhvuPR2mG7CM8TDexbPpBzKx/SenPM+AZZUUR5mPhJQTTmpb78NYIZL0eKbx3jqOGsFCQVRbnKHVAkZf55aAJ6HwYZ/SlQjjjxpt+dodo48OzxzRDzMng+CoPiDelZNeTB59l+yhOIxo+u+bx/qn98NWaT7bjguB7uI30YmPgN3GsYNFE8Hv2VmS9PfCf5MvxyUHwP/bFe7DiIWZ3abN+qRIB+kt5SaouAhbKhTW/DCJA1U+1OgoENG3iCK1EzLGNZYvXlZjrq82ada8QqMyl/OBCBAUphajtSQhKKBYk9t8jqG4YP/IfRLBjFH1WtSFkbpUwwsMMIZW9PL/qAkKDR7P5xVaEtuvwGM8UhI0dTo8a5QhLcWQToQ7LmjwEC1s7RDSdplvTYrDKwZhGH32H1ZY9dO9EFhTarXy+AVD0T+ZA+VBEJap4tc0GRDUH06PyF4h7YScsz9+N9aNmUu1qB/xkcoh7cu8goSOFj194g6QT33KmwTdIdikXRo3UQsqiSPb/LxYpFfUcUXIHaVEFLHVgpBerWRmuRPqXZt7jfxUZM8ZQztNibFvlxXqlPdhZaMb28iqoHG9Rt4s7VHMXCxafN0Gl6BekK1OQGTuOs+LXIrNAm4dHtyPLcSP1eY5H9hZ7Xhi3C9lPz/LUGTORszWPJwZVIufJQcqq0kLunM3C8Owi5KrGipo2Jcg98lCwtMxE7g0PklnPgjpaLiSYjcS+eetYVtKLvPLFwm1tA+wfmsTJczSRr9jM8R15KOhMpLby/ThyoJB8nBtwNNyQU6um4eiOaC4teofKNVv4zTk7VG7ZwFOcglGlNGYN7y5Uu5ZRhnoAtQZ7qSFrKmo/X2aFRg2upF6gZwd1cL3yLCcvMkTj6y5qdi3BY61PLBlx6H8ofjtw
+
+
+ 673.965393066406
+ eJwN04s/1/ceB3CiECF+P78kkdtQEmkup3i/v58XIpki1Sqs1kU3NXUklyV+QsyjSPr1o4sllxElZ4uEUtrW3booLeewc1o3rZTuO8//4SlmjZ5I4cH7RYh8s19nzjUxT5FBzTK5iNS+xy6ffMWyoUTa49MrYh2HWF4VKFbHNLCWOk1sHLOO4hqMRPzoClJ/MVVsm3GcRWeW2G5UzYYcKnLrvme53Tmxp76ZrdQXhUq/luJCbwp1kR7lJmWLUoOPHHaiSBx+0sVRTjai8pgWKTfeE9XDp1DHbQtxPDiLLsSXi8aq8eS/+ro45WRHVa6G4lRiGL0x1hZthwJ4jneyOJ//gGruporOfwazmZdM/FwRQ9v6JonLpiN57KCmuLxPRVdrj4orM7WpZdYT0aU7gsP6isRvjZnkuStZ3Oqopbbuw+LOu5l05EW4uKtylOSajeJeEPHARaXoKQxlT49l4r55KpVfuCx6nTNpXweJf7d5UEVIv+iXfUPnwgzEf/Pvk+JkjnjobUDhFuXiz7T1PHzVePGIzUgVmyUe577iEpshMaDso/QVb8Xzj2H0Pvi2eOH2gL/c6SBeBuiSskwmXlY7Uso//MVgmwa9/jNVDJUPsZ2HSrz9VydPTpwqPtqHUc3aJGg8jeTqPhMMU7+mUdtXYtitIEofCITWKLAyvhVakQfIf14EtOr66ef38Rih2kpnnxpjRO8JSevxOuiYKzi95xR0JE1ubSmDTkka8ZAcurZu9HVGBfSuL6Hi+osYqajkbL9vMfLKGiqkI9DPcmaX/AkY5e5JW00Pw9C+iwbD/4KR7U4qDnsOo4hD7NvWD6NGPY7NXQWj/7Sy3tWHMM4Mpxb5AoyWBthhuSFGPz3O3oEGMImx5Q9ad2HSY8nNz7bAdFwcJf+iD9OAHP5csRKyz25zaWQmZKtHSyb7ciBTl3JQ3HvIg26zV4kjzOz7yPFEP8wWBFGi9VMo8ps5xWAAikty/r7nPMYY17DC6hjG+Mm4/o9PMHdKoOS+SpgX9FOTTQjMO1w41XkRxga3c93NZbCYtJuVpc9gsUdww1Y1xnW/Y929KlgWbpK0xq3HeMutfH1/O8b3p3LS5QxYTb7EdXlDsFqcxsfe3oXVzmh+m3MfVl09HKL+AGsDW0ox/QTrpQWSv34FrEsTJLeABFjffSBxK8MmzU9o102HzbnddFI5Abam7uz08Q5suwcl37iZsNO/I04anYFd9DRuC1HBrmgP7f7uCuxLvpbKfKfC/rycrGcuhYNLhjR2E8Ehar5kvjABDvst+aTn75hcUy6d2fEXXJdFU3PmTLj++D/+/VEi3HibpPPgJ3jEKCmiYAumReqw2bkzmLbXi07LrsFz1nNu/U4Nz+5A9jcZCa+lLzmxMgpe1bGS9gFbeEe94+nawfDOzpYcLNbDu246H/bohndvCx01t4NPbIuEoSL4FKmoePh8+Fx9xJZjn2BG7R3OW9YDv5rfWLV1EvxeXJJaFB9Bztd5kc04cP4tac3mLyFNPEqef7wDnCaxemcW/KcE8lt3gQCXiWTRuQKBvqv5ULQrgkJK6MAJfYSUr6MUj1eYHRXN+6vdEOb3UBpWV4U5Lmup7uwzzFk7lw3XZ2NufjzF19dhbkeiNEXDBeGeC9j3xkGEb3DhdCsFIka0sLWxOyJC9DnUvxbz3qzhBR66iHR9wQFwxsIAV8lm8CAWPQ2S2s80YbHdDzxwZTIWp+jQVZk5lmic5qZeVyzZUUZOu1SI/vUahfkMYLn7BsmsOhsr7J9IU+4YY8WGl1w4X2DlmDbO36iHlao30twjv2JVa4/05pUasZOv8dSpc7F2ZDJl3n6GtefXkWq2DHEzOjhO0wJx91fRVyPK8I2GnFIsDyL+1XIOv5mFzees2aqgHQkO+RwW24aEWH9J72wSEvp1uPjGF9hi/Zi9gruwpekDz5vegMTyGdTo8QJJZl28Y7MOUtiAups+IaV6HBs/7sd292KqbN+G9NhBrtzbh3SVghsKipGh+IneJUchY7aKp0S2I6Ph/3/tQ6H0q5CanQyh3ONDT/JqoXxwg40+M0Wm6Wx++PoCMs9OZ78Wxo5CA6rZ8AxZl1x4guNN5JzqlAxyTZFzI4ZjFN9iZ5Ynb7+gRm7eQkpNKUTewi4q4Ezkbeoli6pPyLdaSqc1LbFrhRUnVf6C3aVm/OhEIwre/MhuTXoo0qjnpg0KHLq0nI65l6GjWZOcfkj8G/322kU=
+
+
+ 629.358581542969
+ eJwFwQk0FHgYAPBx5Khx5YoR9cqVI9at3s73zf/bylW2cW2eooskrMkKsSlHzpbxoknEq5VEq9expULtdnkls3ZFaii23GR55Wp/PwYLj3C3330WuPEf6LU6zkRDASD2WcKOcQJAmHWWpZU4opz/U5abYQ0aPmMs77k5yB7HsvxrQ7hWZRMrtNCEOdEAK7puBqMld9iZ2hnQHPjKJBUJ8LCDz86tcQaJw3l20XQEjkitWLUsEm8GPGc1ZUOw86s8q5uMxlXD37OGG/Xw0bqP3bB1RU+bcXbrCgHF1LM7vgV4ooXHGrmRkJ/6H7u/ah76YixYk1cUOj9oZo+LZsEysZc9zT0G6jw99kw8i3rrLrPWVaUwf0DKWhurYHv0IfbCIB0uqfaztsIy8FOsZlK7UIzZW8o6jTJht14b66wugptcQ/aqRx03mFuz7toeLN1czl6byPMXq3LZ61POENoywmQYxP8gr8zeZebA+SsJ7KOyHrRmH2KDNYZYdqmMDXHs0KP7VzYUV4THvU3ZUJcxmse9ZcO/N4NERGzMlQtO9h/Y2GyH4MLhaDaV/EDAedPHpu27oXBHGPvsbwdhTsrsy6tuXJOdyWYr3VFj559s3skTf3QHNi8rx5zhI2zB1xhFE1K26NIBZpOmbPGWMb5L3Mu+pvdgWnA0ccIl2KdaRZxfVgKvYJQ483UwclpIcsXvIcxxP8lJT0J7fRTJLQZCblciyTfvgmdz86RgdIb/fu4eKe7QQjszJVoiVWcqZ5NIyUQfZ7y6SSloQbC6TEZKRSlolJpBSp1dILYXk/Lpe1A6GUEq2m7EndAllZNu+Ifdv6Tq1YS6V3m01LBSsKYlipZuUuDnHWihpdmmAv3qaOK+4AhywotIbcBZoKHxDal/dMcR/RDS1L8Ld5eVk+ZEnMDzZSxpmQpRp8qIluvbo3JmPy2/NgFjJl2k7R6MfvFBpN01CG5iAem4W6F3uwLpiDxRzqSHdFcHgzAsiPQmX2J8RDjp19UIdJ+Ekv50BZ745EYr7iYJPmzeTStGffBqgzcZ6I4jX/EyGZQkCPYUz5Khd61gi3CSeOqVgveyjcTDaxCpkEQrUQ6EgclkXOAP9VWpZLKsCU1kybTWNR7604donU0KtD2Rp3XiLqiWZJHVrh8gr9eFrOvboFVYTw6qF6DXgEtO1lmY/jmUnCJmQbz+NrloSzBKq43cDA6hS2c5uUUWQ5VwhjZsP4MrfltPfIsmsBSaED/4AnZLMwjenASezSCx04VQo7WeaMAG8j/J6LudhdD+cB9tfnQQ/nIcJQ/bSrjhn0IeB5eB2qMg8lIygspQFfJaWAk5Wypo68EQyDjqQ1sb7oAlK6FtemNYtMGKfJMC4HqilPyDY2E6Po4Cag9A4RURBWqP4lHbcQqu8YN7eVYUcjsfHo5waVfkPjQrbKY9bU+gWPKWwsVT6Gw+QBEOdrCtYoIivdOx9ecOinI/Cq3G1RTN6tAsjkfRdY4Yq5FJoo3N6PoUSDQdhG6l9XS4/W+o9PWh+IarMLp1kBKKF9BGqk2JlvvwJ4X9lChygP4931KyK4Nnh3UpxfUcNGr3U6rONFjMWNAxTW8QXzxCaY17wbF2itK+qIMk+Fs6kZaKimqrKUOzC0oHhinruS2qnlKjrKlwHB5Pomy1EFwSuYnyrNvhS8wY5XO3wJxHDBVIhSjnw/kfl2owUQ==
+
+
+ 747.855651855469
+ eJwN1Is/FvYeB/DHLVJJbinKUElPTsjlcSa+3+f3kehililRuVTnUTuLpCQTRieXxaMnqRbRRFtoqXUUqUesstarNOPUmjFWkW5quZSd9x/xFpsUtmQ461uxdeJcSnD9UsRLB3hyt0Ls1WmhSatHxL45TvJxewpEXvJfcoNFV4XSooTzowyF8uQBSnc1FKqiGEruCxRHTUapseexKDlzk05qLRUnVHNpy+0AUWaxgxJ2ysSpK1re1w/2iW9XfEZJFVHidLkXS35xERf+M4vOGZaIixrDVPdNl6izeMReNSni6nC7XDtTR6ibE+h203rxY3UQqQMV4tY3csrJvCzuqOey709fiFbLi6QMahX3Skx41mF98YuXhC5cqxMdI2c40bxI/LrrNNkH2olOazWXuASJ320sqVHaL/5YYkCf7bYRj6rWcElQleh30WOp5K14pjjLrQ1LxYvCfjoQeF+8dHxLxfM3i9eb7pLyoyox3NZG5+N9xIhzKVnkrRQjeTGs+/6dGBvZQZO8P4TGoh5qU7VBo+s+nVysgOakLZRh1QpNL3eySBiGpuoV1ZuGQmt9FvkE34f22hqyHz8Gna5KmhT9ALpL/k32OoXQTY/ls5HG0NOoIsu916E3tp79I1dA36iBDr98iAlGmSw79SMmhGhT0qHLmHCnjw997YCJ5o9p+nfPMXFlHE95uQ2TbKqpqjceBqEhjNQ3MHjRTK/6PDA5mGnd59swOduVfn2eCMM53Sy5PAeG68JpdE0HDBu3sHnaDExpG6S1z3bCKDeWLpj0w6h1NStP+cJ4Wov8Zk85jMOM6OX1IZjc+pMuXW2AqZUJ3X6aAtOjPaR89hSmT4N4sedJmEVmcOjP5TCrXcYba30wtWOMV60Ng7muLa08tgjT9lay4/g2TLtX7T3Wkovp7jvoXMwYLGb081fTK2DpZM26qZWYOduD9/05hJlhfbzs4DvMvNXMCz0cYOVtSg0B22Gl1mfJ7nx8YO3FM5vNYG38JUtcTWD9XkOu1k6ATWQZtTrshc2hbMqq3gSbuzV0fGgItvl9fKxEwLZlPId3T8NsJweO1nmB2V15VH3jNeZcK2ZpaiDsQtvl822OwO5JMtV3DGHu4gD5vM7HmPs/F2pp+RT2Io2/WJ2NeW43SD0hAvOaesk90gdSu3PycScbIQ3ToOLoo5gf6Mmha4LhsPE0v10fAYfzxP9qn4J/HDHhJNssLND8jd87e2LBqXj2fOAAx6gD9PBaEhwv7+TWqPNwGrefUxP3wemuBQ/O7oWzVgK3K5LhvGuA044EwPlRqPz7gn4stOqg9CZDLIyqlWvFnMXCGicqHyyEi7471447BZetIXzin81wrfuZ+iq+h9syM3n6kRlwy7YSm/x94VYv5eHh83C/s5RGSg0g09LlPYfaIUv6XR7ZOgrZbX+5rE0Bzwg1mx+eD3mxL0sGYiFKtPhonSXE62b6POQFcETGU43fwWepkhsvnoWveQY3XVHA9z6Te3Qv/PTN6KHjavg5u3Nxzdfwe27Kk0+XwX+tBsllUix90EGV3qVYlqfDiaEZCHi7jyWv8vFxuCvnvUlGUGE5tSscETzPmA+frUDwK2tqqS7DKpUzDeZpY/VP3WQfvxwhq5ZQj1MI1sQ+8e5uMEGoc5z3mIE3Qp9LecFxfYR5CJadCUdYuIw3vHPHug0/yA0lD7FOdYebMrMQHnKM7wS/R3jpckoM+wQRm/+g9PUHEKmy5Fh/B0R2XWKn3YaIGqgk+zg/KDbYseW0e4gOTuKv3pzD5tBOGtXahM2ldaw8qsTWXGO6+ei/iFHs4bjEIsTpP6NPL17B9opReazeE2zvjGXXHTexs8yOdUoykeAzwl7qv5BQ1EMHlodh93SVfIFmBHYHFHt3621E0vVaEv1SpGQHU+PKKUi1/IhtOuqR5qTHD4rSkZYXyH7a15BW8TE72eUg42AeDRufR8aNxTS4rRCZnTbs1/8SWZ72lGHniazEreTjloLs0ysoZ2oYcibuowt6W5DjHEMHuwuQU5PHKWeisd+3klVFH2D/mmG5VMLYn3icJQVXkfvmzP8/q4bS1YwO5j6GsuoJxy+UIj/Mh7WUHlDlqmk0ZA9UNQUsc+9CQeMoRxQNoqDjFffaWuDQjl2kjj2MwoFommC5GaX1v7H/lHkobe2mfo0mnIhzZ1lzNcqmalC99juUNw7xh6baqL7kxfxD/d/7u+Ad
+
+
+ 1178.111328125
+ eJwFwXtMDAAcB/CEFSWWzkalMxYVFkVFdr/f3VeK/shRrHedJXlMJ6QV2iV058o6d9eFotbiuvJI6yXRQ6Vsypg8S1qbefQyrQefj6RnqpQG3Yskf1RiiknthYVfDr1wt8G8hgN0VyiAdYkHNZVfwoKi6xz9qgi2O2d4f1gFBP4/abVbE5z6zpN9zxCE9oWUsaICwotaKvVoxcp5RDeUDXD+IOLimUxs3DnJvr+s4NNWTdGjUogkjeS1rxY7pDO07G8SpOX+NPXyCEL221KdzgJRSTa8ZboBMlcp5XonQlZWxvs8d0M20MwW7VIk3BFS/egSHB3yJoWmDYlrO3lT9iDk60+Jn7fdgDxEKPabr4b8ti9nCKJxMlTKsa7tODkQyrO7JnBaZUa3wmQ4E/OaTXFGpMR3UqTEDgr7ZEpzGYMiOYsLduQiw7qFbTxv4kJ6Avf/68UFrTO5dO1B5glr+mG2GZn5apI0XMclt8c05ukIZXqxOGBhLZR6sahnkTWUZXtJMVIOVXcNedU64UqjK+XGFkC9ZjlHnI2HuqOTQ3uPI9t/AzX7aJDzLp8PDDggZ9xcbJWqhUar4tnDTtDnL2WHtUPQP1HxuaaV0L/xZQfLUORpjvHSsD4YOv34WmU2DFOeXK+uQb6jO7WYP0XhxodkiMtD4Zvb/OGRB0pHp8leZoM7EXYsbCmGUTDKuppjMLofZN06KYyBsaKZ7VUw3spm/VHA+GhcLOxVwbSun7WfdTDtiuL598JhSrwsthsxoOLqV57lYYkHQU8oN6IOlcmreGvHKlTmTfDivgeojixhxZdDqBlK4blZCtSnVtG3w4l4tvc+GURRaJbn0KQ8DV3hAVRuVKNLE8y2QcHo3radHo+l4j2CuUDng4/hb3nO7yR8kp4ivykNvgeYWHAtEMMCJTmZt/4HU4k1iQ==
+
+
+ eJwNl3lYz9sTxxWVFqXvt31ftFFCWZJsZ2Y+37KkotByKftPslwuQspyb5bbKimpLJGKcEMbfdv30r4qhKKkzV5+/fV6njnvc2bOc+aZmcPS/QO4C0FhLP3SByxr+R9Lj5nJ/SOcxNLv+OIv54ssQ7mP22iqxTJUm+jhazuWoRGJOf61LEMzH7tqX7AM7R8U0beXZZAiBv+ZzDL8F9PsHUtYRqQrGVzcwjJiuslUOoRllHhi1AEhy/ipTUxcjWUqLyb+lDiWpbqEJFrOsixKxpw2LZb1QxnDRfNZttLfWOpoybLVlTDZcJRlb7yOPwSS7JnWTHx9/wl7rnYNP/fmseehhZh+Kpw9jzwv6A85yJ5/WYmX1l9lOcpdpLFxF8tR+cKdrZrGco4/Jd7UfpYTdcF2mlEvy/nuSOHO65lQ7TuXLdrIhJo5WNUWx4RawfTqXSgT6urjm5NzmdBqIr6wO86Ermfw5rc+JtxljmFTNJjw4CO83f2RCU/ctLWRvMGEfifxTeEpJjxpj/eyzzDhlQp8ObONCaNGSHvBABM2T6NJKYHjfEI8691M2DKTzrqO21vRzm7JuK7NjL4pvB5nGs1urGbCdgXiTxMw4W8ZzmbxNpY71Rzj5dexXPU9tsHti1muzjnOzKee5S6OwJAhZLkrC/FWVjjLdY0V/HFuN8s9ocA9MNNkuZclMNOlkeVGG5DQ0necZfTvoAnLjRslnsc5lvuskPz0s1juwGyyDq9iuWMnseXiVZb7exe+tFZjeeoO+PfzapZ3LI1Ss5NY3vFUurxuBsu7epJWSc1meTe9uKV9qizv1x6M1bvB8lWOk5vHLZY/rZkO3jrL8tNa8VSuBcv/fJ/Ed0WzArUSLOuZwAo0L2POyR+s4Pg2jH40hRVcuydo7LnFCl72CPRydFmhxmH8KDPMCrVVOMWcOlb4x0KykfNlhVH+XOqZElb4og3L0uewwmEV/Jt3iBWpfaHAN7dYsfo729lvi1mx+VTM8VzJiq+u4z4G/cuKf57CRO1wVqIuhfHhHaxE853t4W1BrMRXlrIHzVnJNUeBeuArVqpyBpN3ZbNSLY6kHpxlpdrvBJu9hKz0QA1e/HSalfrySGN5KSuNMOM0Nj1hpXHrODH3eFY2nq8/NvuyMrVQUn/nzcq0jTC5ZAUrO3oIny9dx8oi53GSdv2sXCMAMy0aWflxZ1uzjDpWfmIFVr1vY+VRDvi4LYeVj5Zwhha/WMWxEm5z9k5WcbwUO4ZqWMVVX0LvAFYRMxczp75ilepaGLzIkVVpieHIS1VWFXea+7XmMavWHiD1s4qsWuczzTT7l1VH69D9r5NYdVwoXiuzYdXXl2BkYz2rLhijHed72AtNFMwPCGQvdN/b6nzPZC9ilKn292r24vp6rqKjkr0Y+InXto6xF8NidH++P3vxpQJHttxhNRpJ2C12jtVoXaYpjTGsRqcUn1m6sxrbsxg4W4LVuMlg6uEDrCa0hZ7qfGI1117isw12rKbVhQId/mO1WtFYvOkEqw3v4KTPP2C1Vw3JTFyB1V1Ww4/CTlb3mof5CdtY/bAnXnZA1qAlpOUPeaxBu5mWmqxiDRtvcqo7TVjDpjvY9sOSNUTLkn7iR9YQU0st00pYQ9lNUmsUYw1ffEkp7xtrVEIS2zeJNapvsNUzWsgatcTxTX0Qa3QNE3iHDrPG6FLulN8X1tg6Sqv3irHGQX96szOVNWkvsxU3ucya9N8IDKdFsabYJC7KqZc13dxI7y5sY01twZhkzWPN2hHYUGzKmnWXcnp3f7HmGXxMEClgzfFpNCWykrV8deNc/hfCWtX24aMfWaxV+yQWX45hrUG9mP+hhrVGtnLyTvNZa34M3rh9mrW1plPAlDHWrqdMPgkirN3zD5KUN2DtrWokn23EXsZ3ktXLY+zlUC/5TJZiHbqLuO25q1nHlteY8e8Q67jqg0Xea1lH/DXSupHDOtqeYIXqJtapMRkTduSwTk0ZrLQYYJ36yzh3U2fWGVdCrlo2rPNGGE1KV2SdHVYkM3MPex0BtO79JfY6qh0/HCphbzocKXLCv6xLRwcTLHeyLjc+6XQksK4ODnNOybO3mnWYd7+dvb0xgh/UXrJ3OkECs3sW7J1HM6ZUXWTvNmdS1R4X9i5uhBrCotm76zxscc5n7w3mUqSJJuvW3U9OrRmsR34EYx5+ZT3XbmBsbhzriY3F81TNeuIPYrowgX1MWW87Xfk769W/g3e13rBeszyBfIwG671nTP78WNaneRHL5HJYn04iJmy9zvoMBXhFYyfr86ynRS/rWd+1UCwJ92efVBbjXek97JPuN+z51c36NTwwU/wh6592Bkdny7LPm3IxZ446GzRNpw3yQWzQthMvly5kgyf/wXte8mzwjgXWvm5kg527yeznPTakU06aXg/Y0Kbx/nDyNRvy0+BSBo6xoSumGNetxIbaC7hT/sfZsNYUqokKY8O6m+hU0jo27LEEm34tZcMn9pFqjD8bjq3Hixss2YjWdyxx+spGdD5jRVciG1l4AUfG33Xk9Sjnb/KIfdGfRUUbqtkXw9vYICPFvr6Vxxz7g+yb7iJKG/Jm36IaMFjuFvtxRQpHMtayHx3rMPOmF/u5/BnGdDqwn3FZ2HxAiv1sdsR8gQwbNQ4i4zZfNuYpj53nn7DfnWL4ZHc8iPh4UXTMIhAJOkTSf+4D0flR2H31XxB1VKfw8yUgOnAQ82t9YKLjYk5tiytM3O9N/zyIgImhl0l27QBMcvTCzsVOMCloP97MeQxi2xdj4nMjENu3hJbvngTi8pswKzMOxGddJJF5ViAeYIWx0ltAvEFIop/zQMJ+HabEdoGEQy4FkQpIBM/Foj/fgkTIANYNR4LEoyDOV3MMJGoTqfKoGUgM3cVi426YzBvEUvELMHnWJrI7XA6TB2NJKS4fJHkPSKR0Ekhe0sYkFV+QWthG5+d6gdQaJ5KcbQpSDs84hw0uIOUVgk/4K0BqazQpBceD1OEAWmAvAlJHNDAmYBtIXfyIHVqlIBXynbabioP0w+uYcvIkSD+t4Q4sPAHSldac/dTjIP3mFt1WzAfpgYX04vZbkP4+iST2rQMZeSJzcW2QcTiJSTs7QCZ4vK+P5oFM6gPas8sepsiL4I+RAZhSvQJ7/1IBWft5+FX+Acg6eGF49z6QqzRC4eobMFX+CBadyoWpwwbEC7EE+UoNOjqYAvJvnPC792eQHwjFohuDID/UjynTd4H88C6M2zAKvDUB+HjrMeA5WmLRYga8LZ4YO1oNvKOfOdkuG+AFq9Pg5irg3ZpHEY6ngZexh+aO5ACvvoVEuy4Cr3MONiT1Ae/1ID61Wga8rp0044I28N5ux2zrVuD1aOEjuVTg9SaRfP9l4PVFYNGyUOB9noVl9meAN1BK0xL/B7zBJGz/9Rx4wxNocudU4I3k4B1VZeB9f0iiOdnAG9XFLr9S4I1V4PM5zsAXXY2t3+YDX6wdU3y8gC85H5PjNwFf8Qpmz4gHvnI4JjAO+OruWHzGF/ganzF+rx/wtY9gXVsL8A39SKbLEPgLXpHUYCDwl0lg98oNwLfLpuVnrgF/xTY6EJkC/JX1dHaKOvBXOXEyU2OAv3qrXeE/437WSNF/feP2NS7kcNwI+A6qJBjPN/54fjr93g38TZXknOwN/M27SFt8BvA911NltXCczyjt1Ubge+XaJcSfB/6WaG5f0rh+qxylrgkd50Xs8N4F/G0imDz9I/B39GPXtMPAP6RHRomVwP/rMK1pYcA/LE53XBuBf0TBzmHXonH2crve2ADfrx0LZT2Af3I3lg4dB/6FRpLaMxv4/3rbFixLA35oOKYfHb9/6BhmK0YBP9yC7ljVAP+SOonUPAX+jVxBUdRd4CcuwJ7nbcBP3Yh5v8Z1/22mpXOuAD9tAT5tvQ/8dEOu+8B4vJlt+DDDCvg5NTiQUQ38gtf4fu74eYVviWeTA/xyFbw9vwn4FbI0db8/8CsvUopzNPCruknh4QXgNywiRdNxf22I1TeXA//9KD4vHd/fo4hd0lagoH+Xkwv1BwWr2fQ27jYorH5EoebFoLBlLonVeIHCjVjCJxtA4ekX8hFIgMKbq3h3Ty8o9Hti8NbHoDj1JEk9GgJF0KMjnb9BcZUPpxdVCYoO2uT/jYGiezkWn/MBRc8S6o4VA8VgIUkG3wHFH4k45vETlNS78fkrLVD6q4saBC6gdJHoeV0UKF2/SedkkkApPYR7O+kxKFVN4CqO7AGlrg2cYIIVKH2PpVNzvoKybDF+UtwNytPOYpb7K1DeG07TVG1A+dAhjLliC8rBoSS9IgaUvxpg9/tFoMIrxSdVu0HFQopmedWCygEJvJUXC6oKVXg7qQlUnb7joEcfqO5dSfLlZ0E1eCtZCz6DakgllgQcAtUuMRzd2wJqT9djXFg4qIcqcmq/B0H9ujZ3We0dqD80pM+b5oB67gr8ZnsDNOq68PYxBpoKnsQNK4Cm8TO8u9YYNFd/IDt+P2g6t3ASSmqgucUZEyINQPNQH7WftgHNiF7a7hoIWgoOmOrZB1q5yZhysQu05Y7ReToO2n/+ooDlr0D7khwtWWgE2pUuGF18FrSHlLn4399Ahz+H8whoBx2LLeQ/Xu91ltzFRx9yQCf5NAp1jEA37CS2F0iDbsQoKemEg+59P0zR7wDd+lt0M3cZ6I4U0qq1m0DPMFIwcVMo6C0SEcjW7QU9h7Xc6WVzQW9bIj013QZ6vgPY9tUc9GqPYaO7DOiNRJL3mTLQV5DA5rRroK+YgJ+sc0G/xoTyitxgGpuMyXlqYPDICUv1ncHQRshNqk0EQycTTvTPOjBcm4WZZufAcMcB2vXpJxge/0YXKAoMmwVY5dwPRkrP8M3PfWDkOIjXOzaCUbcRTbUrBePJS4lZiIKx4wIs3pYOxsfDKMH6ERj/48ypLC4E49BRbr53HhjH3CCtQ1vB+I4PtfJegfEjFfxSfQlMLC8QezoTTMLM8e2OIDAJH69jPCcwqV+LFdNLYDo/En8nnYLpfm/J0MwYZiTM4iYrlMCMzEucctFhmPFCYjzedJjx9TAtETaDqfJGfD4pGEzXBdCEgjowfb8Ws98dAtOv5aSQtB3MeM/wi+J0MBv/R0/MCoKZL17iu3PBYK44gxxSHcB87jIS4+0C89r/yGP7ZTB/eYDYvfdg3qNNwp31YN7vihn3W8F8SEhahvowK3g/Wb/cC7NqfuHT0XiY3bgGows/wuzRcMw0SoI5/DMU1GUCFkan8U3TdbCw4ZN2FYKFYyo+qGsEix065LckHCxODOGtpTPBoimC5vw8ApaKzvjwnixYqvwkidsCsAzPwX6PtWD5rY9mWWTA3AB5bLjyA+arMCyo0IUFSuPz0e1gsAo3I5tJf4BV7jDGR8aDVdMqTqReHqxa1pC+/x5Y+KWZzjwSgrVSF124Gg3Wa8ewfXIuWNf+g8U+F8B6qE9go5wBixSkuL56NVhkacLxk81g0do1NPNXOyzauJAmhhmDjUKuwEvgCTbrRLgAP3OwuWRJSvquYPPIBmvORoJNXSkW6PvAYv5P/OqjCksc51DInj2wdO0guRn8hGVRLwT3ev+GZa2SAjm5N7BczYUkJD/AcnVbumoxH9hfBpgY6gjsyR/YfK0fcOl+jJeTBXQTwff4D6DHcs7X+iVg5GMyyNMAvHaEHgnXATab47PJ+kAztuHr2LNAX/lY++Q3cPVBNMn8BAiUQsi0YT4I9G9hec06ENio4Y8fE8H22AjJOSiB7bA1prgEgu3P1XhHZhPY6e/n3I6lgd2s9Vy4nRfY2Rhw5aYnwM72G+ck5Ql2a2fhi782g51zCTc/dALYeV2ji26PwS5hLz59mQ8r2ENa234LVkSMkWxCKqy0mYdZCimwMibeTqKgGVa219s692rCKi1pAW5ZBKvWxmFdlg6s8ljKST4/Aat+SpC0y1JYbWmC1X5rYHWEO8lkSoK9sz3FnhoA+/UGpHUhB+z/3EyiS+XAPiCDZslNAfvwdmxzEwf7CD8S874A9pEzSe6/CrCPtqUJdn1g/3kVTQy0AYeDOuQaqwwOlybQerF94JAGJBK0Hxxd/LC25AM4RitipSaC44ASzS/QBccxCeJzLeAk1UEfF+mDk3I0nUl2BadpR+jc9evgNHs5zY77CE5P1LEothycW/q4c9m14KI+k/J8joKL9wVMV3oGLgEjmHYwElwiN5KkylpwefCWph42ho2XxLHsWjVs/O8SiaaOgqtDNP3h8xVcU3to8pRacJN1x8rtF8HNxgYfx5WDW4RQULnqb3B73Cx4etAZ3KqGcbBjfL3Wk3b8aAS3+k223/wSwa1pF7aeugJuI3/atlm9BXfFA7YBtR3gPveIoMGlCNzXBQpkRU+B+0F/zryOA/dLGbQvvxfco4RYctEPPNwNSPKROHgcD8Ge6tPg8dgc88cuwx/DJqR5nmCTagsmbbwBm2vrMPvvQ7D5y1xuzrKN4Klkxyn1eoDnvHnk1/oJvKySMauiCbaox9E/1TzY4iaORdZPYdu5Ykx1+ADbd2/HqztEYXvLYbyf6ws76saorO037HgZTvMXhsCOEVNy2eYLOxWR9KbHwM65OzFzejjsXGeALUf3wc4ff+Hn9nTw1h8mUcmJ4G24gM6WGYG3iQgn9rYNvKd/pjmPh8Hb1IbcJ7iC90weaW2cDHuat2OUyBbY04J4OTMSfAL78f4GGfBpnYGPZgXA3pZqfDovBA6oFtJPM4QDVh1UekEWDmx4S0Vmn+DgVWUSlO2AI4ucyOCQBxxxC6RDK1/DkWNPsVTeH446RdFBjXY4+r/tmGbTBseSrSg5xgWOZa2nMJOXcKx8F3k8dIUTG7owbVEV+MuUYOm2LeDvHoPXfl0F/0/aODxJHAKy+2ja9ilwqiEBx3TkIBAu4d0qNbiw4TEm3kyCILlKjHXShyDNYnxY5AlBVY346u/NEMy/T9LvNkDo7lOYsa4fQn0+4+3EBAi9vht/lW2F0IcBZOwtCqG5R0ltsRWE6V0n+bIDEDZTC3uYJIQtyCUpLyMIW36L5rnchzC2n3j7v0PY6tUUqrkcwtYPkFahGIR5tuL9vUkQFnodr14Oh/BQDt/b3YII/hgZDK2BiI552JUsB9ETxTDL8j3ElJ8hnkUexI49wyyPMxDvegOf2d6ERGU1Crw0HxKHHPGBWxncXdaBKTtS4W6FChb81wBJzdH4IKMJ7o1FYTK/Bu4n8rAGrOGBXQjel+2Bh5M+YY1NGjys+AszrQrhYV8gpninQRr5Y1TIaXjy6zSJut6EJ7+9SH1JP2SW6ZP/v78gszwZs1eegmyF81hv/gmeTzuBb9zegNC6H7NYE+Su+h/NvCUJuTfaaV5aEeT5niONgHmQd/wLLVWfAXl+ISRt4Qt533/g0O/DkPf7Cp2DeZAv8o3TnFMD+WIK3L3HBPnjc0NBsTbkS52kQOkJkM/LoymzP0D+8hzMOOYLBfMsMGNMDgqs9hGTng4FOw3x5o5XUFiTRxPyU6AobTJ2eiVAUZMklpR7QFH3blou7Qsl1jPpd5kolGwzwHszZkGp8gwcTp8PpYtjsfuzOZQ6ncWC3U+h8rUFvtj7P6ge3InlqdL/B2ohkJQ=
+
+
+ 808.5537109375
+ eJwFwQs81vceB/BnLrkXnYbkkvstSil3z+/7/3+sHrkcsijRjWJKaTRtpLl02fNMLi15IkyZ6sU6Qym3IzrKKvUU0elVOi7T1Gb0aC5x3m8+3rWTuXzix39rVs8OmN3hxQtfsN5b+/jsI3NUHvKOL3VsINGZML5eoZFkfiN8/U8B1G1ZyN9c8Idwfsd9vumYNut9Ysa3Zjty8f35/B3VcaadYs93VPRTepMaLzvoy6TXFvFPSjJJYufCP13qzUrSvuH7DA+TodFt/jdNjpRupfJvPL8m9fPP+Tf13wkHxbv4sZOMnmud4CceyUjlQhT/PmMzux02zE+LZtmTpbP8bFkRrXrdzM/OztGnGrn8/JKDzP57e35eKiOtUQ8ItKVkvFQEQednlDuWgk+CLzLb1VVQFImouD8UimmD5PSHIRS7YslnshNKD03Yrf8dhvJnvVy4PB7Kx6xJVpkNlY1vaXH+v6HmXsrqRqagJkui+zq3oL7InrnkTEFDQ8ji2zqhERlH28tXQuMRJ/w9NgKaenWsdmEAtNJTmcFULRYOHGY/Df8Di3bvZD15BtDuGGRTD92gs3WCjZjKoVOcQM7Rc1hsRpTbloIlXxxnWb2mWNKXwMaProDuiAaZe09AL8SKHDcNQO/7NIaLzTDYFMoaV4/DoNeMBVb0YZnODMvXuAbD+b/Y9BQHo//U0SJ9MZbv20yLu3xhuuUxcdnNMN/UzfKtJLDwbaEtD/xh8UyVHENbYeUtpmPrZmD1rowSGqWw/maIojPMYCMKYMf/8oDNb8b03+0S2FqFsSDhS9jFnWC2261hVx9Op6d/gX3SDSao98UKS2tW4TiDFUF7mUtSM1b2viSfAYKT2xBHFiZw3hxOg+8L4Hw+mkV6G2LtBxtyavXCOp8eVr21Bi6nD7HuiDm49JVzmq61cDUOovbHsXC96UXpRj5wM9nIutrn4HbDha7Wfgl3BRPK3BUH959XUvmORrgPvWPihEF42NtzC3bK4ZFcRe1sEzyeKpJD1I/wXF3N6azn4Bkh5NT0xuB5t5vJc/3hNdRAOS0hEKoOcLsGN0I4ZkcGBgpgtiCF1kKwqLXUFMGDXR6hoYlXIDMh96K4ERTSQM4lIlBpGS1eXgTO3JuMPhSBj1HnBLnl4Et4ypG7A2eW03hKEHy8vDimEwWfE6u4lp50+Nxbwz2bmMUGtQYqHXaA38VEUlmgAb+uNWQ1mQ9/xRl6ELMf/s8/MKlXLQLbt5FE6Sz+ObmerKalCPI1IRuFkwhuneT25gwjeKSDfnWIQcjEFClt/xuhFafYkKYatk4K2KseXYSPXuLC/DqwzfYjt6AlB9tq4jjPb98gcrcTzTYKENnURgKV69hpmUSqpILdGpVsx59h2C07wnlJsxA1E8prZbxHdEwdnY2UY0/rW1q4/zr2zHaT4mgK9p6KpWrHJuy9FkPWQTOIibjLJFqZiBkQcGddLRF75Sa9bz+HA7IiziD2IQ5eJmpU8UPC61XclbJKHNIfJO8L8zj055fsfKU9EvlEkkqHkaQhoby1I/jKyYj3SJYh2WeUalV6kPzDfaqzOYnkx7104NkIjgRsIU9LKb4ecKDDS/VwdK2IfR4uR/rldeSvYI6MndWcptAdGWnjNDmXjMwKb9IvliOLP0cmoYHICpVxRs6PkJVnR06Kkci618jarqbh+Ip0uuJWjVMNydTaHwZx8Es+8IkHxImfkoPJTYjP95OD+iqIm53o6utaSBT+ZvHDzZA4dJK9kxUkqSu5NV8UQ5LHcfsD55Ej1+aUymKQm+THq/VIkedQyfp3VCIv51+8k08V8n6uZc/KP0f+tmPUuyscBXql7G6PLQqORpDV79dxrpzxWjP3ca6lnkvQC0ah5QZOUNCGwrAWTnW9MQqv6FONUiYKJ45S6TIOUtMqWuCvC2ncC1ItbkGR3z02VziICzWn2b4BfZTajjJDQTZKK3XZeN8d/HgmhgKil6H8V3PWq2CBcvkaEl2Q4tIeU+acqI5LH75iWZMjqIxQZg9UX6Gq0IKlKv+C6oN6lFrAUC0xYLY6T9FouIFcMi6hozuClD+K0DE1Tq51J/DQuIZlSMfQdXGabojT0Du2ld3+mIg+XXM6G16GF29/oJKa/v8DK/fRBw==
+
+
+ 491.772979736328
+ eJwN04k71YkaAGAmWTtxhDhHaLMrkg5Rfd/v+yRFSUx5KKRbWqQkDS2URKmQJaTJmpaJdJGhKNWYaNNKkiKNnluRNjTl9je8z0tjBEd46YGkpawOd8u+kv6kPAhdpEP6Q/XoUXecJtX2g3/rHTIepwyp9v1kqjkS/5vvTubyKlDlPYIsryRAm/RPstH1AempEzQ9WBlu6ZWQTJSPzjmt5Dh5PSyJ3U6zhoIhTzue8M0zNA7XJBIb405RCblb2EPg+DXksSoW5U1Pk5eHFsgcHtIyQwXAVBH52s+D5jwpLW/SQYn/O/If/Ria3BQpaGzZnK6/e2nN6EKsDIqjNd9TUFZfT+veN4E0oZY2GPnDSTUZhUwfjeKeK7TJ4F/0UBxBW01qMDY9jyJE1ZB3WoG2SeMQNFQpyjMN3l6bR7vkvfCcQjnFxBwQrAf6KOb7GiEi6Abt3rIHUrfG0Z6ps6H10RaKteuClaPOUmxGJOpExVBc0kyUxZ2ifTpV4LxskOLnd6OayQpKGPkbmP2ylBKGzwitdZm0P1MLJzldpAMmfoKG9xM6cBxhMKGKEjVz0TVpDCUmH8Xr2RfpYLwKVPe10yGdICwsrqdDMdvmvNJYTsnjZ0DetdeUYuEMxa0mlKajBBbaSBnZg6hvVk+Z2pawKyycMo/eRv8XeyjLMgpFTs50LGwkrv1WSScmz4OA4HGUH3v6p4cNFc2KxsnbZFSUL4HcC8voZNxTdDU8TsW5wVAyUp3OlL0Gyf4VdHZs85zhE+fpj/Gz0arVhc4V3EDzlwuoZG8PBoc6UanxanS0zqLSzG2C9k/H0m9SOCh3jMriR6FunSJdSB8B745cp/LsDVB8s4gqpA9QEu9NFRtKQGgKoYoaHYyISKQqyyK4NFRL1Tt24MuMVVQzMQEzfFypJr0frvYZ0iXJW6g+v5ku2wSie0YW1RaHQHuZGdUbPQHRq3FUH/oR5XQT6fraZghU30k3yizwm4kjNVxPxYqtRtQI0Zg0YiM1JVZg3j8z6fbrJLyaUU53IqVC6A87uitSxnivH3Q3Vgr+eg/pXvITPDdBk5pVE3CBoEfN4X4ortlLD3LqYFfZenqo6QndUQX0cLMnrjtsRY8Ut+KV8S/oUVgLNlYyPbasFux359Pj/HZBQ6WTnpSF4fGpy6nlyiL013SgVodUeF2kQq3nVWi9WTg9/fmv18id2qyP4vmlHtSW1QAtCkupfYM7ThsbSR1G3tgQ5Ukde/9EbcPP1NE3Et3ygunFcAB+kkyhTr0s1EteTZ1hKZhYUkmdvXdRWVmFutp6odZpN72y9oSh4k/06nkW5BR00mszR2H0lFL6p+G+oBdkQD1WE3FCWxr1tBE6f0yk/9XNxFU6HfTWrhkqRe709kKTUKAYRO9E8kLodgd6l2InGC0Po/cLCaQFA9QrUsOsIAn13hsW1BX6qc/3ORbodNGHtVvpXI4Pffh4UZhkA9TfZgCNkX/R552NmFS8gr5YiPGvrc/pS+RT+HJOSgM5Mjhsv5J+PF+AVUVilvPSg0GDMyw38AD6p/uwvE8X6qs+YsVNdzD7jhIrPfqBShG2rKJcipUpfqyyfBvOqKxkVZM2OOn0L6v+vgXCc9VYrW8uro4O51HNrmhcOcAi3V7Yf1zMYp8FKHrfzOLcZpAFe7D4+SbwHEpjTQMlVL2pxJp+W1A1YjKPcTkNi86Gs5aRLcZZ7mStAwy7smaw9pt6mClcZJ3Cj/g104R1ukPhS4Etj83djOsq01hXYzaEisNYN0dLGKg+zLrtfoKWww2WaDRh5isPlsw/Cg0j0ljSkY63Ao1Y+ms3SKMdWH+NMfZ8SGX9pLUQamfL48TquE/lMhv9poLpcV1s9OAberVk8fiuoxhdGcgTcl5At+M6nrSA0CRNgScPxuFpVWRj43xofPOVjff5ClKtjWxyVIInTz1m09GRINrjyKZ7SbBfcorNPE6ieYc7m3UcEnbMdGVzh5vY4qHA5vdacWFYOVvcL4ODE8aw5aRyrAjRYsv7iwU9J3e2svw8p2vjdbbKjILGW+U8xaIUZO75PNUyGi9FbuSpSyyxsDaTrZvOCFW/urCNnDse2SlhG5NQfGBcwTYB6lS07iPbFP5HeBRlyNNKi8FxVjDbZv8CleJOnm7xDSVywNPPLYf224E8vX0edK98zXZmYgxaEsV2QVNhxrF9LDNdjKPl81kWVINHUtxYVrgL1xteZNmzZCw07mD74ImocOcQO+jPhSG1LeyYHQ0Vb9XYsXECxB3pYyddW+jf7stOiU/QNPcOO3WFYLJDOs9esQ11r1bx7Nt1IAwrMprF4r6MKhZCOnHFoV4WTs/G3dkvmf5owAqDI+wyYzI4+5xhl4gKuDYYzPNMN6BVQArPX78DZG432c23BTpeWLPb+QA8ZlXDi03chZF/P+PFCz9Cy5wVvKQtBtV6JOw1sQrNQ6axt0sy1NQMs3fefiwe+529e48JVgOr2SfgsuCaMIN9MpdgzYEe9u20Q925G9mvPA0+HfPilS2FMOji+n+KaEUt
+
+
+ 674.129821777344
+ eJwN04s/1Xccx/HJcVtRTA6dTHPL2Zzksg7zKN/P7/umqTO55rJsO3WUOYtcNjVtD3KpRUIuIZdW0YVFWaQVkSQirWGVVmuaJt2maWW1/obX88X9tK2JzRHxwMYtdFq0mwcNu7BTaQ+5yh40//xu/qXrGBuyd+HfxlV4vPKt4SntJ1h0x32euuoICXZb+E4jS4qqfZfnxhbSe10qnpd6hAWYqXh+WQ55OyXyggoF6cZk8j3tRizGK5CXGfXS4ufhvNJ2G/VciuP7MiZYmtiEH2pQMknOT/xwQSXz3BzIa4b/YUc3FPN6xwaat+Qhrz9WyHJXtPGGkTaGlrf4SXaONE+d5KcPtLGLO/fwM3MDmf8TQ946OZc1TIj5ha9Xkqyrn/ctvcxq1wTzvrM9bDAomV8pMqbMpGZ+1eAimTUN8V9Cepny834+YFHHpgar+WBsL0t68Re/4badqQ9s4zc6QQbjxvym2IQ1JKr4iP4FJslW8D/dEoR3ctz4aOtnpFrrye/p15DFeBQfM85j1YNiPna6l1wH1fx+yV2y6v+Nj5usIvP5C/kDZ1O2qTGaP5I+ojdKSvnjJka2e3/lE1KQ55eB/On+/Wz3aAufPP8Ji5Y/4C8NXvdQ/Mtflj6hVwtWQ6NGSoeVuzAtW0bJKzUx7aYuRRSfhiYfZgdz26B5rZbafR5DZKTNhl/EQRSkQbKnA9BSyynCxRHahrFk2OsH7dD75HXTAdrp9axS6ya06w09Xn1tDR0jXYpN+R06H89hPR6t0ClXs81VAnTD5cwiX443d4yx/qIQvHlVj+1yVGJ67HdMumYjZmTrM/+RWOhLlEy+fBQzJTeoRrwMMyMWs4OJFjD0ziZ8fw+G1Y/Y82ltMArVovS8DBjLRGxEWA7jzG3COt86zFY4CAlZGZid5cSkPiGYPaIWnMsCYGL2l6D3VRfEoo0knpUMce91yllxGKahv1G2yw8wvW7DAqgcZgYdJAQYwKyljo7q5UMicqKksiZITsQLkgRfmNtJKHmJF8zXJgj2CQ9hXrKIdWScgvn91bTwD19YZO8Sjr8XBovWSsFa3x7zcqXkMzMD88btBJ9nvXinX5PS7cJgmfmMFqjWwfLsAFX/+xJWljup71Q/rMIvUG1pBqx+7Ra6jfpgPX0fP/HRMVgv6RAiOrVgveFnjwNmIlg3J1GDtBE2Ou3kvZ7BpnixMDQSDVtXJ66baQfbjXWCel4j7P020dw0X9if3EEHJvUg275NmLFxM2S//yg42SViofCE6csPYmFvJ23ovg3HdSdJWFUPJ1UjU+r2wfnbtyi7uRjOVyfZ3dsL8H75A7JNLoI81FGI0YyBPN+KNdgchXyond2Svg3X4PcFDU8x3BJIKPdTwe26HpPWtGHx9BbaVxsDj//SheCdE2AH91HPqysgt0sUVJkDuqhgd1svA84NRB/sgqdxmRApm4Kn+1Phe0kgPI8V0FbFZXilu9NlN2Cpq5oiFUosbTrCorrexYeztMjLJBXeL9zZNx3L8NGs8tc+o+DjdZwK3J9jxbg3+6m8Br4V09gZhxz4+XTTnC8U8F+7nDynguE/VEnSplYExXXSmgvnsHJuLM33exsrr7kR8f0IWZXjcad/AKGmf1LhRY4wiSPJoioQNhpKhbcU+HisS/B7eQ/hGnbCBzblCB8sIw1ujE+qN1H8jk6s3s8p+U4MVBXFNOPJp4iw3CqY9vojwvsL+tvxP0S8/lDH9gzWOvVTfVMzIlNryb8kHpFnHwkuJZWIWhQp6FrsxfodY6Qo6sH62x/Sz798iuhDqUwwnUKMgYwN1wmIG3Vg/Z8LiBcPstwoa8SXfsf28i1IeHyIVs88j8RFSqrqCULi+m5Km9GCTVfeoCxnNZIchll6rC+SvnIli3YLpCzaQwFNt5EyGc6OZhciLW+APlMHI12VTD8eOY+MWXvIvTQOGbIq2n3rCrYXnGPyzceRZVpEA9wHWVHP2DfmImSl1AiOhs3IKnYkdeYzZE0ZsJpr/sh1qyKlUgd5D3QoxCQN+aaHadmdCdSWcXLJe4zWwFJWNQe4FDZMS8J0/gdKJqT/
+
+
+ 517.743469238281
+ eJwN0mk81YkawHHJhHQ6bdwI2RItWigSeZ7/80hKcWOizaQrlZliJC3DRFS6mhKFqJPOsSRlvSkqhGKU1C3pTCmlkcqx1g2F26vf+9/nS9NtdHGsOJQWTE5GsY0GLbQthK8ui8gp1BFYsZ+cHfIhrktGzh37IFflMv1oPIB6/9lNa4x3At8PJs/e1ZjqWUleL9/A+5FFtO59POTcUSIfp1IMDyqgzXNq8dZvgeRnexhyXjvSz7v8MK/5NAX0y2CK2STa1d+IUR0KCu4/hrMM9ShEfwB1HbModNpFDFkeQmH2e1FwvEXhKU9xi5UdRYz1hs8J3ygi8lcUrA7RwbilIOJmiix+AqGCOx3STILMpLt0JH8CmEV8oujfH+JWxa8UI9OCm4s86ZipFfpFpNIfMeNwDOnS8Zn64CbbRsejR8NVDyc6oV0KNfJQOiEzwe3XYyl2jxTk5sEUZ+SPj4oNKf7MCUzs2EGnp2ZA78+5lCD2QH/5EUrKkKKb8hCdPVELmVkqdE7dAwMql9G5UyEYpDyGJDO/oVZJAkny34LZq1Q6LyqBnMGxdD5HBSekLaDUjAJI/JxNFw4/cBj0+UzSggl426ecZDbh8Co7mtLi/41ZsWMprVMHvurqU8ZFW7jcN0iZc17Czd/3UtZcX4jq+IGyYiwchkPV6dL1QHjY3Ew5x/ei2HWQ8lSKcMvfOykvvgYG/IwpPz0EriYmUEGoDmyIbaaCl0NgPUWVirTz4O/cPXQtOQ3jRyyk4pRwQX3RKioZ04Vi8RwqiTsLOzMy6EbjCyzN1KObVlGoZqlOt8KKsPfAfSqdNwM2RVdSmeYGqCxWp/IVLlg35he6nZiKN63N6K66rpCsb0R3d/tixr0Wqi5uR7WJGVRTpoXy7Dr685ou3rlfRbU6SsLMmZZUm50AYV6z6X7+X9jy5Sd6oDYK6z94UP16O4g5pkIPzyYBdhvQI9VPINVrp/9qW6BS9wt6XPcN2sUP6ImdASRXXqcGu3Eg6fOihpNpENWdQU9NJLjFRJmeFpbiI7pHjd02UB+L9OyaFbSblJJ8V4mwfksAyRXJGP+wlf5KXYWZkcP0XFkq6CttoOd39+PFK1vohelTqG6MoBfRtqAnaaGmeWpQqydQ03CR4G1jRy/PCfgv9Tp61VsK8XMU9HqGCV7x8afXVUFCenUuvVnQKth/Xk0tfW4YqJlGbxMMoL7Wj1p13uBK81Rq3b0Nu+Y/o7ZZbThVkUttJ99CjEYhvZ+YJnwI/N7kJbg4RYk+JEnwsWUcfegogOdxZ+njDgtEg/nUDlaC8s5Kas+Lw6hwN1K0mQquJQrqiF2Oyy+UU+fa0YJrbB11aefA7cE26so7SG6ieOo2lwpmYjXqsVojrL4cTb2a+wV59wLq3W+B2Sv76NPsNZibPYs+/WkKO29X0OcuK+FymBZ9Ge8tiCCOvgQp45P0h9Q3yQVrspqpr7BUUKu4Tv0rtQRjPET9suM0r86CBlTTCHtKaWDHKqEatWjg84Cg3buQvnpPwsPa5fT1+n24ElxAgxMtMLXLlIbGDwkK3E1DkRIqEwXQ0LALqfY30XDifEFjl4KVbL1gZ1Ewj6iIh4/l+1j5bCNsiuniUYcToGcon1UvpWPyb5Ws+mwfjg4XsfoDVxT1v+PReq/RuEyDNaSdENexhEXLG+CQmxaPfeIJZ2I9WPxqOwQMdbFm5kp0bNZlrT3mkBSaz/8wckbBqYEnr05G8/AwnnzwHroZ57G2kQx11YJYe/MxtBwTxlPU/4mzV0Sw7h+awJlKrNewUZhxajPrm02HmvqNrC/d4zBs9oanGp2G+u09PHXjVVRxlPPU1H50eODFBj9UCo4pDWzgdA0/tM9lQ71UXLdtNxv+lIhFXqfY8G4wHq36ykY393z/YMMm+r7Q6jeXp11QR++qdWw6LgTMndfz9MBCjHRvZbOgNExeZcpml97jNHsxmzXdQ/vuLjbP0MUZHTo8U/4VFP5ZPGtbFPYsXsKzvjtbeMSeZ/eKcPLaG2xRLUFtYxWeu1EJ3p7O4XnNK3Ct7BjP/18pPu50Z8tia3xqHciWnxZiUcsEtjpfDrU5BmzVJMGSI1K2XqkLm7YZ8aKmYRwfspRtja6BRq0G214+B/1rRrPtR2eQlyTz4jntICq7wHa9N/FoXBXbHz+DB07u5SUrjMGdpjOMOAE53XsZQlJwespSBrk10i/pjBvWQ2iEJ2NKCo7zLWE+dxHK7m1lfqUtqJVdZMc1VehZsZkdn40U6kWqvNSkVLCEQnaKSYCYEUt4Wed5eHY1kp0X1MEzWQ47X/UHUaWYV7ypQSvJdXYx2YdSW0N22R6NcGAZu7QchU3h+rzS+ArmFD1n18lH4KRdMbt6jEP7OzJ2lSrgzI1sdm0LcLh7VGC3k9XAIwN59Vs5FiqnsbtoCiysF7O7Vy7opueye28nWCtX8I+KxaDTImKveh/UuPCO10q8cEG6J6/97jfgkhdv0GzGjB5n3vDhDM7t6+ONz7eCo4M/e496BxWa59nbxg19G3XYRzIepLfnsk/7e7j6eBFvviTD7OXr2HeSAeSG72K/6Xsdhipaeat4GCofaf8f1J+Ksw==
+
+
+ 665.296569824219
+ eJwNxWlUDXgYB+CUNK6U9lKUYhJSOalsed/7/91CWiQR2lQMUcOQuJaW26p0KMmUGUlqZB1dS92U7CFbkkIigzMOqSxZjpnnyyMC7TeRedQjsdBuFa2eWitWJTZS1uZIsW1HKGk33RI5KY84xq1e/F6azs4e80TJplfUIHknDha3UMybD+J4QhFZdKnEKT1nOnlzmqiqnk3xmWWiRtLKulMSRE13KxvuWSHOT66jGHc1ccU0kOoLf4grCcPpgvU4caM5hr1vyMX9r/XM391Ec4WUlLa64kHDQjIvCRYtRW4UvytBPDxbRBdKtcWTEdZUNtZZdKRmkvxugnh2+hQf3qkQz7slnHygSrzUX8ORK1rFyzVW/DAvXvwr6U+qvn/EW0sXzs/JF12mA0hZ0yLee8eT9F6s6NG6THaO5qLXM4Y15Xmit+wi58rVxYe6VF7YWiU+Tkmlq8ER4lPHUtapnSm+qDtyxtr/D9nPnmYF4qvKnZcHaYjv5VKqzZkJjYpM1tl/Df337uM5x4KhaV9FVx/uheZS+fQfdXHQLF7PdQPNoHnvBQe+C4CWy3X6Ih8JLeVHtvwaiIETTKh6URokwXLyj/sGSU4SfzEyhqTZgZMMDmPQPBnvNloKbcPXFJb9AYN1M9njYxIGNzux5G4WdKLbuKhWAV3ra+ynZgndMBkXthhjyMhl/GzwZwypHMU64+9AL/QBhWu7Q2/nJD5R6Ar9B+eps+kTDPaY0HMjbRg82S/NyN4PQ5PNFKBvBqPTPdJZynUwlu9l+/LZMD5xkPquGsIkTM5Og+xgkr6dVvWthMnlcKmm9RSYWjhxXHIQTAPW030PV5je1mODMTowO1DGGm0+GBpRLdWPOAjzMCe6qJEA88cvRf9FS2AR2sHGi9/AotOB7rUdxbCgAeL6vlYMd4liyfF9GB4xhjtjz8Eyro7TUlWwLNkiNf7cCytFEysK5sDq/GpO2uuOEQt28KLrrzGi0U4s/FAJa71L0n7xS2H9xp5S5jrCxuOkND7tLWwKz7B9rANsun9Ij/15CyNHV9Ce70EYra6g7tqLGPM+kWft8cF467F02zICDkaXqOHJFjh6m/GnxUlwLM6lzA3VcHxVwJbXLsLp1lg2qUnGhGFHqTTfAc6GKqlXkSecZbGs3DgRzi+UUu2J7+ESrs5nkv3gNs6eZW5VmNRYSqob8+Bebsu/ZBRjespYShuRi+m3e7g8wQEi1Iut1qtD1E5jP+U7iK+CGwOeA7bnWPJXB2Sm7dyqHwlZVxr7N2TBY2cEVU7xhMfVSlKdLodHVxspX52BZ8lgNm8NwAyDFO5Ir8SMSDNS3TqFmQuGsWVWFbwGvZDKwwfAa20Cuz5NhLdGOBcUWcOn/hD5Hi6Gb3HS9IrHm+Dn6E/msQr4nUzkP/qMMHd+EKup7UbgfDv+SWcBAi9osOnuIQg6W8Ba47OxaF8G25w9h8U5R7jX3xPBUW1c1eiB4JYs8m9fhxBfBWu0j0LYt7lsLKlEuCyPvdSMEbm9hnJtVIhUPmXIehDl00TtDk1YFmZDAWPOIXqCLS+x/YboXf35RkQ1YuIKeOKVIvxaVMH9bC3wm50ah6fsxLpNoNBt2dj491YKK/GFfPlnHt1xCltbush/dScSfdZS1qRiJGZP5ryMd0jsNaIni6uRdLOHVqZFI9n/Dsl8TZGcO4qip3YjuTuEf35/CQr9M5yepYmU6Fye3RiJlNxDdCTFFalNpTR0QyfSBjmz38mhSCtL54B7IcjQ8qO+1BJkuyh49iMX5Kw+wlKzLuSPM+PcT83/ATSYTyc=
+
+
+ eJwN1ndUz98fB3BRWkr1aac0UApRiqLQfb1e74qiJLRQKHztr9/X3nukJZpaWipNLaW90dAeIvpWikiSL/n11+M8X/fe1z3nnnPvuSz7xC4s2HeMZV+4wJllOLPse4MkKviFZQeextwp8Sw7ZAnnnOnOcuQGONH5a1mOwgDZDaxiOcox9JdpJcuZPUEu6QYs5/B7vBa1heWc/4E1wW0sJ2SEds6RYDn/aZGWyyKWK7eQVLynslxlwJCvrSw39B/0TEtgucN/oWffB/ZMwRA7bC3Ys+Z0jLx6ieXJeuIv9/ksT2kvDnu2sDyHaGwesmH5VUfxvpQRe64YRFKCY+y5TwqGGEz6wMv82+EV7HlOJY75JLICiWsY4RvOCuTeEr9SDiuQ/845mfaxgjN5pHcrnRUEqGIe5z+pO/Z+AFYQeMciedk+VhAsTfztkqwgdBeGfkhiBeMbyUHzHitU/Gnu3LaaFc4yxeeGeaxQJZBiW8RYoSM/huV5sMJTIyQeU88Kz8zF0ihihWdjLaSP32CFd6djhko5K7yfjY/XbGeFQcKUouTACpt7MfX0d1bY2kZJ9ydt5yyXlU1hhR2f6PycTFbYeQafqymwwi41bEyYXD9xkuS0V7HCP7KcZuAKVqT0t8XtZYqsaFYVjh/+yYpUPakvNokVmabjbUU3VgQcnts+zooclmBgix4rcgw137tNjhWdlecunn3JioIMOd1vi1hRiAkmqOuyovwq2nvYkBW1OxDfNAFW9EUUYzzaWNFEFJYrlLGiPw746n9vWLGSEmaN3mTFwdcw6v0AK446xK1QucFK5O/QDP1BVqK8HMv8f7OSOV0kV5PISoaLaYr8K1aqGIIJCsBK94niaTzFSo9oYO5pM1Ya8hcJljSy0tCn5i8W2bHSro/m2tdXs7LZi+j9lUBWto3DzsDHrCzwCpdy0o+VK47gaLkmK59Vg5eSy1l5yDb0mHWZVSiuwaQNW1iF0oCFnmI2q9BVIxQ1YhXBDlx3syOrVO63+LW1l1XOTqJ5N8+zylNydGliJasM0MDsy0WsMnSTuff5X6xK3InWLldlVfLXsaR9MatSuoof0mxZlYoducjxTfqONP3ns6rZ/eY2xUms6pQGvjmWxqr89Tglz++s6qEiPpFJYFVhm7jpbv2sWkoHSw7sYNWKgaTzNJpVz56Pz3tPseoHetztQ06sOug9TTlixqqH1+GthrOsRj6ITJbVsZozWy0UdA6xmntKJOE9h9UErsDWE42s5nctp2qjxF4o3sXU9TvYi9OVnNW7D+zFmTSMXGDPXgQHEy9iEXspOwf9driyl9ECmJKiyV6FXTcXMb/GapUcMbxtD6tVlSKhU7NYrRof3R0sYrVBiykuY3I88gteP/Ca1Zb+IEHPAVY7/BR/B39gdTL/Ytq+cFanzJkvvCXE6lQrsW75SVanNmghkCjM6oyj8PKwG6sLmUXhEXcnTaJmhwJWF7GVK7ItYnWRCzDkaDCri72GXw3/YnWdhtg2MY3VfShAf3cFVvdNlhO6bM3qvpdj6KABq1dpJljXxeo1RPC9iDyrd/yBl4c2sXqferKKnqwn7sOzrYOsvt2dbk3EsAaVKBK2vcka/Do5358/WEPwcorX/Zs1tFbgDbdR9lqG0YIV1uz1rC7suuzOXvvn4TM5OdbYXoWJl6+wJpUUEtiykDXN/ohNHx6xJodnlDnbiTVtD8WKmkjWFDhCqwRNWVNIFw0PFLKm6qdk8Ho5a/p+FPvvDrFmJRfzsAPmrFlFGZ93drBmxwfmUrvHWXPgKVqgNpmDqujd5s2s+Wsw8Qvmshblg+T+QpW1zGYW07YfZi0afeYKEoqs5WES9zCthbVEraUGz5esVQ24TUtustZjiviGm8NaA43x2U1/1hqeQdOmi7DWziwsW+/N2uQuYKhpHGsLVMF+q0HWFtKIwZGzWdvYLk6wtI61Kzdj+egga99xEr2ikbX7ydA0l6Ws/UEzvarrZx3yM/BJ0lTWobAMm8OLWAdNYCr8YB3thdjv3cY61VXww4dnrNN1B7YYb2RdG8+SfCEf6wqvpaX7q1nXN378fXyCvVEpIMXPv9kbNUtu/S8p9kZDnGababI3Jam0XNSBvel4QTtfK7FuDeAOvlvBukOrMP3gN9YdVkzaPptYd2QyHcjMZ91vHEnmtwB7529Et9kw68nLxcRLu1jPG2NS2CjOenrmY9zQNPb+fwewOtGTvQ+biUExl9n7N1fIcaci61XxxUdjJqxX1YtrGqtgvTuaKPa9O+sN+0CX34qy3gh+UhxezXq7JDDOXoz9O9ea/PetYH1qHtj0NY31qUdi6I3drN/FHyvVA9iAcij6ax1kHx/vxnuGZuxjopOFeowvG1xYas4z1mGDoRGY/xbYYNIyclWYyYaUn5Ns7nk25NyCzbevsiHXVyRkUMiGQh5h7IQgG4rko5nZguyT3Ag+sPFkn4VGsT42gX1WOYvPj5azzw+qMYzvAPscloChIuFsOEoF78dpsK8LXpBccQn7GqGOBWdM2dfuo/TkXgL7OpaAcSn6bES1nLyWNbIRjSJa5X+GjbgJYLKTNBs5p8L9xW/IRjpMMaytnI10VnNBAY/ZyJ9DmBd/in1TmUFDFXPZNzU7Mhk8w765GNCiKXvZt7OnSdNylI2uuEKCZ3vZ6M53OPorio0+mo+xWavY6LsxTrUvlX3XmE+230vYdzd/LJqnwsa2Xcfn23XYWDhh5P2L7IeaGV3a/4n9eLsDc0t+sZ/OfBg6sZX9fJBFM96vZ/89cCah/aHsv8dBGJL2D/utFUnav03ZxK21+PbsWjYRPoK9X3JgiupaTA6RBT7bVVindQb4Dm6jH8nRwHfiAMZp7gK+2C1Y9U0C+FKSsbH9Kky1tseJ8tcwdb0lPn1yAKbaHMPHt77DVFs1Eqv6BlO9EzB+lw5M9fmFPfIjMM0WOeniXJh20JgMA3bCtCOulMAnDtPqo7Hh8zHgX6SHsbM0gf9wB0YfsAR+7w6ssK8H/lp/UpVcBwKHHUhhxXkQ8BOlo3ZBIJD8CsPSg2D64iukmvwZpjeVknl4NwiKKWKchScILgfaLPsJBG1K6FnnexB0rcXosAYQ9JLH+HPjIOi9B2MsIkAw7Rb9a/IHBBtiSLW+EoTEgtDf+iwILXYnS+ddILTEFeP6rUHIawMmi50DodR8TFz+BIReHcKgS4dB6Os9mnfkNghLHsOE3X9AWKqQ+K8zEH6mh+mij0C49jFmV5qC8Bdf7EjLBxHjPrLn1waRDZZU2TUKIjYl3P4CExBx45Fc7GR2Cya/AX0Q2RVPaqrRIPI/L0yWHgSR45tJ3GQMRDznkaauM4h4D9OBNGUQqV9AOpcZiC5Uw9K1p0BUPw2fSjwGUdt0DNkRAaJHYvBFsx2IZr3mZLqWgOhL4sTtokG0fh4mnkoB0Z404rL2g+gXRpdk14LouCyG5d+BGZIW2OiuCTNsPDEo7ynMsJXE8h/dMMPrBvW8EYcZyalkkTIBM2oL8b+9OiC2vxIr1/WB2J3PmJtuAGK1h8moKBDEJWKwUO8QiHutxS77KSCevhKLZwqAeIM5hto9hJkSnRi1yRMkbEsw9WApSGqcxNJDh0AybhE2VoqB5Es3HMxTBcmGxfj83qQ9N8n50X2QHJen/XpLQOrkv9ws960g5aXC8X89DlLe7ljnehSkArOwPCULpB4to/gLQSCVQzTvVjFI1Xfjp78/gVSLMoaXbpw0Hn1zFEGq7TQ+qtgJUu+dSfwcgtQHD2xx3AxSvcFY/UoQpL6UkckxG5D6mo5VJ3+B1M920ltuALzpn0h46hXgiW/GzoDlwJMwwfywAeBJbyPth37Am7MNu/cIAW+NL9a3WwBv7W4yyBEHnhXjVh2UAZ71HsviT+rA2yDAzQqZmNSRsI4PeDYadC2nGXj2L7Bk5SXgbW8hS6vJvjt20YX2fuC57qIvQWKTZtOry5N93Uoto76vBd6uNdRZsQl4uxNp6iI34P2TQ3f/bpj0D11dKwy8E3KWW9x+AO+kDz07R8A7pYKtDeeBd30rvuJrA96NCGzQvQm8Oxqk7bYVeJ4HLcrOTu57t4648YvA81tDbRc9gRfkhHEbOeCFLMKiTwC8CFH8jTqT7sNRD13gRVaYd61/Cbx0D3ILjwPe02psuf8/4GUW0ELzqcDLVuOqn54DXkENVrbPB14RhwVHU4FXkYY52YPAq/qMdasnz+3FXDIbiwLeSw/qlQoGXsc1bKtcArzuLZhUnAi8nlJaOtUKpDWecgKl4yBtZEafy9RB2rqG7jWOgfROxF9TY0A68iGlbC0H6axR2lt2AaRfj2NV5jSQkfDBzA92IDPvAFYuHQaZ5QUYvLITZMAUX02zBxmrg5xM5zuQsZlOAT+ugYxzK/FX7gcZ1yaqgd8gc9ycNiQ/AxmvcpqRNQQyORkkua8fZGq/YOTb1SArXYCDmskg+08XmXv9Adk76+jKgVyQzfYzP5EhAbIvf5nbX5oCsu+duCT3fSA7nssp3LQFuZnqdGlkFcgdOk8Zsa4g5xVJd0ccQC7TmFR+7QS5mpv4U3gE5N72YKl5A8jrdWL9jfWg4HWC3K5uAIWXGWTYsh4U783FPMEEUBKZg6kpsaDkI8NZGXwFJT9hHOtpBaUINc65Yz0opepw+s2TFhmRu8d8UKpfRUq+mjBLvxkLpHeAsn093fH+Asr/+0wXpk4H5RNJNC30b1C+PxMLHl4DldBhzPm4D1QKB0lsPBBUiu9icUwUzJ7pTKo7p8NsCW3MUD4Is49JEh+vF2bfk8dxE1+YPaLGHd+8E1R5Syj77SdQkxrEoI5EUPO9ht2HjoCa/y+y++wPao1+ZHfYC9RGq0j9czuozwvnDpwLBPWVUzn/Ww9A3WY7p7znIqjvvkcbTv0H6qeF8WPJZN3nNj5Z6QbqDdHEHmaChrQeFrvIgUb9Qgr2GweNBiEMWqUDc6T88Y/0A5gjE4XBRk0w53kcNox9hLlyezDg6lSYmxaKOaqHYZ5JMY3P/wbzNs7l2NwgmOdxl+rEd8G8M700vc8Z5jUI47NWF5j3thkfJzwBTRd79L9oDJo+PZjSvwY00ywo02kVaDZso9jLx0Czj8Nhj3Wg+fUnxpl6gebIaoxaFAFam05hv2M6aJ0J4PhKxkHrPIdlJhtA6/pGTlvyGmj5THAJdxNBKySLWzP4DbRid3Ps/EnQStOk62+/w/yl6ZgV6g3zDZ7gk6WGoH1ekizLO0D7XjCJZ+wCHYV2jJBbCjq+BZh+dz7oROvSnTWTOTeUov8dAJ3aD+Rz5wLojO2mdXtjYYHcOfIQG4YFD/Qxb7wRFow1kcwRdVhoN4YlexbCwsYfmOk0Dosi6zFL/CosaurC/LunQVdGkz5KmYKugQ2ZJ46D7iZ3UviTD7oNuSQgmAu6HX347MVv0O06QI/irEC3X5qbcfE86I5UUvWfuaA7cYMufOyBxd6bcDwTYbH/BiyXPw1LZERoBr81LPm9A0dWF4MeL4Ba/FtBX/MJ8RlfBH0TEWx+Owf0bYvoQugn0PdQotu9r0H/jDtd/JoJ+j53cKB3Oug3/sK33BTQb7nPCTbvhqXyPcT7bAJL/VqJi5GCpekvSfrGClj641/aMf0fMJTJw/7tsrBMHrBevh6Wy49jZ3kgGPmtI4XAGjB6NRXj+X+B0etMHH7fDEZNq0nBQB+MmtfRKtcAMGp5gl0nrMCo9TXVD3mDUXsvDg2GgfGV5eSx2xqM6wZo6ocgMP5eT+XXcmGF7EdSkI2HFWmOJGn2BVaMjJir+0rDSukZXM1SSVi5VJvTudoEK2034LMLACvt9Oi5ezes/FsE3xrPg5XHlTAwTXzSYvTZGwor6y2x8HQUmEiXmV/pSQeTTdO4BO2ZYHLPgrTawsCkQR/brXrAZKQaf8aIwSpb5cl3oBtWJfJhonULrJbh4UsDCVhtN0g7tPNgjfRnEmxthjWBTeaPTOpgTbsY93vJTTCTyccQz0EwU9pEldfXAdPdj0UiPGBhath53hlY5jMsPfMb0IXjLhdJAj4Ip9lB3YChl+mS9kcgHTMyuvoWuMYEUs28DuYaLqQxrgMWp0cw58dMsLhRje8kFcHCfy8OZPwCS40r3Cr/SRdv4LJTF4OliZb5zJ03wNLiP66kVQ8s7VbS4hYHsLSv4VxVRcHSLQhH7faAZY0U+p0oh7UsmxYMn4e19+0w/sIxWGc/+d/emQ/rgvaS8Wc+WBcSY9E+NwTWdbZbzDnxGda9OYSxh/6AlYqYuYBKG1gt1cDx+M1g5cIor0oFrLfmYrWnGVifT8Ys/bdg7b+ZlnoLg3V2AMaaNYB101vM6v8frLd3JEONTFi/BTB2OBbW759P6oMOsP7iMH49dhjW9/hil8hHsLl5CZ8sMQabe3KktywHbDLkMD8tEmx7NLHHqR9sf09QTKUubBR5Q4ndArBRzos0kw1ho6kSZjADsLvViZX218Fedhj7LO3Avm2Im/b4FGxWWkI+j4/CZscUbBS+AZsfbMTsbV6wNaAH/zs6Cg5+haR68C44GizEyCR5cLQ5TkuD7oCjtx5W3LIFJzlJTGzPACf/YgtB7xRwyrDAj/lJ4PS0zbxqlQY41f/C5kwfcGrcZdGyIxCcRo7S1qRCcBo9bpG6uRucZY5Y7BwUAGd1GywdPAjOBufMA+LvgfOmW9y/D3TA+VgQNW3JAef7MfjG+S44BwBGeOqDi/NCEltlBS5nHpJgqh24ZHSSmdAy2LHFlPhVm2CH7x0SuKYFO74bcb65l8BVdgNntNccXPVLMezfGHA1dKaGhhXgam9NVvfXgWuRFtYZxsNOpYcUN5AKu/3EadblJeDetolk1reBx+vf3MyhKvDoOkai8oHgMSpGY4lhsEd6hPibFsAeg+2kWmkNezlxDK4Ngr9aLfDpsT7YP3c7PVluCPvnvaMQiW7Yr8VR/2g+7NduI68BDzistAK/HReGowrx5HUgDo4aTyE6FQFHTzThbxKBY8HLsXT0CJxYuZuOHwyAE07xZCMjCSdOe5KAlhucCC4kkVBTOOmsQssEG+HkNhcc2JYJpxcdxsw/a+D0M1sckhqE0zWrSTVJG053rMeB1wzOxQ3R7GW9cP5ACla0dcOFGSM0u3UDXEzMIP72ALiYdAfjE1LhYl4DSShqwHUXwBLvHrjhLzI5PxRutI7hQ3wIN74cx28OsnAr3ROfPJIHz0QP/JX5HTy7HDFLrQm8eA9JcVk0eLsUYkXufPCJOEghe1rBJ/UUBadIgU/RA7q/6Sj4qkfQRY1R8NVLp8tyxuC7vIfm3y0AX7MMOpS3GnytiYw/moCv7V2ydjoNvq5PSXTvGPgeiSWVyxLgz7tB+mUL4P7HeCwFQwgwXYwJ7kcgUDkPS+M2QlCwDAYJ3YSg8T5s8tsAIVXKk/esDB7qtuDT2LkQ/l87VjfshWizf7Ck4RZE25pi7FYbiA5wxZywWoiTm0XX2vZA4kZvfP7uNjyZk4kV39PhyXkPfN6/HJId7mH9q0pIXfMNA+RVIRVXY8qPJ5AanIjJa4wh7aorRnXzQVpIH5b1LYO0/INYl/UU0t8rYQm/EGRE3sa8fy9CRupFfPpNFjL1F2HJtSLIMkslwYJUyPJRxYzt4ZBdroq1fOaQW6FEUb+3Qm53O6bcLoZner8w8ec4FPZZYXHZCBStSyKrSBko8k3G5qv5UBSaRLIkDEXhgpTwsRyKT/2koOFXUNz0CZNSvKD4iy2WvwuA4glXUl8YASV8x+jHmVwomSbAzUk9AiX8W7n48dtQIriEk64cghJRYxJw3gelyxxIeP5uKJOuoGn/aECZ7E8M89SA8lZRfG1qDeW9P2lfnDJUrljACUZdhcqojVge+wiqj+TTdKH9UJ2mjWk0HRqS3TEyWRoa0mQwsW4KvLbvIF5xxP8Bg7AqMQ==
+
+
+ 460.255859375
+ eJwNzIkj1HkbAPARicywxm1csWKQY50lzff5PQ9tl7RKUkt2ibSdFG/pcDQ5yhuVyLGu2mp1WSRCjXLtSsrZJWxq31Kb2iTFvp8/4IPqugs5xznKqPFZHw4EPUeRaR0LXvUjikbzwDbYGY3WxUHnEKIx3wNNdgWgaQWfxc7tQGuN42z92Hu0GzeBj93r0UG5g00YGKHD50B2zP0rdO2+y1T9lFBiNpslDEUit0CfbXmhg9yfJUy1aTYuRVtmpayCvmFSdrW5FlduKmDdR33QX5BEUzW+GBKQySrUDTBU+yO4z3+KYW71sEK0G8MH97Ja40aMUNkHvIkRjPhUAAHtRrjZIQxm1HXhtp3xUHuoGHfMY5xF0xGMZJ2wyDMRo5yrQLjxDe7SqoQsTz5GawSCssIE7k7axVqeNeA+Ux9mmaeF++2rWLaNHx7Qe8062iowTtMfsodCMC7eB3wOa2C8yRnY9sMHPLjyAci1XMZDSnMkg1IeJlmNsZbE3Zicf4TJ5CSYslcAx8sCMTW7n/0nbSWmrR6F9Qa78b8K+5jnt1l4zEHIejSK8YTqPk5WboIn3tlBn9cjzPxhjMHQ33hS6zuOV62HJ8c+QVPZNczW82KeC25gzrQdTDy6AHPaz7CzWpGYK1Vk42WqmCeKApXod/jzrirI/ukpFllXsuerXLDY7Dioa53A4ioZrLVtxpJ5Klx+RRqWlJZJkhTl8XTfKzhpFYlntkSzTSVC/OVCFBuv/YDn9L2golqK57LvsOv5u/F8nZStdp/AX+f3SF6Yz8RfTz1jDTGBWBp6AXpyZmPp8Ajwz27HS+qv2OHYPrx0VAt8E8V4JUAKkV6pWCYfz0SV8vib52JolxNgucE9ziDzDZaPaIJujCZWvNSBPRsO4NUsC85sJASrLzaw5x9WYU2EB1xbao+1ulOgtew41m5t5ZwyBFgnVGPpMSlYd/4iZCTw8Eb5JEfCVLwpnAXLBp3w5uEv4B2tjjKjDjAt/Qdlnf9A8opCvJW9lHO6uQdv2zSAg/0hbGTnoHCBCTaWTkL34Dps/DIXEncWYZP3wf//PGy+LGEFf3RgCy+BiWJXYEtlMOcyawO2qlWzVLsRbJ0s5451CvH374thwi4J71wqZCInGbbbH4F3gi3Ynn4S9icr4F3RS/g79CXezZwHCR6t2OEhgrQ0Y7ynvJlzaGjH+4YZ4HJkB95vmw6TVWuxc2cv9/ltK3a+0oBGaSd2pVtComMudn3Kg3pBEnafOAfd+bbYk6EJR2MuYu90X5C+T8HeF44MT+fjg8FWeJQ7iA996zmJTjM+vPoNKzTSxUd1yMUud8bHhpNoyrbi48LN3NQRDp/YikGyyASfFGhACC8M+715EK62E/vzn7Ggy/34VL0NTqXz8enQANTciMKBQHvu9NwsHOi5yY0nB+KgWIKRskocfNACN9yacVh+ITjQdRyOFaLiL5/w9etnYLxwBo6K9zJXpWn47rY5i6mxwfdl3zORXw2OV3RD8ck/iMdfAj4z79K0Za1wvnguKXx3BUr8fEih3RxUL6fRdO889qebkBQtDnOqectphj5jouvBpKQtBWuLJlJKEbMc/nJSavZgLnlPSHmjDOSbAmmm8R0oXOdAM3tqOF5AGan4mzGXXkfiR3exS01VxG9RAfnmARKMucJA3e+k9nEzdH3uIuF2FVi7p5OEOe3M+S8nEjaIoVKpljRcZ3J+gnzSSMjhbBfGk6bxCBtR3kiaeQlMNl2RtHQzJVNyPqRtmAO5TxNIu70Ozk+ok074LVY/S5f0zS6Axcpq0s/zZ4/fB5H+/Yewf407ie6thiUPI8ggrgvGVXLIoOMKbExUIcPwBsnkcBIZpmtAvcUmMtLL4kRW3mTEvYDh3ndkUqMLagcP0SxDL05quZlmRU1B8tEsMgtMBb4ghcwyDMGs8zF9veEtZCUtpq8b7oPSKS0yN22DB/KWZB5yE4puh5NFfxOnHQhkKf4RppUUkGWwD9urM06WV5UgP1SJLF8qQldMFVkVDLPUrC9krfoGbL86QNb+ApYxpks2yyXMV30L2dSHQspgNc2ZPQJVo29pzhpf6GuLJbvcg6zh1iDZGw7AGYU1ZD8aBgYDDuRgIoKjmuHkmG4N3/ANyfFVC9vKW0POEWGgV2RGLte8we1//eS6GOFsfQC5lRZD/PF7NC8oGvB6FblbprBRfxuab/Ube/9TAHmIPThvtQpaMG87KPoaEJNpw4BcGIEgk7X3+RMEq3M3MoIIjvWB2ZgTUVEaaOXHkmfIYmjLyiEvI3cuTjOIvs3UZLIVUlq0bSkotGXS0ojrTByZTN5LdGBGsf2/m1QC+Q==
+
+
+ 700.332580566406
+ eJwN0/tfDnYfx/GcQqur6UJ1XdJRB0XbY1SXrfX5XN9356GUnLLRyFLMoZku61GudNL5IiqnuG+JHMKdw11C1FSSULOWkpWHdZiylEOY/+D1/OElPAdvklPKSeHvnMQ3W4tE0FYFrS9eKX4KVNFw8a9C1e5O8nFqEWM+iea9OCXiLJgth6+IeMkgOds0icSRPRyh2ygSk+7Rw0fLxU61Drl7rRQZdk4k7+kQu/NcqNU4Suy1zaczY/vE3je/kDypVOS0+VBuZabI3beaJ2R1iYPf6tCNP3tEflYh/ZInEUfsz/Ha4P+Jo0Ub2OxrK3HCJJZdqhtFUYEHOaVNEufPl9MuoRYXsnfTDt8+cXHGTTYoXiIuhd0k96x1oky9k7t1L4iyd7YsjTosytd4ULzjZ+LqhFes/vtTcfVsBJm+rxI33BZT3vM2cSsrleTTWkR1tBMHmdqJWnULlcwxEbf95tEGHx9R55rPmkMN4s65Z1Qo7RP1qkBav91N3D90l4xWs2gOHc3VGgPRXGrBKbcdxR+zT3P55Fvi0fYjXO+3XbS+3sMRm9tFh/N0ynX3Fh01oVTpUyg6HSW8wEYmnjppWOtVi/irr4Pnvy8RXX4hJDfLEj3HCnjq7FTRO1WHTVdni+cld3lKjrN4oRimsvRkMejmQXmev4shIw3lTmsSQ0UPaZb2ZfFqsi69wUHxxq6FL8p0xZuXPqS3MEW8ffc1zy7pFu8O36M2g05oGZfS0JYujPwmmwImFWHU/kVk/bs9RrVcY0vcweiDMm6+sQlj2gI45rf30A525kaZK7RzTrDy7CWMlZyh+M3LMfb/l5Qm4inGSVU8syET4/yjuGNUEMbHLuSgtDkY3xLB2e6R0FmsIlV5O3RyH/MK/9fQ+yScoo2vQ887gEeerIVexgtuO+kEvT+V/Na3EBKLBj46FAWJ70f3mhBINPF8zuQCJHcdlZaVVdC3WsDz534G/QoF6V1uhsGkD1S9dx4MNoVSrZ8XDApr6Q/laUjHz+Kw8AJIfUtFiMYe0uxHSsuopZD29H/sX4KJmrdsM/NvGFptY63BChimvOYw1x0wcjTjuIYdMM47z3vlhjDuiaWcM3cge+zA6Z4jILd/xqXt6ZD/Zw85T/8OUxbc56aK9TDZ1045ww9h8qyQdbIdMTXoKJcsvwJTy0A+oDsAszRPOmWugtmLBZw49BTmsnt0ZYoOzFtaKevMA1iEZFB9ry8sq0dyVX0BrGwMWT/ZAVb3HHmu/ASmJbjwsrlVsLZq4kyJNqxPSPjL6AxY9+UJPH8GG8ti5eZ1g7DJyeJP1Ctgu9aT/7nYDdt8Ny7eugV26iIeCl0Fu+uNrJJtwPQ0C+Ew6wGm3/lNeWWVL+y9zTnb5xQcjKr4eHwUHBrNxRjFAGaMn6Wcf/sAHKXd1PDhZ3wu72fTPbfweVgMpWWMg3PWTlrf3gKXkA6yPZYExaVd7KfljS8XWVH3xjC4wo3iMy/BVT2H9fa5wM1XwaPO1cGtM5NSt4aDO2Vk1+kDYbyQ9wwnwH3JB0pNOA2P8HVKbeTC49A+3ojl8Kqto+NaN+E15M2WgQbw3lhEb398CR+bIIpXFMLnSZZybZcHfGUHlLrLTmNe5QP+RtKNAPtI9jKeisBvJ9Cp8WexaE4c5ddfw7IVI+iQ2zCCg/+h3N5GrDiS6PZraQBW6jvzw/IlWPlVDn9x/ixC9O/yaMV7hHhnk1wlQUjrYXZ9ZIrvDSayQWwoVpkqWLm4AWuKXdl/RBd+iKn8+JEGYXrzSe5QgXDZfBooqEF4iDuHFyQi4loZJz6XIaL/GJV6R2LD/Vjlpq+WYqNhGTe9sUCk9WMOXDUNP5kpKD4xGFt+nkBXDNuhsk+ihuvR2PZFJ2eYO2BbsDsff/IjYmxfMj95hZiuMMqb24VY/R1cFNCA2IwINu89ge3HxpCsaTPU/41hhx9iEHdxF8dJS5Cwy0s5MrkZCeer2OiJGglD/bT+lDUS82roxrtMJHYNsMp/IZIURHYL6pCUPEBPnloiOXArPZZIsTNmHjlcvoDUCTNZKzYdqUFuPGlREFIju2ihdzdSBzdSvE8N0qmOChKbkX57KdfdeIbM/RNpbfUMaPStqUa+D5ptE6mh1x6apgFu97bC7n5dZb7JWWRP/k75vcteZPuvptNFUuyfeZijU2qx/1yOcoRRCg40K3jo6lMc0qpgiWcp8nPL2I/v/QsLseaw
+
+
+ 1177.578125
+ eJwFwQtQEwQYB3AyMnQiDil0eCgZASIi4XwB7fu2P0FovoBaICJHnAIrx4Rz8zyYMAaIMuIxuWlFD5CgERoOw5uJPKy8nSUxjhAn1DLRQwiR7KL6/WTWQC+OfXW1bCDoIz7aOiUbXuog53iA7JGzjdzfUsse/+NDjdPFsrnDK+nYyE3Me/oJpS3ywJI7dnYTT0IYb6ItUjG81iko3vshAsry+YVRIwJ+imNDVBfWXFnHz8SuQthgIlcNmhE+tJVNPREQH/5X8uh8LsQ/17FQtAiSAztZb10PbDol+S3CjJiKduqa3Yi4+Lv0fbQJ24Kr+Ur5Leza2McZB1XYk7eYl2idSBC/S/d3/IGE4XrerclFolFFPiYR3rEHcvDa00gaWUGBrrext7+NqsMXIOX0banAtxHpegW/3hCGg8VJNJodh0yziXZ7OKH4Uk1BOeFQDEWym78n3vu4UBr5ZBKH/Gq4JDIcOc+e5ULNGHKSlTQ6eg4q3/2y0AwrVJkL+arOgdxVcg6VH0HeAT2P9U5DnbaMhrvnQesSS/GaKGhTlXSvLxHaqmbKtk3j+HIFizatwPHJzyk67hQKPUpY92IWdKpOyg/aD330d7zG3wulfJF7PHpRFraeS5W/omyXlQWSZSh7X0h1BdUoVy6XFmheRvmHl3hDUShOHknmqEv7UOF3iG7mb4fhJRsLhM/DoGynH+SbYWjewf5yGwyOCEpRCVC58AE337+HyqzrnJG2E5VTJdIswWp8sCCB7/RNoEb4HOn8KlGj/IVdA+ZgNB7jkDEX1O2N5LWpF1BX8TefaOpG3QUpBTfIYep9hdwvu8E0rCan5jOYZmP4jfnJqM+zsMm8B/UdZh4QJeFcrRtvLilC04CYO0S+aJ6VcOPjh2jxzuWvLIyWDf1kKapCS22FNP1GH1rOW7ikfxrmrVv4P5sd5uTtnNJdCrOmg4WDerRrJVLtmzNoNyZy5/y76BwpoJkJX1z1WUytYRfR9aeDhs7M4Fp6Lbt+8RTX1A38TWsSeupDyPHkW1z/sZyXpo3Dlt3Gnvpx3NJdpmyNC+z7NBzydhZGdL2cWtyIsaocds+04Pejw5xSEIMHoq+padtfmLjhSVavk5gSfMrRc96YWanh1+z9/wOk+nia
+
+
+ eJwNl3dUzn8Ux0NoUHqep9JeVCqKCkX8+Nx7v08RKSMKP1kZGf2skD0TGipaGmaFVEpDu7SUdrQkmRWaRvF7/nqdz7n33HvPvefcz32z1JNnuX06y1lqwBO8dX01Sw2z5M4tFmdpit+o+6oiS1OqpMNzHFmaWgbGnxJRU5xmbzRgaWHtNNFRwNJ+62LR4CBLV7TC2mZHlh4wn8ZqNrEMJaQxm5FlXP+NQQUGLCNkE57hcSyjvgYLrYk9u2KBAfo6LLNaxHhXlqUciX950Szruq/wmzuxrOBCvNtyiWWlPafV421Z9kQJUn10mGUriXGnzexZtkoBnhqRzLL3huG5be9Y9v5d+G3eWZbtmUGKXftZ9okiPPHHmWX7cZgoPoJlB1+xkYrwZ9mhMiSpoSfiEvw8TYllv3LHCBs3lv1zJW03kmQ5ysPCvKojLEc9mD6uu8xyNLswdt4mlsNtwCi9/1jOwT7095BlOUeek8k8bZZz7K61tq43y7lRjW0321lO8F/KMo5jOa/UaeSAhIiHsSvjOMtpFNroxorsTf+SSYOCiM340b2b5TQr4ifZYpbzV5HTan/IciduwA4xbxE/Y57eZparcsD6pOERlqvpT6VbbVmuU5jQbM8TlntMnjv/w5Hlhszh5L7+I2I89U4fYLkRnRhz5jbLzSyjEzlfWZ6KO3YVVrC8o2kUeeUNy/OMJ0m7LpYXmoHR55VZXlgxlmz/wfJuuXJacfIsb+gqfjFayvInbsZE4TuWr2ZCWrOjWf6kT6S4xovlf3uK1b2erEA5D5M2hrGCdeoY21HBCsKThWk501lBS6dQ614mK9TQohdjJVlhsBeXNB7Yc+VfNOn7bFakXIShKVKsSKXTeuqfYFZkrEsnDq5kRaEbuFftG1lRsx2WL9zGilXu0u7OEFaseg/7HC6yYrUvNvNXbGLFGtPJQGAsYhCNblnGio8o0oabu1lxwHfMaK1hxaGrMWkghhWHMQw6acWKw52sJSIiWXHeRvQ1uMlKZBzo1OwkVqLuxpkeOMRKND4IZymPZiVX0/CmBWMlgUacWNQBVhJejHk5HqwkYhMV/PzMSsXWYbh1FStVDsLiohRWqqGGMYdKWen1GUJZI0dWNjGCvF6dY2Wq3tj5cCcr83S01tiVwMoClGmPTAArCzYgyeEBVjacx6leKGYv6DaGr1BgL46Wc/Z2UuxF6EnSG+5n5UoCTO87yMrn7cIIyzmsPMoCvz8aZBVqvVi834dVXK/DG1XGrCLiDDeYyGMvNfVJLUZPxFZapruDvbwxGgMilrCXIQZUfi6DvSz4SlJ7EtnLbyXYPnMxq1TjhEo2yCq1vgh7K6RY5XV3vC6hzirDBJyaWTGrjFrNxX5qY5XNy+j8i3essk+Nft1axapUg7Bx329WpV5P+wszWJV1Ko01mMSq/D7R8asTWLXqPEyMO8aq1eOx2UOHVa9/hzfferBq/xQy9Mhg1deauU/fT7LqUEtKOJrHqsNHYWDmI1YjL6Rny1tZjWowZlaNZzXrmzGnPJ7VXIvGrvGvWc1be8zptmK1YW8x7fR/rLZ1DOYMx7E69WekPfkwq9NoJrj6mtWtCaPjK3NYXTCHfZPrWF2ILD7rVmN1Ya1UcECM1csvwAeaZ1i9ylrhHvOzrF7zAo2y8GD1TuHcM6vLrD4kl2oPzmf1jd9pRNAjVt9zkQ7rxrAGNVvSBW/WoAHCwTd9rEHnk1BPfQ9rCK3BZFGehpuPudAz5azhlhPdHxfNXmkxbqR5Kns9uI6b1BbLGpXW4HPDq6zxei2F5bmxZm0e2YUYsmaXpUTN21hzoxxJd7mxlv0KeMdCmrVE1pOKtjxr6a2iLbuLWau8E6Zei2St6vdJZud51qpFnLtobq3av2mnly9r3bgc3y5dzVoj40hZWuSfH0tOo9xZa1MxKVMCa/26i2S8BtkbNQ2SdfnA3ugAp2PfyN5EZ+OLRevZm9bVFDzjJ2vTOIivai1Zm/ZJrO6LZ28DbWjyZwPWrvYLn3VKsXcaczBt4kv2rtWLvPEv69DIos0pi1iH7iRstNRj7zUvcjsvv2LvbR5hcNtC9n5DLkVN/creRzTS2J/A3kcJSE7yHvsw2Z5O8DPZB1sxrJrowz5qOZPCgVHs4xttDJQLY18erLPWU13Gvryfj3cTKlinziaSPjSPdU4tEuqE+rPOhyZ0zT6SdTb9xoSxYazLJY5sg6RZ1xszLN5YyronFmHRq+OsW/kbSV2JZt0a2RhkZ8a6tx7FaIOVrLvNCm9o6bGvk27TVk8/9u3fq1gr08i+uzRh9L77rMeoiDZmR7OePRcwcqE36/HOxDjdNNYTMRXbAh+wnihTjDWwYz1lZXibV8R6GjPQZ54G63lzim4aerFezUc0I3oH6z2uxh16x7He5hdcdP0a1qc+jhuTWcH6tFbRxMtDrG/dXJLcrsv6PHTwvq4O6zt2nJS1l7N+rTb8tD+W9U+6h3XCbNb/9g/16buz/qH/8LfgKhvQ+YeOVJqxAd0TNDLiCxtYeQ8zd+9hP7T+pTN4m/1SNyFbXwf2S/salsYYsF/Zi7A8J4T9jhpHK0a9Y8P6j2nkrgvs7+AlGu3uCmJbt2Lcq9cgtnsv1p1dAyPsf6LfuWMwYvda+ie0GEZOcMMHoQdhpP1kWlgaAyMdn2F48wkYZS/ktNaEwqjd/+Dv0gwY5b6Zou6sg1FH+mlCRSuM8tuEJT+yQdy4HJuL54K4awXemnMFxPfWkNQGTxD34TCc1wriov/5tsV5EH/0hsRjJ8NouSx8UqYOo/kSeH/cJBi9JRsT5ZRg9F57/DFeDUb7bMKckQIY7T+M1cvsYYzJDcw9uwLG1BXQ/skmMNbWjy4YtcLYZcUUd20ajHUZIoPld2Csbz+pXmyDsYlX6QuLhLHVSbRj9j2QMHHCzvn7QcLOi7ZsfwkSPlb4LfscSPTcoZX7okCSl49fzh8CyZoETLCJACmeEVbnXgcpy48UfHYuSNnZkVfLB5Balsmdn3QJpDZOoYQMBKnNocRPnwVSh67Srk5TkPIQJ4OZd0Dqcifp8x6BlN9ISq4sA2n3ZJoQ1QXSvm/xZW4fSD9tpfZ11iBdPpMuan0F6fZoUp37GMbJKeFdzhTG+Vyi7GNBMC4+BluNvWFcYhw+WloP4y//IsU3K0FmQiiNdUOQWapMo67EgczlxyTzWBZkfBaTdGc2yFTtw9KOWJD5uRnv7SgAWYel+PRwDciWbcWo2YEw4bEdvlxUBROqj2DamVSY0CegcxYPQU6gjtW8YyBXbkhnwzRB7nshph9WBbmfM2lGkB7wZCJI7NZk4NnPpzOO24H3Xwc+mOMNvMNfuXG0BHg+E7nRHbeAFzAdb5kYA+/2fAp2UgNepSnGeRLwqp6Qs/kR4NU74NtvZ4HXvgdTHG2A986ZRp3eBrwvTzEp4T3wvurjF30f4H1TwMEODxFvYvqAKfD6lpDUTlGcX7uxuWsn8Ee2Y7ezLPDH1GAufxvwFfjYNHMI+BppeO/fVuCbi2N7XxHw0Q9TtAuBv6gEi16+BP5iV7qQOwB8W6L+ykfAX+Jqk5UietsLyDXMH/gbsula4SLguxwkh8fHgL+xwCZcuAz4m3WoSdMH+Fs1cfBCn4iO2LX0CvBdK0lqezLwtznhGwNR/IPj8N0FMRE9SeLtKuAfGkdREluB76Fgs0zFCfiH3ejIlHLgHxPgezcA/mUgueZPwL+y27pkWgbwr2bSbN/XwPe7jX2rRfVcM6H1YkrAv3kay4yrgR91nwxLFwI/ukJYtNkQ+LHa2JuWC/zHx/B7gQLwn2zFRO91wE+2xPcqm4Gf8pFGZ5gBP3UKd2t9OPBz1PDFGFH+3PNYdGct8PN2YFb2DOA//xcfuW4AfqkXfu0WAr/8FM0T6wS+aG5a+w4Av8YOc1YcBX7tb8yvPw/8+l/43T8Q+K/l8cFrUR1N+zDZ0hf4399i9WAUCHQecxKjP4DAwpKaEp6BYEk+OVcsAsGmRTT1xUgQBOyjMVNcQBB9ibqLj4Pg6Tda9dUdBOWOtH3FHxC0F+DfaAEIfmXh5yOqID9hJz4ccgB5mEdri7xA3nY3Jxv7EOSXydLyPieQX9tPOLIU5F1qqck1BuS3p2L7mQMgvzcO8y+PAXmfWvxtdg/k/YLxlrw2yKdL4q3Fw6BgvxQfV2wChdVGNLLlKigcbKHz9ZWgcHkW7Wx2AAWfj/itRWRPDRQGbEkBhfLfQs/gLlB4t5rrHm8KCj8TOa3+F6AoyyPPDndQ5LlhslMgKE7ywhtd40Bxzxlymn4eFH2SSOWJEBRTDEhdKQsUy8JIprwPFNve4mfp3aDYsw0bLO1hotwofHB4AUx02I8DSyNByUx0L/W6g5JDGUm//gNKexzJgZaDko8brZk2CErvFEh1lyOo8HZgWshPUNmDmPfTAFT85CnF8jioRGlz1s/2gUqCCl1JPgUquQvo5YFSUKlaj/dqa0DVfx2WXrMBNbkjGBdsCmqC3fhxsx2orWzkeDbbQW2TkCyvKYHagR4KlWgANY8wvDdJZA9SItMPn0E99x98JImgXveJZCJbQEN2Lzm2nwGNCaroO9kQNPaPoLi6XtDwkcc7M4JBw38hZoVVgEaABmn6poNGryL9ADHQlNmKX+YPgyZ/AcWYvgFN08XY3HQDNPffxXjPx6B58wa2Z30FrcBe7Fu5HrSiq/Hu+7egVRtLUoecQav+LCYdmQXaumHclGcrQHuuJGfk9hi0l22kQu1LoL0llibk9YD2kW5SO1gC2n7O+MGuD7Q7nmJsViNov9+MfqK5aPdfpXl2m0Cnagbd65SHSVUu+D7xAUyW78T2qAGYrOuGudsKYLL/Grx/AmFyYgA+d70JuryR+NlgB+haFXJTErJB10Gf0xA3At3lhfhu9FzQdb1CaxTcQddzmMZd2wa6RTpY45gKujWASbfngp5CGfZzHaCXaM9NnWgKetWbODb9Oej1HiXHvEugz+vAtHgz0J+bhXGRDaDveZ8eV74B/QtLuWAYD/r+Epz7d3vQD0viEiJjQP/eXm66/C3QT5xIqSu2gP6zMgrrNgb99+FYvbIbDE6oY7OWLhgErKKpqTvAkBeIFfPug6GqDcaeUQRD+1z8eKYZDO9YUXLTNzBMD6Z7PZPA8OUAhad+BsPB7XShZAiMFL3x59ULYDQrjGa/LgGjFQfwy4UQMArai7nMBoyun8S7GSK/p+cxwdoBjAbf0qnLDTBVsZXG216CaZcWYPZhCZh2bQE+7HUCY3kDarW9C8bmQDduBIPxCmsynfIEjKuT6eQqXzBuHkn/6reCcctykf7lg/H7Gdj6ahMYf5Khc/d3gnFvGemu6QITUzesHnIEE19HMvKVB5OeKLwnUwTT6xZiRuo+mMEPoropgzBD3xTfVQTDjJxKvKX+AUzt07nROQFg6irL0Z12MPU8Rl5SPWDq95xc7E3AtCGYCxrlAWYT66lr1jwwu/YV/yjcB7MfQ3TyTi2YK4kRu38BZh3XwdttB8Gi/iIJfJeDxav1tEVuC1i8HqIveWFg0WQu2n/3waI5kEasqAfLs1YU4tMLlgE2xJwswLLABocXyYJl5WtMtrIHy7pQzFikDJYD5XRZahbMmfEWo9MdYU7voND4VDjMFfC54kPLYK6ZCQ19nwhzl1thG08frARFwhN3osBq+TBX+FIHrALm0iWTH2CV6EAKg11g1ZtJegNxMC9DGaNii2H+7CSMiVSC+fazyGeaJPyzvIdStvLhn4B/SKopBRYIBsim/hMsCK4TxugugAWNPO4jvwoWSs7EeGc+LFS2pzV3BmChynY6ERoELOUkbX69EVhtHnYOMGD1+WSgVgHoYI4Jfu2AziNxuOUj4Dohd2z6ScDrmzG7xR0wPJTErLoBW4JFOk4BsE0B21JUgQxnkbh/NVDgQzLnTwLO+Qv+HbgPXO11knLcCML2SEyKCAXro4M47LEHbHROcItfDYKNyUqhdO13sLGaLJRJfgs21j+5pCFPsFlZyR2vyQKbjXco64IV2OzZTGFvFWBRkAOmX86HRXFy2KgaDovD7liH7POCxc3Nwjcv6mHxn0SMGdcDtup8rv14L9iuE/Vr1V+wDZ+HbRr5YPurB/ue7IIlgRvpYuQuWPpgC1abuoKdSAfdVrkAy/gVmP74X1i2X52cy9Ngmai/gl9HwF7sN8bsuQT2e03xRU0H2A/30KjmCHCQekpmPwrBQdGX5NbXgcM8bWxMioCVitPwY70HrIxIwaRvKbDydT81/vwMq1TMie46wqoEd0zxew+rg51I9oIerEkawLLnGbCmlkh6vDk4Ccqx/8xWcFp2lkZ/DAWnvU6kPuYPOB9LwBSBLzgH5gg/dUWDc3KjMMP7EThXzyR13ZvgXLvF+r1tHTh/zyTtlNPg3GuDdQ294Nx/0DpPvgbWyh+0dmvIh7Xmx4QJOgJYu+Ii93fObli7/yj96DwMawMekO4WfVi3VkhjO9JhnWcyNvV2w7p+c/xeUgnrayQIFAthfe1yDIlfCOv7NEk8zx02OOqRwLIDNgzM5T6Im4OLggN3dYkluMxcx818kAsuK4ZIKiYaXA6EkKZhOLg0MUw3zISNAhW816QOGxNysEbdHjap3Ca7YT/YurgWGyd5wtam21isoAautQqccssQuLY8JUXFpeDaP4Fiit7CNvlVZNe4AbaZy2HDCyXYUSSDyfwvsHP8ED7/MQRu2hZksnUNuE32JtXCR+Cmf5rTrH0KbgZyZGb7EtwMvUn4IhPcpnnjs6kIe2YjDp/2BHfvOEyIWgf/Wbwg6a8n4L/VP8lhwzPYH4o02nQaHPhlgRUt0+Cg+wp8djIcDtZFYrLhb/CYu548InTBw9mLrtzuAI+je0nNfRcc3qCJf+d2wuGNq8gi1guOKh/AuHMr4Kgo3pkXVnA0bgZFulnA0YxlVO6NcLTMgu6rvoTji4OwuHkNHL8pIdLlx+HEjUJ8ptQEJ+KuYPWYVDg5ro7Ug7bDyQEB9vsaw6muIczcpQOn60JoRvxaOPdfCZbJjYHz4x+QpHUCXCw7gw92msHF7ydIdkUN+PCDaYzRT/ApDcFYqxngF3WUcrsmgF+CN50edAG/3PPklPgO/LXjyPm/b+A/u5UEkl/Af2EznUvZD/72uSRe9Rz8XVJIVTMQ/BOV8cWWCRDIDyPHBBW48VQbEyZaQaidN74KaYPIj0WYEh8Fdw6nY4FNEtwZasfkoidw74LoXhl8DPcVR9D2LeYQW52HjYJJ8HB+BIb6joL4zN2Y5+ULicbZ2PD8IyRWSmB8YS08ER7CVLYL0kvE6ZZzMGQkd2HSsRXwTHwWJor6l2t4FDP1syB3UQDNdtkDuTcj6Ojvy5AbNZfk9OsgzyMGf30xh7wjpST8LQd5ntI0XiAJeX9O0VYwhvwRT4k+y0K++G0uPfA05I+xo7rXMZA/toVehXhBvrQuKW2QhHxZR+xvGgv5E+bhq4yZkL/4BKbXOECBWQxJxt2HwkNR2KE3FQorAkmsbjkUvvxJArl4eB7fh1XekvC8oZSmnFkCzzvEyPaWAhTP0aMB+QIo4efihx/TodLHA2vNpaCqugjzFsz5Hzr5n2o=
+
+
+ 622.5341796875
+ eJwN0/s/FfYfB/ATWm7nHDrukiLGZosy9/i8P5+XucwodDWVJmokuTxE9k2EybdcmtHNrJJLaplvZUPJ1sUebd1opZuKsmHJyCWX7356/gVP4dZbxDyDC4T3wrUsenGi8H7iSyV+u8SGBYwiD4SKCP+HLOjBbrF5vhJ5rpkQMQ2V7JFqnIhT7Wct0SUiQ+8nZh0PkT3Tnv0hqRTZw2assctG7JFZkeToQbFX6TErqSoWeZEjrH6Th8gbiWV7jt0UBWWVpP4gVRQtsWExH9aJklonNuTWLg4XZrGRt0niyIFkZq1TK8qM/mE36+Wi3EKd9aZXi/KiWFY5z0ScP91GK4rqxcXacFJVKhTNkRGssTlLtKZlUavnXfHrGVVmv2KeuG4xxG4lHhY32iQk3Ros2iTNzDjMXtwNtGKnO7TE/VN/sxbDC+Khixmjy9+JR6sXkeOgEI8GviazR1LxNOd/5Hnpc/FsaypfkBcrnrvas89Km0WX9xvKXFMtXqaUkUT5Y9GzZZBkcePir0Un2H4TJdEvf8y+GA0T/Qfv0px3B8TfZ+Ywx8ky8WrDBtLTChcDMe9Rg0aEeD1STROWL8SQcwLVSprFcIAS5QZuF8OXD7IT/RZiVP4FC7AqFaOHrjOHyAAxrpFCGmZGYrzqOvmE3BGTpqe5+Yu3kCzWZdSRAElopMdUYTAk59OZ1fRmzPAapaaadZjxRpsGMrOhlOLIhufIoDK7hFIn5kJFfEut/t9A5X4Pk7aFYGbIeirYRZi15SrJbxyF6uxcqh31g2pVOYupDYKaUhKrm/SDmoMDi67ZCLWmWGr3Uoe65L80/9Q01M9Fkfw3HWhstGbWRYPQyNeguggraHQok9/UO9CMUKbQzG5o/qNPaQ6RkJrm8tTteyBdYc49u9dCNuN9TvPzIXP/iL+bpgVZviHtcByE7Pdh7lj+IeT7PyC35FrIR135heNW0PpEn5sPj0OrdBc3ym2B1jUfyshRQLu0h1KmV2O2+W0uW6yD2YfO0Zq9UVB8dZnagkuh+PE8T3lhCcVfdrQt7AB0PE+S5hFn6Jw5xcO+fwbd8h9psXQ1dId38kUuw9BzzyO9FBfoDUfygcdR0Ldt5/s0i6H/ny1UUfAD9OuCuGbmVeiPZQjD9t9hkLyDz/t+Awyq9vMlIRIYmlvze83zYRg8widOlMKweCa/9eoxjC+MkWmqAsZvTzKTQi+YKj8hS42XmNen5vF8hx3mr1ztMTVtAXP7Hj6r+F8zXzPHhLsw7xqigx1JsNRuoE+rT8E6spgNfWoD64ItLFfMxXtF/iwzXhfvsyPc6EtX2DQNsQb2Ez6Ivcj+SFuKhbIcpl3TjIVZ12nfbTlsHVq5mrQdtgkvuXSFHHYts9jNKjvYTXmxwF3HsLjmPOvztoe9UTZ16x6DfdQDOtdiAftDGhR2ugr2g+ZUmrAejv3h9HXJBJxDE6nieT+cGxVc5+JZOHfXsErTXrgkVvAFcmO4dDry6goLuGor6NluT7i2BHDLK+NwmxtG2o4KuH0eSo01T+A2XUcRY4fhHh3DH15ZAPeOSf5OXBc8fslDwE4VeIyVi/ELu8BsI5iBeizoWCcpHXUGt7jCq89Gg6+4ynMuOkGYRVFTtxEQs1n49ywFTtzitiHfwFOmzAbXBcKzNoPPOb4WH58spUEzBbxVylh9fDR8Kjlr7LaEz00p+3XEC77uPhTZqwPfpnVU5CvFJ9t9adW+MvhVnKSYzjT4p6dR/ex7CFCo0CVJIJYGBZG/vgGW/qLn8WdiJ5ZOVpHxHTmWrdcmvdIcLCv7mdZcn8JyX32mMnAHy8/8Rjx7ECsNPyKjpD6scgyn4rgfsGrdcnbwuTNCjq5kDS5RCN3kxS4d34PQ+zbs7Wgn1lvuZK79hdhgbsCMzr5AuG8QGcT3Ijwnm/U5BWJzehJrO+mHzb01lNXxFaJW3SHZWDuiTe6QVLoWMS9j2bffbcQ2E1PmZBKNuHwdVjsVhHins1z98n4kHOqijTaXkLxwGXuaNAPJr/NpU2YAdmxNYj/3eCC1vo/ddOf48kYo6S6xRVrMbVK+poH04FYW2D2O9L1VFH76FTKUvejt0wpkWLj8+84Cu02fcpfHb5AVH0umrYuQrX2NDO1WokptGymn3/s/CC22fQ==
+
+
+ 594.556274414063
+ eJwFwQs8FYYaAHCdHJx0OGSet98hkt7y81iE7zvfR6Mkb1rJOTijUB4plVpoV7gssTVO6bHQA9mW3rQ8ptRGNVMqJVKSq5Jdsrr/Py02Bxi/PUFLFoy7959QkOO4Et5ueE3ug4bwfIeSlpvcAvEf78hH2ATV/9pDcgsFiE0SKdo5DXx/CaBYizBYnf6ENk2+xVmVEkosV4CH8TlKFttDfXY0bbMV4NfHcylddwQlSVa0a+EoqstaaE95EZS1jVCG7S/of+UjZVoFw8SqfMo1OgXyv2opt/wJXN70M+VlTaJabiXlq1Q45fZ2OphmDHkR/VRq8RCzrCVUukMHuOcYHS7RgqqEHCpbFI2qwgN0dMZKiD6vQycsDsLcLAVV7o8Cp/Vf0OmKbHRxuUdVVd4YK/CiasEtmPvBkWrvWctEAnO6oLkTBd5H6cK5bHQ2SKSLo03oIFBRwyxTdNMIpYbELOjQNqTGOUpwMh6ixlIt+LVqLTVVG6O0qYJaDPNhb9QF+s1bAQf8HlGbvRIXrxPQ79q2sHNgL/2+XQE2L1/QH4t7odxklDou2+K00/Z0Z5kCMwcT6M+cFCxO2EqdM69D/NtG6sptgUrHcnpw6TGMP7CjHv9VMNdxnJ5u6kPP9jLqPaaE664r6JnwJuZFtNGzLcGINmepTxqIOa/aaCB3M2qe+kQvojfg+dQ+GjwtwGMTF+mVbhyq2eymIfNW+K21gYZ2JaE0bwe9rlsFeZGeNDzbGrjRlIYLHqJ9rCMNf7yE6t0N9N8MUzxnW0wj+oZY/x8RvdXTgUffTNLoDTv80yCMxkw/YsyyLBqr/wkifQ3p7yMSuDfFnf5XJgCn+r00vm8Q7Veq0UTdt6i1IZk+nFJBg/Yhmjy0CA+aN9M/lp0y+0uO9KldH9PuRLCabzTkRRFPCQhFg4lsFswYRNmxNSxwmwp7HdpZ0O6KrQF1PNXmPpQOK3lqj69s72edrH4kGUo8xKzengxmcb+y+ocKTHqnYOHzQrxz/hprWOzDO+INrBF0ACIs5awp2Y+2tk2s6dIqczXpZs3xEdl853bWWlCIB0PsWCtAiOVlM1nrdQzGnrRgkdEoylt+YNGWh+SclsSiH0V45s0bFv0lhOrhOp423Qqc7ASsLfbH6qJu1k7SwIWpL1n7Yqbs+ywP1u5Nw6ESNZ6+VQUl6st4+tFc2dZrS3n6pCW6Fdew2NILDcZNWXz1PZ4pLmedCVeZ+FA467p3wYLKaJaIZsm8Y//NkqAKmcPFJpYU5ciEL/RYcjMWF2q+YL1Dr+DvkO9Zrz8Nnnyuw/q+VWQUfpv1M26hxdhKNlzSgisLZrIJZ4JZbCibDM+AMuMaNg3xw4GQ5WzamYer5SqeGSlB23MvWWr6FK5Ovc/StTMx1PMOS1W60CM1YenTBvCwsWfz7jiQiJp51uxn0BHszFYGYyjb8SVbHZ+BJ6MbePZ3Jlhpb8ZzvjGC58q7bHOpDc2vv+f5k2KMy9zEC25qo9xVjRfxKgzvTuLFU9JluvCOF/ucQI2Jp2yX8gp/akhhu9cV+LBJyfaiQLhiZMAO1trQQTnsEHkfOror2KHLD8Re/uzUMoq90o/8eVyQDDWr2HnNW1yqtY2d6y/jvsp6dknogPHdtewaqI7LfZTsen8MVKGv2U2UAf31HuymKMa7is3sdjQR5iU/YndPP/f+Yh92L2zD7IEGBtMB2Hl0kGGsBRoXiBmtSiBg2nX2CDSHePVyXm4zBxUuD/mLN/vd+ypyeYX1VWhv1uOVRe+h67EZrzo3HZ18tNg3fCms70xhv5NXQHi+mf0e6cl0JUL2/3kKLnTs54CYKJT7nOCgB7ZgtqWPg72P43DLBAc/MEZ9r3YOjQmCLttKDou5CM0OKziskPE72SSH9ZRCU/5qXqtngdPaXXndPFeo9U7ldV+WgYdXOIdv/FE2Nc6ew+/Ph5qOx7y+LgQDLszmCM8K2Lh5jCPyjkPmcAHL0xLB80osy4/Y4NaUFFbwJ8y2HOLInD24ryeIo0z84NXIWY6qGYI6E3eOPnkGzj5bwxstsmGusos3HrgBcoU1x1lL0V+q5HinWnQpDuSEoBTYLPyHE3oyUeP4Ik58cRczxDGclFKAs73knKxvhM9WN/OW1i5IKHvMqXGJWNReyKmX5dBz7T2njgZBr04Yb430xWm5j3j7+m7U6k3iHd8egqs+n3H6Qk3Yf9iR079SwY1wNU7vSwbrpbG863w83BA68e55jWCW0cO7C0YgPuYwf71tDXgs8ebME/nwvPUBZ+lNQlfZe64ZGAGnoGP/B9w69WE=
+
+
+ 687.263916015625
+ eJwN0IlXDAgYAHCJSocRKTWN0nRR1pFUmOb75vuiFrHVunkVS0SuRZdVqRwzbZSOGZlOOkzliITHStrX1Fry5JVqJRIbORbPpuz+/oQfySQD8M1rC/l+fIG6l67SStM+qPxgRasdNRA6MJU22l4DE+9e2thrBV4SLe3UmwU+rvNpl5kVpBgpKHpBJ/QoiOJS5eBhuJASh9S4LnQkyU124tGHNyjl22UQzLtNqcVV6HVwDqkcwqAqoY1UBWMgKTmQThXmQc+xJ6QWtoDpG3/KdQcY0HhT/rlY6dC9FiqwswNFkIqKHlVIu5ve0Jl8Z3jtepRKpf+A4sBxKnO7DiEjMqis/Ap6rbpBGqscMPGto/NF2Sh2H6QqtRpCDEdTtZ4aYpxKqFrhC1PScqlWZ5n0eY4/1R6qALdb56ku1htHLNhEdyyeYKKXmO7Ez4QBUSbVm+fhvPdGVB/TiWc3j6BG5WjIn9ZO9zUaGDhqR80ThqH5whX0YIIaZxrX0cOL9tL6SAG1KG2h4edIevQ1GvqH+1GbywakVzXUPuMeYM0r6nAYgzYn06izMhLHtnfSswRPKJd10PPYbJB3mdHL0Xrw2qOYXrmowCPlJvWdzkPDI/H0OqYM+u2aqX+aLy66PJ3epkVA26ICevdGDYkRD+mDIBRq9+rT58b3UImdNBRhD4+sZTxs9nysDdzAwxKfQcm4W6xj0AyTqlpZJyMe1w+KWKe+HP0S+nj4CXdIjjvDuqI9KG78xLoJf8B95QEe+WA3Ck48Z71xbVgQYcJ66x9jY+s21kuxgaTla1h/Ur5MN/Ms64dswtsFFazf3A3pBhI2ONkN17ZsY4O7vpj2aROPWnoVJme4s+GSIlynDWTD7lxU+l1noxX6kDSrhY0lpuCxeAwbn/KVCWLVbHKzF3N2FLLglACjmjN5zD7P/1+1bOqyBHxWWbBphzvqtqfyWKdyeN8RwmMLN4G23ILHtcvRsHU0mwWIMeHKWzZL3YUt8+fz+LVatF4WwePl76B2ZTqbh33Bi3oX2PyYD+DLbp4gvwuKEAO2HG6DlZEf2TJpHp62M2fLDhdQ+Bxmq/s1uEz7Fwv17WS60mgWBlTLnBf8yMKsQNz7JZuts1yxSbSBrQeN8E9hO4vCvdDFuJInHgvCM9HebPPZDMtCfdlWWY3HA4fYLiFLpvcpmMVN+TJX6ya2v7Id3yg+sYP4EP7edo8dAv3RcL8FO46fgi3CanZcIcQjpT3sWFqNMSGZ7CSQyIxV/7LTYrGsLjuCneKMZJbYxc42yTg3Rs7OGiUEv5jOk3ccxrrT13myskJ22PcjT1/7FTp2F7LbkRIQ7jFg90nWUOJUzbNV4Rh46Tv2ynWDYVa7eU5wPyQLY3nOi3S4NbSP567vhNgLUpZss4WI/XdZUizE7SWDLHnaAMY9FkyyPpwalM70ixiTjjxlKpFLu7OHmF2HIO/dXuZoJ1BZPmSfu5shuOcgf/+4AXw8bXixNgCOF1ey/9IZGFCTyv5dE6EiUcBLLveCxxQNB2l+BW1DDq8uSsffvAd5jbkE4/I8OSysCz/P28qbS/rhp3NhHL4mCF9az+Z9VllorkjjqJ1KUBpHcVT5c9Aub+J4Uyuc+8CeD7b+gN4tMpZH+UOjWsTy0kG83TvIipp6VDVUcsqoPPCwPMxp4UYoEm3ljL/9ULeo9z+PuClW
+
+
+ 1173.072143554688
+ eJwFwX0s1AEYB3BW83ItZuvN8rJKmpeJIlqN5/ndFzfVWl6iWN4q7CLHGFdhuLzEJW6GXhTSdUZSUtNITJGXWWN1pT+8rKW09UJeDn0+4larVqqx8hD3uijJztlNPOJxly+mRIo/3Qoh05UE8dSqmrYnuMJQ6UoWSbUwW5LTcs0hWPsHspHLCHZZz5C3fSk8HD7QIxtbeE7oWLJUDi+nEB52W4NvsIrNxlUIHndkF+O9OKURUX/HGE77hVGSTI3QuDEaEVUgTJNIEV89Ed3kR4UzXohxWqV7264i7nwEefu+gbR5Pfm7hUP68S0pAhSIH45i/cMSJJqTMLjaCRleCev6hyHrl7O+dxmS2d5rsvY40mxE1GOXgfSAed7QY4Ls1Dgubo5FjuNNemqQj5wTmXS/LwM52Qc5588QFNfOcnD7ZihWrnCgpy/yHAM5oDsV+S4LbOAgRX6bAfksu6JAoeVyoRKF8VuF13WMwiYT2qgOR5GJJZVm9aGoJYJlkTEotqgg/UkzKEX17DMwB2WVmvPsynDdrJkuZy6g5FgLj/4OQknSNOvJ96DcQcJn6npQXtJL/GweFbWbeOhBPSpeZpGw+B5VYxpBr2UnbqfYCx5Hc1H9eJB/5EejJmiOa4PaoanUCbnOJtB8H+NzqR3QrD2kzIJFNJg7UppOh8Z9UiEkRYVGyRZ6p01By0gspQdZ4Ik8UzAS/0RbyD+amvqC55Mneb9tLrr4DtVfCkVX+A0+YOiK7gxjvtD2F/12u70mJaYYiDtCTb+MoBVNs49RGbTupuw+MQttZzI1ZM/ic7CMbUed8G1GzoneLzAXVc2qHZb/AfZoERY=
+
+
+ 1178.584106445313
+ eJwFwQs01QccB/Ae89i8TpbK8YxGXh1v1Wn8fv/7xWoaKVPmGcVZKJRjRN0uSfd6jTwrYh5jrOQkqqmbph3DNJzWItVoI7UUedTs8xFVnhKzdpaq6JdbSaRWv080sEnGMutq0UB2MdsYVoj+WnedNTNfiSbMuuj2VJDoZUUXhXifFE2Xe7DFhyaime55NpkvFb39votKtkxA2XiQKnV1oPxAnRUXBKjkVFPIB3NQK7VlPd0X0CjIdHkasogVAcHsmu8C7fICNuiUQCfflrYWzsE45j4dzfGEcek9jnZdhPFkDKW+FLC+YphCAiZhZvY36WVGwvLjRlZJ14WlVxHbr6mBlUsv6SWvxgbtnSSz6IWNqwIfWNgI27UJ5Ko4Btu9EbziRgXsPMZJx2EX7B92khqewSHrNGuGtMHhwVKus1WAk38+ed+LxkaJF+coFMF5zTQvlRvAueAY5a0+BZfDnWx4og5CnRZdEwwg6lFjqeJuQFVOQyJvwPMOlX6ZBXfNCLb5pAru2xN4TfEhuGfF0IDlHD7T2UAjw+bYtu4uTRZpwKPLhHaGXoJny0qSTjnCq6mEyn9ShrfpG3pRZYWdytU0WJACn7OKbLH/U/iMzvCOLcHYM7aM/WyPwS/hOUs6hxEUFM2G/WIE9Q2yjbgBwY7L6PYZVYSOWLOmmwbC4gypAzLsH/mWqhWWIyLnN9b67g4iX02xw3o5os5acvNDVURNqJLngAGizS35o/OMg4bVgppXOw6WzRJ+HcGhZ0Y0HTeP2FU/C/ZPAhEb6CHSGGpF3KgqB0yo4EjsQ0G/LRJHWgPJJuc+Ep7Pkly0A0n2tTzn8QhJjSdJXdsLKbUznF4whONSR55tFyBOjWFlcRTEbxPov9FenOixZtO0i5DsOiaYq+dBEi/ha3lGkGTvo7xEE0hemZMJP0WaUwT7Bs4hLfsiv9SyR9oPmhStWIb0S8c4YNwQGSo3qDmiBxn++3h5cwwy4sfYOdcJp+PaSRLmD6mvHhVZPIY0rlJIdVWCNM9HMCvpgvSGBbWXlkG2bT+bhl+DrEeXl0TpQjalQ6WhnchUO8AWZdrIcnjCeVJ/ZPXs5gINLWTNGHHT3ACyJ70E/ZQh5Ex7CNIFGXL1I4XYxGDk2trx5rog5DsosbF9KApyr9D15hcoyj9P0WVPUdTfz623QlAcN0jRqd0obtnDgapvUHLvKnf3DKNkupVTfe+idPVjwfR9Lsovl/Lz6kMo73Mjx/sCLhjMUmivFSqtaunS2n5UHtCjtAxfVJkMcPLFDlT5h1G5dTeqLuxl19dLUPOghdLmLVDbHcemi76oc99KFxTHUa+fzTUeQL3TBvqjMAb1X+lzU8UU6gvbadIvGPVXVgpfdySivn83Jy9qo8HJgNpGwtHgV84NNI6G+D6+aZCChnMT1DjrhqZvgsg77DYu/6vPSiYdaE66ypsDzqE5z5IWlI6jueYoV4wVojX5H7bRsUObXwT9uOoM5E7v+GBdGuThunRLtgTyJH8u8HeHvG87mxSGoyPxd06P0ENH8ec8ZLYJHe2tbPTGDV2CmMUhUnTHL/JZ+8foLhNzZZ0Bum+K+Pi79ehznmPDsXUYytzB8iJ7jCR9wateZ+DJn3bs0+qM0ZZRJtPDmDB6RI2buzDBKqz+Xv1/Uas8gw==
+
+
+ eJwNl2lUzm0XxTMkKqnu5jSnQYiEpIhzzvWv0KyHFIXISzxmUg9CkdA8p0GpEFFEc3dFkTRQ0URSIZSUMd7702+tva794ax11rXPhvsn/Li5RUlwP8SCzspkwP3I30xBzhfuJ87kZpQrQ4H8K/ZrxhooUByg5nVJUKBymgmv2AIFav1M1uUcFKx7Qw10EgoSe9jc54eg4JcSW7LGDgrltZniIkkojHSmepfTUBg7SAUrj0KR4nw2Pv4DFMX9R/c8U6FYeRG9fzIXSmRM6cTMAihRlaTKgigoVQpkUvs3QmlMoGWVwwcojash/yALKC0oZVmLNkCZ/EcasrOCMoVP3J7jTlCmoU0hoyehbEEUJQ7mQpnpZhqQeAxl+6MoYOgKlPnFsHEns6AspoNlpQr8sa6cnIsXlMWdsnbafhzK4rdxPJtOAQe5CaPLoCxRhClviBcwlSnm20NZ/XQ601cGZS3TKLH0CJT9MKGvkh+hXEyBnoQ4Q7miPZ2NLhbwIf0Jnw7lSsNWUqWiUK4awILXL4Py2cepcOJjKPf4Qds+dEH5/0QoJFngO/qUndOaAeX/JViNb9SF8mNn6HHiTyiPU6CHWU+gPF6a0+oUgvIXx5nxM1kofynKTi7vhfI2U6ve7fVQ3p7ODm8xh/K/kzipxf7AV1rNxm19A3zl7VYmIf3An95FAyFWwFcPYqnP7wF//SWud34P8P+T4NanpwI/2ooCjGKBH6/Chgb7gJ8oR3HjSoGf/J3y3+UDvySbzdHTAv4DPaqo+QD8tv1U9esHVCjLMeH1vwQco/jeYajwzWZ0cBlU+F1j9l39UBFrT6fl46AidSX5fHkMFWkb2a+aaqj47cGmTF8ElconqaC0DCpVJlPVUWeo1H7KZF7OhsrB85SwUwuqlE7TvW25UOX2mxov1ENV4jam/fBfqLp0zfKWcQxUdfZYTl48CA/U5Fleywt4sNGKCnImwYO4Y9z5SYnwUOkdC9OZBw+z3ejEajmoVn5jJX7NHKoNp7O8MQ2oTnDkbox5QPWVHfR6hxhUZ/XQFb9hqL59j2LjTKG66A7l/JcE1ZWMglzToPr3ScrY3wY1Sm+ZXroH1CifY0JKe6FmuhwrXhYnYAqHyQFQo9JlHVhXDzVqLpzt/G6oUVdkk3W9oOaoJKPze6DmlCOl7RaGmshh+nJgCtTEelHRbiOouWRrZZJ+DmqSzOhlVyo8krBiFXav4JHqIc4+YxY8UmvlhjJ48CjMl063bYJHUfrs+yIleHSpiSmPbIRHyXbspG4OPFYYpM7yEHis+pICnKrhcYyO5cIzKVCrcIw9WfoXav1WWgmZPIfaSAV2P8oFauO06Na+/0HtWDmrOfQMnrh9p+NnouCJL58TGX0ET/zq6VeMIzxJOMOkTjhB3bdIik69A0/Dt1Bg3ER4muzDffrZDvXq4yndyVrAPlYc6An18TNY4qEsqL80jTIVLkB9VTubOJ4HDSpLuL//HIUGjQ7L4jVV0JAozsr/2AgYxRJeFEJDqg0XvOQONHSsoKta0tDwVYXFbXsMjaq5TFJVExpDY+nDbDloDKtl+1d8gqbpfEp4shOawrPZfP1KaIp4aqkjPQeaEkyY/04peCa7hKWs5MOziDB6KDoPnstOpRxjNXiuqkBbnkyFZtVS5mh+BJrVPjGh7gBodsliGtV60LxRnC5a+ECzezTFifyA5jh3SsoogObENnYqTRiay17S8f750PxIjTI/ILTInaTY2ixoUba11HilBi0qCyhnrTy0rA/gtv/aAS3t4vQ7SQpap4eyxfVy0KoyyjbU3IBWNRPLMovD0Kr1knv//ha0cvcpUHcntK4aozqLL9CakE2ZDQ3QmpTGhfVdgNY0G/bIXxteqOWzqXVb4IWGKesqGISX39ZzU0p7oG2aPtXGToW2kJlUImIKbRHylOCQCG0x1ezQ/TRo40vTXk4b2uX8mXpvKbRXmlPAPEPoUPGmqi1l0KGpzGSevoeOlLd09uAK6GhTpf4eaegU/NPPLA5Ap4oJRai/g87wY1S8wg4641bRzX020Jnykak/uwCdw1+Z0Gtn6FK9yrTGkqBLw5zbPasKujRfs6CKaujauJt8Pm2Arl3RlJHRC10pl5iKURl0VaZwswaLoKs9hx12kYGuz4HMwM0EusZ+0sWQ9/BKaTlzgr/wSmsBJ2HQCa+Sj1CiyUJ4dbmVWa5UgFddi5jLXhV4rebOJvhoQneUJn0y2gpvXEtpn7c+vOlyofKFYtDjuoISn56Bnq7tnFCmA7xVu8kW66pBr2oE5XPV0Kvuyyk0HYFerTWUPUWgb+TTLYuH0OtRyBxvREJvymSmAn0CfmKnyQT6ZpiyuB2roG8Vn3nWJkC/xk5mUagD/Zpb6b66NvR3JlOCsi68eyxEvs7p8D4yiqLXfYD3MUpU/m4MPqjpUezsZviQbWclm5QFA6oTqfdBIQzMLrWcqBgNAxvMmfDjSzBwQ5utW/0eBh66UujkVPi4KY+JPauHjylLKKNWEj5pvqVrxgw+ta6kiEMEn1UDmUjNBvisfZZJhw7AoFYjU85wgEG9YQpJmwqD7s8pV7gKBruX0tkASxgcfcQkw9fBUMRZCn53HoZGXtO5iC3wRc2DrmkqwZdZOcw0swK+ZEpQ66Ul8OXVPhZ8ZREMq49SSnwuDB+T5FjrNBjuKOL2YyB8Fex3sK0NfNVwZbNXLYavGwzZvHQL+JqiSBGedTCi0UPfzCbByJJX9GxrH4xsHKYndU9h5I0Y0z6sCCO/baj2RiCM6lykP17ZMNrlRbl6lfBNXYFijxbAdw1kcWAPP3oW0hUJCfj5Qp5SIrfBL80cKpbaDb9SJ1OZ/TIY04uj56tMYayijG5t/gp/zunTlTkB8LfbgCp8vqFQpijxP1/BcXZtdCfCEcfttmfxr0tx/PzLFJR5CMc7TGHk24njQzyodgHDCQ5m7NPXZThh70a2uasbJ4TNJd9xWgIep8jceTjh5maqihmHE24rUXJaBE5oPEb3in1xoiGf/lZ74cQtY7TT/RdOvJBON11LcWLoexrrlMGJt7sp3v8mCpu70K2O1yi8x5OJHlFD4ZDlVNv0AoXDf1Cfy2kUbpCj3Au7Ubgpkm4ZrULhL6rUrjsHJ82MpbMmS3DS3DNsmYQXTvJnTIm7gpNSJal6py1Oar7Llkr5osi028z+pg2KyI3Qy+khKGL7k/L9k1HEvojl6KaiyKZqiv3tgCJ7OMo8FYQioW5U5b4bRcLk6U1LPorkBrHjf6xQpL6VbrcK9KZMJq39GyfPC6bUd1I4eWUQRSc54mS7M5TMleLkL/5M5OUQTv6+jK737sAp0k+pTuUyTtnykaK6j6KoVAi1liejqOlrenTmMIraWbINhQLdvohz1j+Cok7/UP7iySi6+SK7esQPRQ97MANlXRS9sIwtO2GOoqEDTOp8Fopenk0ZvPcoWqRDF/lxKNqwnvzpjoAPyNf8G4rN1qPrSsEotjeQcg7sRrGwHPodewzFkhXpxMsiFLtXx4IKPFCsbjlbcdgcxYbmsbnqS1FcypSyHeNQ3MGZ7mSNoHjIWebmX4ZTvetpeF8/Tq3fy+QlL6LE8j5KWlmEErY8it8/gBJ5FnS3xB6nhVfRNcN6lHQKIv4SK5T8OoVdMpuOUsaG1OSzC6XC9Snh52aUKpGn5pz1KFW3lE3yPo3SEieZ8e46lLYXpsQCAR2ms4mn3FH633kUldmE0j49nFCwBUqHyLKMrkKUTgcWc+wpShfsYKLZHEo/VqDLH2VQujGdmuLfoXSPPTNak4DSQxvpqngkSg/H0FBhH0p/96SI6mKU/hFCia0lyJvYQdXiDcibtJFyCicgT8ySItvaBfxB53IXIU/Gms1d6Ii8VQbUOUPwbtVDVt3tj7zVHDcn7hzybDysY/OqkWdXwuykupC3SYNlDQUJeIVTzBxD3uYS6wDHGcjb8pXzkt+HvEP7maWaioA/2OhYLvKOTLOemS2NPJ8VnJJwPPJ8pzL5WZ+Rd5LRzR9GyDtXRQ+MFJF3YbtV6LH7yLtYwAxWz0JeuD29mPAEeRGr2YVz4si7XGUZ1u+OvIxRNiU2B3l5/1CBEA9592W5qMOPkVe0lamFzUResQvVjOUjr8SDiq4I5i/fQ+UXDJFXl8Cyb15EXrM7xbK9yHvzkvHUOZTRusoa9PtRZrEBCzdehjI2d1jgjSsoE5ZKyZl7UeZyGGt5I4Iy94bZ/8YE+s9y6ukvQVnJOGpY7oiyaMLsl6eg7GoP5lkiibL2ktx4t0so69bKCY+4ouymNlYyoIOy/yugHy6fUfbwIqZ10QBlQwqZQ9QFlFsnS4POu1FucwbdmP0N5Q49pYFdoSh3P8TyeG4LytWNWNqaFKNcjyNXwn+Ocj8SOQn7Yygv8Zn1+3ajvCAPlGVLUP7f7Uw07CTK5yvQJ3dPlG+4TiELg1DBeIDqVXeiguNJGpy3DxX/tWUagQqoWJdO/VZFqHT7XxZ4aCoqNW6nmwteoHKYOAuwk0flVA1WONKFyrf1md36pagi5UaRb7tQxaaPnol0oIpzOWtxb0aVg5+Y50sRVAn3E9zT+qjyXJfuzTJCVRkPuqFniWrTjrHkj0Gotv8jO5PyDdWe1VNN4F5UG1Zkr1IGUe3rdeq08EB13iKmfWwjqju8FeTYTVRPOk8V+41R/cNEileqRY0D/6OAlG7UOORM0f8No0Z4EuV5AGpEC9PfgkOoKWtMaaezUFMnjL09FIeaC0opJnUENZcMcat/hKGm/UqW4NOKmluj6KuPCWqG7WTCa1pQa/JSqjd5h1oannTT5V/UapzPDnxfi9rPKunOrmzUkW6hq35dqGNewSmI70MdRzVuguU41FnTT0Wb96CO11FmW+yFunKpzOBvOOpmfqPQyC+omwtcgdB71G3ayCXYL0Hd4SNsxEYM9cbZ0IOxeajHC2bjV0eg3sHLFOFihHp+0ZzdwHPUO0Nc2nVJ1Av7y3WneaJe4k3OapIj6mV6cMu7zVEvV5wNa9xHveISFu35EfUj8una0quoH7mTEoMqUJ8/i+5ZDuFMlT6Kvx6LM73CKddjB8489pbNLjmIMyPXs4t7tNAg9BHF+p1Fg7CzdCplBRpcmcWyLkxDg8JQdsJdDw0aW+j8359o8G0dO3j0Ds5aE8jEVdfhrG8PGUVX4Wz5F0yrZCPO/jqT3l4NxTly+6mgLxnnODZTyYJoNJRV5OZkr0XDBRbs+oQ8NOzcwfSeiqDhOxm2dFcaGg6/paLOTDT8fp1ODzuj4Z8jbIH3XJxru5lCdU/j3NC1TMPjNxrxAlnh+edo1HSe7oZG4nzda9Q9Xg/nm/2lNMXrON8hi5MI8sH5/xxlsmqE8714nNy9LTjfz5u1hwTh/LCr9PehOs5vjbKUeBGDxgpNnOYvIzReE03pc2+i8dpR+m5ohsYRA2x6rwQa5z1hQiEP0Pi5EP0qf4kLFH5Qj3kjLsxZTNk/u3Fh7iK63bEFF96zF+S7EC4+cIFem3bj4khbyt07hIuffaLHO2twcVsgK/o1Dxe332DyrZJoGqnF1sQJo2n6fiZz5BWaVp2nqlk9aNrsSa1a9Wg6msXGJw7jkuF33PcVt9FMZgoXE5KAZsZarNE6B82c3JlGwxs0269AmdYv0FymwNJurhOaW3VSu48wmjuNcnHNdmge4UCtsf+geaQQnfqhheZNJ6jikzAulX9KDzVX4VK/b3Sh5z9cmptFWdvicJmDNbOUdsdljR4UPMsMLZz62PM8P7SInE4vvUdxucwQ0xz0w+VxTy1dF5zE5W2TuPirT3H5cDClfZqGK5Qd2aYPa3HFZwO6bhmMkB/DvJU4QYEqZzvbFZGcblG8Sh7SBjPO6IkXUkwIc9YxQLoUzP5zmoj05SDdbn+HzCCM3j2egOzcM/r5uBlZVA3lOdUh59pF98zCkMuYQskX4tFaazO3R3U7Ws/luN8SbWhtrmSp6dqA1la9XJj2RrR25nMXPf+g9eZLLLNpEVr7LWNi+lvROlqcku4F48oTltQFcbhK3pHarpTjqsR4K72qZlzV8dzyYF09rpbTpizT17haVYQzTbfB1RvUqP+zLa7+eYBCN1xBm4iZdGflbLSJImac5oy2E7ZQhLER2q6VpHsZz9DWez3F/5mFtv5RlNnrjbZRoVSi/x5tcyMozdcd7ZtrmG7fWXQY+8ncJvejo2gps3m1Gh21/8eUPK+hs/w4uptogc4vWxgI7qd/lA3YBI1WdHluTneuJ+B6+0hqWj+K67N3U+SranSdfJCCi76jq8ZOqtArQlejZ3RntBZdj4+nmjXz0DUq3zJ0KBJd4xdRqJEqut5JZzrfQtD1brul29w76Pp8rdXVjNvoOrLT6sz0AXST3WGlkWuHbvJlTPhkJbotOGzpqbIN3db4cUnFzuh2wJOx6HR0iz7FphSJo9tdTUrdlYRur2MoxTkMN7jJ0MMcI9xwdzZ1Sr5Fd4XDdLV+Krqv30Tx/yB6rJ1I1W4T0CP8Al3zMUSP0YVcinwObpJbxjmclsZNC7dxyonXcZPzGia1cRtudvGiYtER3KJ8jokXbMatU/3ptnQeep0vo4T1Lej1fCrjN6uj14gSO8h/i9sF+6qwcAtuX7CVjTusjjtq9OlF2Vvc0TpE3dvy0Vt9Ll1unoHeGrKUIPwVvbVGmYWDPnrPyKL2/Gz01o1gp2Z8QW+9nyz2lwp6zyxhORa96G0YRPeOtaD3vGoqfHMOvcMXUX7qONwVnEjpTdW4Z+0uKl5+Dvcp5rBVWmO4v2gWRUyeg4diXlGE7wAeMTvAVNPy8IjrMXb0vQn6bLnK/Le7oY8gj/pXLMWjsUMUIvwbfRPMqKI6C32vG7O7NrXoW6TKdgUOo2+tJVtaugd925dQb+AWPFaxh87vW4cnxJ9SH98FT2xVoio7Pp4Y+033FavQPzGCKl8l4GmzWAo2csQA73fs+pQODPAbYVuFLmLA+SQmfrQFA68dpsIePgY+ekHlFtp41uQqJfXq4NlLHZR0XwvP/g2ivDYxDD5vT9neWRiydBLlWSZhiBWPLnImGKo2QgndqhiWeoDdOR+KYbe3sszD+zCMf5bVtBRhuGYG+68wAsPnvKKcnOUYblTB1q07j+ErbjOX98YYDv5M8kYqhtuK09dxUhjukM5U1WZieGo31W2TxyjpXOLvsMQo3k/qniOMUbIidLX9DkZN/0Z1lxhGmV+jej13jFp6kCKkYjA2yZOSDJdhvPpmCs+dhYm1kdSRHYqX5vxi240WY4ppByWPNWJKkR9V/6jBdOVSKhtTxCuJN+jWHhG8UuxFfSFTMfN4I6Vs2ItZ8hps/5AaXivUoKt6MzD7pCJd3eOKN7U3CPpWHOZsOk91xjcwN1WMktbkYZ5qBd2YtAvz+KZU7GOFd00nUdyXQLzrvZaSdXww33gzlX5kmL9XlJKcNmN+9G+KD36L91bsYeNOtmDhYw0W3lCHxQ32dLcwH0sK9SgzuBLLwZjihW4hf9VCJh8ci/wUfabEe4oVR2tZ9HQxrPjdy2ZrymDF30usTEcCK8clM797q7Fywr+clqs4VgqLcqc+T8HKSQ2cWfJerBTXZ0ELH2ClhAPD9YewUlKFxvgCHw8FfeIaPpDNooyAdnxwax8lePHx4YuFTOHAW6yOEmdBAfOxZkawoMc1Ys0SA9ZbaIM1aU+o44wZPmq8SXHVTvh4XzXlG737P3fBu94=
+
+
+ 457.746032714844
+ eJwN0okj1YkWAOAyuGNfsy9Nlrj2kiWZe87vHCQ1ryxJWoyontKixrwihimV3pBMcqMFLUolpFKWVhWpEMoIlRatY5mKyHvf3/CRjOgbuFpUk9JgLJybN400PVphoPsomY57jcqsRdbOvXBo7jWyc2jCvR4j5Crux/3bROS+8A2E9fSQh2IEVi4pI8nXs9DV4Uu+ugw2M8/SLCsT8FpuTH4qjmDQUERzzFKh7qQG+c93Q+/gqRTgmYUa5z7RUkc/NPm0kMLVk+FpwgOKkM3C8dIcirScih5RcymyPhWG/hyj1Z1DUB2iQ2tUbGGb43Fa84+F5Ln2BFp36BFkhydTjI0R/osdKKa/CKztNWmjaS24iqdSrMVmqKu5Sb+6/o1bItpok3oMGurtps0R1VDe/YoS9B8KBk6F9FvOFghbHU/JF5LAy0+PfjdaBym7fqatQSOwxzmDtptUw/78aNqh5Qz//byYduQJqKsbTzsHU+CPHxIpVVoHV+/vpDTbJLDemEjpB8qwoG0BZRh1wf2aQ5SZ2AdV7wzoz7UFMFTWT1nBJbj9kDPts4rHmSOvSWp4EuLmbqUckzRQaS+jXPd+LFAYodzqJkHWJZQOat8C6wWPqcBbE3+sWEtHxF8gJeMOFTrtgbTcTDqhfAT2mAfSyWQxqOQPUVHROFBtLqVT80LxqOpyOnW0CHcGvKczusEwr1ygkq1tGNoeQKWyA4LnsblUGtkj6ER3UmnlIDypXEJlecdwo0sEndufihEn19N5y4c4mFBGFyYehC3/2NCF9HakqGN0cWBYcirUhyrCc6FQkksVo9poHJJClw8txIcLVKlSxxQMzz2lSmkvfnTLoqqr2XhH/IlqbFfC8eC1VLOnRhjfHU1XtiWB/44OutI3hs2x5+nqPAHVBhrpWv998B9Lp+tJXoKvWTzdSJPB5IFPdHN+Oqa+0KJaWQU0ezVMt5SDocrBhm5lj8CDsG1028QRIz/do9uXPAXVMQe6E7RS0GsHqvshh/I/11JdkjWtkHZT3aMQTK1qoXorDwgb20v1Z4fQ8XYF3XUfwpSSdLpbE4DZ0YepQdINnc4H6J6CCnZkjNI9qZcgWSRP9927BPW8hXQ/Zy862nTQg79+xaJbftToWot3Qg9Qk54VnCk5QU0tM+hivjw1o1Qo0L5GzXk9sOiKLT38TylOnmNAD9+Xo74kkFoWyQulGn7UcnWz4PtahVrjGtF7UJPa4AuQvg89On1AsHkpR4+fyXGgejm1e47SWvvl9FehBW3RWkAdeocFJxihjpJizPr2Bz3RaIJLA1PoSdcGWDNI1OmWg0Zyd6nL+QwqXeynrotiTFKqp26/EXI6VkjdRXOEbG+mnsEEFAxlqDdYAZOvV9Nbz9/RciSN3p5dAv57y+jD5SHs/u0MfXzUhlWn11GfUzpcMJhA/bMVYZcklvrr01C0UEwD3n2SUcV7NHAhHbbsbKDByRnQK9tJQ///N3nadBrO0ULRl9X0Vf4VxIXF0qjrB0y8vZ7GHD5AZWMCjeW3Y6iHJX9XlgMzlymxrMl1SNmwkmU7MtAoajrLhTbD4vf9LJ9ZgXUNf7Nokiqk5jayKCUeD4s28vfFcrjhWy1//2Y+uM5rZIXFZqjYEseKcR6Q6R/NilVzoKzTmZVVe8Ek4zkrh73CwmJjVr65EiVL1rDKz8cxXn2YVa774/MfN7Bq7RRBL+siq+mr4PTlpay+sVuw6bFj9fNlGP9LPasPPUHR6EHWWNaDN/a9Y43CKlS7FM0ab1Zj+FYP1oxqgLZTC1gzN10QqS1hzRercNXoY9YSK4CXvRVrLxvCE7caeIL8Y2zfb8wTnl0WWm09WEc3DnUsv7BOSD5+y3Jl3dUhYL30Jeu2bsPSzHusty4ABr7zZr0cKRSberDejWDMiBxlfcP3qOM0hfWXrhDEJVdZf18xGO5+y/qvw6FJ6Q0b+DsL4/ZGsKHMJlwVEsuGkjqwnn+QjYJ2w/4WOzZW+oovy3ezcWoJKlEgmxQtRbCawabpHyHsiymb9rzCYi9jnmiUgHaiKJ6Ymwj+I2lsFjmK9TPG2KzZBrqiNdn8tAIekGE2b1+BijHBbPHMEFfY72HLiX2YFuHOlh1SiJca8+TeCkjUv83Wi1pwXGgHiyf5oPekArYRbOByWCXbDpvgj9532a6tAUWzjNheSx2sDfLY/rUdptbtYIeY06j79gg76hB4TWtlx8AqCHLTZcf8AZxUF8NOAbMg88NpdnqXheMi7/KUojFMVDvIU82HIchmBbuEf0axpxe7HJZD8/C57Prv8agm78xunUEY7/aB3cEPXF02sXvWT9C004c9PgbCgxeZ7NmyCd+W97HEwRcGw2eyJE8BOm+kMsyeKBmTVLBgWQiDvruYXGQgM/sXZoteNDRnZqkWmj9VZ5+oSNDffoZ9uhzga6I2zw54AUPx+fzT+gc4flLr/wDdlULX
+
+
+ 1010.943542480469
+ eJwBEALv/UOYy2FAk3mSQ8cWyUGchVRDz524QMjsF0P/J2g//17YRAFs4kEOh61EA8Q2QBpswEQKl0tAYPhpRBaKYECw1S1EH5a7QU2jhEQjXkJBKEH5RCUR1ED0gxJEMFnyQUJjVkQyR9FBN79tRDOfDUCMVxdEQS0UQLuSFkRCJg5AKyiiREKRwkFlYeJERaEGQaBBrURHFORBqVAiREq+7kGCH7JEThHoQFGwgERTmNhBCOwERFd3vkCu1itEV72MQkyCb0RYs6JAxqxSRGHcYEB9islEYuFWQdH1ZERj3XJAoA++RGRHskEpQvtEZJi4QNj1QkRlPV5B/+RcRGmwIEChVzFEajcSQdZHoURrwORBBFLKRGyu0kDa4cxEdKdcQK2AKER4QaBBcBrCRHh+sEJI139EhTfrQc5ZZ0SLYARBUxGgRIxR1kDS5TJEjIXFQXlyjkSMnelBDyrYRJE9HkCGSvZEkiaDQhFyvUSSeuRAjYh2RJKgBEHdISREk9JaQZ/+rESYqLhBqfsfRJjQAECYWepEmeuPQar+LESabKpBvBi8RJuGn0DKn+FEnR6NQFLohESglVBB/3QxRKEze0MGYiBEoUgrQhSX40SkdQNBk6wJRKVu0UEqnZVEppZfQPsjXESqMb5Bu2n4RLlTD0GosZ1ExWwJQRVGjkTQ6YlC1PfGRNO9nkGaUJlE29V7Qfh0sXrD6aQ=
+
+
+ 586.255676269531
+ eJwN0YlfzYkWAPAWFa2KG0KLFtqjxVLTPed3TiUvSsloopCUaK4sISHVo0n1UYokaRGR9SbajDIGGYPqEaNkXyuVdqV533/hSzOix4FajQ5Zj18GcsomNMczAHyMa8jRUQfl64io7wlqpr8id+tlOG/SL+ShXIHBbq20eKEZOJo4kbeoCwJzPpF333OoK5bSktEZkDVNgZa+0oIVZYm0wsYILlpLaPVSWbA/L6XgdamosMmT1vvuw9gMpHAXPyhykNBmTIALQydpi10SzLZJotixTjhxSxHFR1ZBQYQJ7dubg+V62ykpwQt85iVRWo4qOu/qp/SCJtQ6spQyJkyFoZVr6cjlLNyFXZSt+xGuq7+lvLJpkOVTSvkernDRtojys7PBVH4PFRz4Ad1b1emkVgKkp8VTYbY3itK20Sn93fj8UyOdPlIFT0d0qGhcNxaWNFPR/nN4WvSCzpSdFY8UVNLZwd/xZbMXFefIYeY3BTo3w0aYVBNF5y+3YkJ3HF3QTwOv3lt0odQbt5nK0KVUK5CIIujysdewwrifpGIz+PLpGEnfy2HdY2O6QlPwZoGYrvnuhq5Hm6gs9a4gay9D5dpyUBV3hcrzB6HtwWuqSAHwkSyhysPtaKl7har01uDyQ6up6lQWTJ46naqjqlHDt4FqNNoxqNqU/jDIBpkZjvRHtJ14JG0u3TrsheX6YqrVfgnh9tVUe+Kt+O2qVLr/bTn052+mv3MsoP+zlB44OovfrDaih6I0nGNN9HCXDliGllKdpB9X/f+/fkIiLtr+iBqmTcHViveoISMTXZ066fHXSIwTnaPGeMAN+6bT04bteEekRM8chuCeUjc9S83EXNtA+sf4AaaWzqWmSWW4eBJTs3Umymo0UnPqbZjiqk4v7BiVA9LoxQUPqFt8k1p2qguKZv7UMrBWMFnbSq9t+8ElciO9rkzDzGENeiOdB+fRk96Ss7B1TgK9PZOC8X619M7gFtYftaT32Av3zL/Q+5an+GBHJn3oTUEtmQv0cV0XZr/yo0+Vt9GRVtLnS1HYIO2mL9eWQdeXbGq1CsONhnbUVmgE3VGT6evFSDija0MdZ07i6GZH6uyqFx7FzqUuzyhoDK6j7vRLcFXWhnoM89HXFah3lA4azjxIvamxkOtnTX0PteGbq5T6vW/B7Ul11H8nTNAOMKcB13xIXv2GBvLrIWruKRoY/IGi9u80uHWWoDqrnr7f6MY9FU9paHwuugX10lDwKJBgHw2HWeHXm4dp+Pt9POjfRj8kCZC0IoxGvLSgVm43y0wOwoRJa1hmfwO4bNdm2TnluKCpn2VDLKD5NweWLW4UdLulLNsZLLwrjWU5qxcwLvoBy605j4Xu7SyvJI+3Zl1h+fnWmLjqNsvHSPFq+n0e5fATZluk8KjMA3CvfDorLP4hWNQks8KRAcgr6GOFZsYwM1lW3HNMULBWZSX1UlDYHsZK8+txvWURKxWuETyOd/DoDENB62oPj27qwDv2Vjxmtju+u3mJlccUCprpzqy8oxa/bQpg5RInaFP7ysr/dOL+lFxWcR8kzdBIVvk8BVKSI1g1fQRLTA+yaqeycEjHgdX0D4lff9VnNa+d0NK3m9WS5bBvbzSr9VwUlsZ0sLr5NdI6pczqywwQnMNZPWMOmnV5sobBEThVsoE1Folxsu481vhgjBv1n/DYeT0UMryZx8a+o4XxMTzepRfUmuJ4fIwxNAbG8/iuNCx8pcmiSiXYpS5h7bNHUU8kZe0P7qi09RlPTFyCEwsWsW5xEGTRB9abcElQyq9jvSUT8dn3x6yXa4mlsyvYwMAQsn5O4mlVnvjLoB+bFIbA5Boznn5sP9R1zOTpdTcwsyaPzTe0wAk3HTavngkuO6vZYoIffr/uzxbFFpiuaMRWx0uhqkOVrZpEYHo6hW2efcCi7Zd5piRPSJAe5pm5tsKMLWt45ueJIOOeyLOMe1DIt2F7pw+o/CKCHfL8Ic9Bjh3unYF9U1t5zsLjcEJ4wnM198MhD0uet7IABZVAdpR/Bm1Jzeyk6ouVg2fZ6dh3eFF7nH/ykYGkuTfY2bcYUySv2PlPNzxchCxevlNQcatncd4WaM+8zhAXAt6v/RgPDOLCo8oslElQM8ebXcOPQ2XEV3b9n0iw65jAbgbywmQNgd3ub0YvpzfsbqggfuNrwAu4BdVDfXhBmTnarfPn/xhbiS8q7mAPO3v47/oRXnhnG9pti2bPl46YbHiRFwddg0PzjXhxsjWU3h3F3nqjUOXKaPYOK8EVGsvZd3ww6jcdYN/HKij3MYSXXbeBtoB29j+qBmqBF9i/MxuSQu14uflB+LJ+Ewc8D0Yj7TZeOSMcTQOTeLXtfZSNqeCgE2PwfdwQr5kWjz5xdhwiGoM/m/ZwiGQZ1HVv45BiF9S7+4h/vVwHef6t/GtnBm4rmc2SYUtY2f6NI86ew78c0jiiXgZumYXyplk1aF2zjiMND0L+FUfecbQGTg4U8c7iv+Hbqm6OtpoPphU7OTo8FD1+/Ml7/lLC27/ZcMy4M+KRPi2Osfgd438McUzAAjBJvMt7S1vg5p7PHJsdidlSW45Xa8EpM4a5WHEzepQs+Rfivm4N
+
+
+ eJwNl3c8198XxyWjpMTH3qNB8mvQUGmdc+4b0aBUot33q/pSUdK0IpFs2ZuikFFZZcuHRCqU1RANLaTS+n3+ej4e955z7jn3cR7nvi4Uq9xnosHCUOzpy4YrPaA4fg6ncvUtFH9YRE7F4VCi8Jolmw5BidIbNulfMShRC6HW4jNQovGT6ef4QMnlAEovy4GS+I+M5zQNSn4aMNMhCShVmMvMZxKURhdT3NeJUFozncKMoqFMaTFdK5OCO/KXKG6VMtxRmU/t62fBnctj5JCtBHe7fOmqYwrc7UZaK50G5cp5FK3VAeWRh+iChzCURwWb3p0mB+UlfHYvuQ/K+Yl0eX8SVExJJx+Ha1ChKMUkn2wV8Be3p6UDKlRSyLU2Hio0/Ch8wjGomOVIvSZuUDH7HnmUVELF4ssU8a8FVJjfJNeeZ1BhH0lu+qJQcTCXLtQEQcWZG0z1nx1QEf6KqniC9YgIJuy8EiouH2QzU/5ARVQfJ+4uiBsTaO5nsgIqYuNY1eGdUBEnyd7rNEBF4lIaeZ0h4D06f7cAKm7cJPcXh6GiXYt2zxXEH6kgs237oeKHBZU/6YFK4SzyjWJQOUmUhvSDoJJXTKkS8VCp/Mts8YplUKm6gy7n90GlehhL2pYNlZrvKL58E1TOmETe2U+hcvMtcioS8FQvK1u9CipP/6K0jfOh8myqaeuTf6EydgJnVRsFlQn95JmUBpVPA9ik1i1Q2YlmLVmrobKrhv1jMxcq/0qzJodnUKXiaqZ0LASq1ELp3PHLUKXpywrmfYcq228cnV4GVduSuOxkaag6K82ZJERAVewidv9vBVTdbaC/5/qgqk6LicXMh2r5IrrpaQrVKgb0yj8Fqq0XkcvD41C9MYCOaZtA9elb7H+HsqD6TBb9adoO1XFxTENyFVSnHeQmSPyB6l9u1PmqAmoUIyhGvxFq1IDCovZBzbR6ej/tNtQYK1CA4imo8RlP2+NWQU1PKr2TMIeaz6VMdCAbahNumUa/kIXank/cUxNjqFNrIrvvHlCnvoAsD/yAOg0Dtr7/HdTtXkQnz32HugNHyPnQANTFeHGBIXfhnnIvtW77CfUq703/OAxC/ZzpbPRtA9QfXU5nl1+E+pAztEc/EOqj/tLe37ehPm4H5z+7EOoztlDHnnaov9pAPlInoD4nl+70ekN9yUS6qGMO9eW25JmrC/V1YcSfnQ719dZ02tcO6huIDp6fBfVdWeTJ0wO+UgMTXhsMfOVzbPKoJPBVlhL/X3/gqypzMi+cBQxk4XrhwFd7Z56Rex/4Gl6cnIcI8LUKqD/CBfja/VRyagPwdZKZvJdgf80Eiuj6DPwNT+mi6yDwd1fT4YB1wN+7kM6uyQT+sf10KwCB7zaJDjwn4J/isYnv9wD/tA8FThbk4b2SvI5NA75vFbXgMuAHHKbg+wL7oBjapVcA/PAkspVsAX7ESybrtAj4UYN095egjtgd5CunBvz4FfT78G/gJ2w2O6Ih8Es0YwutCgX8Si9cQoGffI6ytwrySv5FqX9PAz9Nk/wetAE/vYO8HNKBnz9Ap9/IQsOUHaxvSyU0KLqRf3c3NKif4yLDtkKDRjfXdHMVNJySpRgPaWgISqUGrWxoiNRm15jAPqGdaRfMgIaktcxddz80Cu2gEj1PaJTfTva1ttCo7EZ5fXehMbKOqQdtgsYoA1On6/OhMVaefJ+Pg8YXiXRueT7cV4zlpHu64f4Za9PH987D/QgtTkgwR+5HNdPLTFm4/7ucG2fWDE1yRynAzgSa9kvQnpxyaDq8kjbm/AtNp0vZwNEZ0HSmhQk1SUJT1L+Uo6kDTXE+bMo0Q2gqUyYfAwd4oNpErjLd8CBGg7YUzoFm7Sg6t8sSmsOjaMcHcWhOcjcVKiqC5menKGL3WmjR6GPSKf+DFs0vrPGtCbTsWkk757dCS+wstqLUDlpq+5js5IvQ8rmCCe9Uh4eq42nzyAd4qIZcfb0iPNQaMC39KQwPjxfTRZNGeBgvx0bVXeFhig13xtoXHjZqkVWpgN2LacRyHjwcmcreyejDw9EASuw6D62qO+lk2G9oVe9gh5+pQav2Nmrul4HW0Fq2wugiPFLPpRsKZ+CR6URyau2GR2FFzH85Hx6Ft5uCgR88uuxBIZrO8ChuNjucOgyP5YA1p3rD4/ActmpgATx+qUvVvkehTW0mlfxwgTZNDSrwfwJtkWLEf1IJbTFKFPTrNLTFd7PgskPQNrqZmjs0oV3enrIqGqFdZRt3O7kX2tU3UUrbJ2i3/kQPrPKhfVssZ+PeBe07RijqsCG0x2ym3+wktGeUUtTZCdCheoVN2Z0KHRqrTBu9VKFDp597oeYNHZsDyfF4BnQkXuNOzPgAHWlb2K2EEegYzaNsiwJ4qlFMhSLJ8FRrERuougVPk3OpIFQanqlaUuK+9fDs2w5O3vccdErps9WyB6AzeAHVLyuEzqh++jtRGTrr/pLnDX/oHD5Ofk97oEs+ltKWr4IuxZkUiweh610vneOdhm7t6Wx+9nboPn2AosfNge5OUabU4QY9R1Lo6NVZ0JO4lUoX9kNP8iAzlWqDngJj8vglAT3Df5iPrhj0qr+j4U9j0KtlwskVXYReHTHmdPQN9CbnMbwJ0FuTy6nLXYfergY2W+oG9H46wS0aKYXnysCCGyfBc52lnIiTAjxPqqSCK8LwPLWaKV/kw/NeCzabewgvNIqocJIavNBOoujSa/DSSp/8C0zhZaQhE+kphlfq06jFoh76NE3oRmAe9NmNUXxqE/T1unIz7/rBa41ctui7J7zecYTC3k2BfvVY+ipP0K/pzuq7OqF/VzMrPHIT+hOsyK/QAPqT8mkgsh36U+bSrfXjYWD6PBasuwMGLF6zp+eewsBxfyYiawQDKedoLCsE3sYdoQvumvAuOYY8G7vh/ayblBzaA+8PZ1PM+TZ4n21rNtHmHAyqz2COr9bBoEGNqaTUeBjcrkddTh4wmFhFyb+uwWDOEhacrQAf1MJpyNkdPmh10Ovpx+FDaR55K2vDp2kX2Yr/fYDPKlPpdn4cfN47jSptm+Dz6GP6cekEfNEKpOtaQfDFopByBfPzS4odhbg+gqHZeUxl9xAM3Y9ncrJvYei5K9MTdoNhzXxm/99mGNY+RBHtNjCs00FDe7bCsLs6x7vhB8PdDVxIrCcM/02i6zHvYER9HGu+IQojWsT019bDyMxsClpjCiOCOipf5MLXpbcpPFoSviZtoKIDhvD15Rt63HkCRmdk0q9FQjCayqPot6dgNK2KstP3wnctM6bx2xPG1I3pXUorjJmNUWzHARiLameil1Xgp54FXbUeg9+6JxjL0YE/bknU8W0q/ElRpMZ5KvB3qwl579kJf3e/oMfGXfD3fjJd+NsHf58vZeOd9VFIaiVFvDBBoak8atsnjUJzVShCyg6FjF/TR+d4FFpnyfZGKaFQujXFzZPHcev3kuejHzju0E6WJtmA44JsqGBOEwpbplGs3CgKW0mzPRF+KLwnhzJaj6Kw81KmgfooHOxIT49JoHBND6VFWKJwM0fPNuXgeJl/6ZJUPY63Ao73YxKOP7SaaavL4HhnB6YlpIHjQ87RTbU7KDK5jzyydFFEyo1inI+iiNVfytcURpEjluSy4RiK+FZTlF0zioQq0bWsXhQp1KHY6DoUPbKOKd0FFA22p6ij/6BomMBvfTOK3vCm+BFAsTmnyCvpJoq5HKDg4QwU87KjiAuSKJb/P8ouPIBibflMbY4wiksVsKpFx1F8sQnT3O+C4pZJjNeWjeLrvrKJkxJRfEMN2zR2DcWDF9Ebt5MoXuBL7QeLUbz+BV2smoPij/yors0KxT8PUKO+Ik5oPk0hASdxwtAlKpWKw4kyVYznIIQTW1fSlcBrOHG4gcqdulBiSRs7IJaJEutX07CuMUpsqGBj/uUosaeELb1vjxLO4yj4shFKuN1hdgH/ocSlw9SRo48SNUuo4MJ3lGi3Y0tq03HSeDfydO3ESV/02TTbsygpvYadJRmUVObookM2StrcpaSp21EyOJAV2taj5I1YpvBmOUq2ZFCZ2xhOnqdL3lYCtuxk0i9HcfLj2ZTo9RKnPAynkh01KPVqkBIS+3DqdBEKytLBqSNiLOSmH0rL6rDNGyVR2kiLfgZFofQrN4pddAClfyxggdmeKKMzKNBnyigD4dR7fQvKnOxnRWX+KBMsy5KVDVAm9DJFD6xDmfSVTMUlD2UKvSngegLKtNlT2L5elHk2kaqVBH6vPlG43kKU6XOi63s7UObzdYp+4Y4yw+0UNt0CZUZW0WX1e8iTGEd5lnXIk51H31gT8pQ20jPB48wzNqcYGw/kmZcwkZmWyFuzl15ZfUGeBZ890dmMPEtzlrBMD3lr95n71K9B3rpb3LhFXcjbeJjaLT4hb9c9Jt9rirzdc5jP0kkC+rCZ6ZHI21NpvnNCBvKOe7HlC+Yjz02YbSlyRN4JOXNpozbknXRm/7AjyLt4kRKceAI+orqEM8i75GgWYLgKeUF5bJqQOPLCBX3XJ8gr+S8FvZZBXmq1aay9IH5mILWoJiIve5TiE7uRl5tEGRNPIK/Qkbrej0NesQZ3ptwbeSW+1PRBUO+dZAqeJo+8Wl3KOAjIe3CIrXEV1NcazIQCJyDvsTvVG6xH3qssepbcgLzhx+Qjbo28kbV0MbcLZXXyWF7QQpQ1XsaC1VVQdm0p09aVQ9mdXykoYxnKRuxj8q1rUTY1kJPruYWyRb9YdLEPyj7YzUSMdqHcpPnk7/IY5XAeK/pnHMpZHmMZyetRboMKN26dIcrZ97Eqb32U2/2IHQmwQLkDdeza7DiUO55FI9YJKOexhKLfuKJccA3zKzyLcq3vKDLwFcp9b6NcTz+U36rKFpSvR/njb2jgiwTKR9jSzZjbKF+QSaF8VZQvjjTd/7EA5R/8NLVw3YTyfRu5lLpylP9xm9OxrkaFKc+ZJIShgm4/xfQ7o4Lhc8r8UYYKhwPYGp9oVJSVp0tjg6ho7cIWBziikmEGxfEqUcm6nXKv3kElrxmUY3kGlYKdmJD6A1TOd2Ikvw6VW73ZdrEjqNy/gy7+tw9VQhXZvUtlqJKixTptclElfz5zbUtDlaq51DO0CdV4zXTPLR3VbJ6y7F4bVHP9zmDJIVSvjKN8b2XUELMg9y4F1JByZeua5qCG1R5KL+ajxsbjlDXvJGoc/cnWin1FjQgNJv3sBGpct6H8O3WoMSzLXMedR62wS0y9wx21IkfZzEQOtdr1qNqnHrW+Ej1byUftGbGcgXsPai8T4rYKX0ftDf+wx65CqP3PHSY24SBqh0Yy48olqD1USZe2mqH212j6/m8B6sglMJ2oU6jTuoJdHj6JOr8Fc1b8P5w+6EfN8/7iDJN7LPuSM86wnsHaJi3AGQ6hLNDuBM50rKfUMiWcGTWNwgu24MyCNaaTmpxx5qM9XHb2EM4cPscpXtJAXV4Q2xPph7oC3V+2sAF1z8Sxtuv/oq77LxrAt6jrZ8rFnkxF3dBf3NWCW6gbf4u7VuqOuledOPOhyahbsJpJPTVC3XpbqsuYgrrPMil26gfU482hAW851DPypaqUh6i3cDplDe9APRd9uiH1CGfJ7qDwjsU4S30xG99mg7M8xJjHxUqcFWHH1IMVcVbWVar9vhBnVajQG5FY1Oe5UcsXZ9TfkEgBSu9Q3+oWvXcdQ/19XhSyTRP1MxYwO5tA1C8NZYc+m6H+t/8YtCzA2Qo+jCs7hbM3+TMl3SGcHdFFv6z34OxvfcytwA8NFD6weS7z0aB1An2vWoMGI6L0KeAi/m8hMCnjczhHbjo3z8wa5ywgVu9iiHN6trDZmjY4d/M28n8WjXNDJtCA1imc29pJVwbVcJ6cAuUNPMd5mQqU6xeJ83mXWETyGpx/7CnVfNTF+Y8Sqd/LDg2trnA68nJouPk2/Q7YiIZbjJiQeAgaOkxlAy4KaHjGgdWuLkDD0CImGm6KhlcnMvOqJDS8Y85kD59Ew45YU9usITSSRvIJ6kYjxSfcwZvL0WirCLvkm45G4e0slS+KRoVf2YT4XDT6/pvehnK4QPE701xjgAuyKulCiw0utH1KSQuycJGiNY1N43BxsT6FDI6hcfhm+pN/EI0fO1GRlAsat40x33wjNH7aT5+LatC48zkLcSxC4647lGlriEtk+dQ0rg2XpC+ln7xluGT0DttVugaXbpSjlMgcXDo8ytVm2+Iy2Slc0e/XuMxIi5V+HsFlG7XZ5qTtuCxqB1UkaqGJbI3p/HRHNNk4xjkciUSTiNkMAy6hSYEh5a28jiaPMymleQmaDHdQV2EOLucVU63BUVyeeYGCDqzEFdoKVF5fjSusZrMI43W4UjGGolMicOXCQvomPxVXbnzP+j58xJU2w1RzeCuujNBkk2qrcZXsG6Y94T2uinlouvpaBa6q3UVxnYL1TkkuqGs9rhpuoZzZHrhaeQO9H4rG1Sp2zDBZFVd/cmZWz8QRsEFwzkwEq06qOGqCcDuRVe7Yg/CkmJrrMhDaQ1m88V2EbzkMZ6YhbScOA5WRElyYr7AOUtsmhro1SO+j6JnaGNJoEBUVtyITKqWQJcnI9FOo8vQ05OxGKGFIArknOUyjIg3NlLKpatU0NEt1pQ7bG2iuc4zjlNah+VwLrvaqNZqbaHJPNk9Gc7OfXHhZL5rbvOS03mSi+Z5oFjdTD80Pe1KetAdaKI5SUut0tIj5S/VpvmgRn2b6XF0ILbqfm844nYiW6qKcsfBWtJz9n8A+BC2NFKlT/CNaWj2l+M7jaLl9ATU3ueDacR2U+ngXrr30hEINknFt5HGmXTQZ17ZdpcJuD1y3UISyw7xwnc0mpvh2Fq4L/0a5Cstx3W91NnH/e7SWKGfina/RRr6fad3QRJu2T/ThrQjadMozMaFjaFv4gal9n4PbLu+lBqdlaOdRSYn+59Eustx084EGtLvZze0yOIJ2t0W531t70K7VlsoeOKLdk71mOzfeRLv26dx66WdoN1RCg29uoN2wGX1dsRHtvh4zM+v5jnbfwtkiz69oL+dm2u0SgvYKVvTx3hu0175Gb0Rvo/0CX1OTRapov+ks57BEFu2PRTD/ealo736dYh61of3lq0z15VvcfuYXlT7qwu23qinuRBZuf/I/JrpsN+7symSaFvK4a3QZ51CiirvlLTjZK4O4e+Emduv+L9xts5aarrTj7siJdPurFO5ViaOhPEl0ODKfQt1r0OGJHAvvtkaH7ikUjmro8FVLoOticL/cAmbUVIYH77nSRyVZ/E95Fz2cLIKOihsoP6sIHbW9Kdt/FjoK9GFdxi50nH6MrbKvQseZ8eyHjC066nkzS6UN6KivTH2Cuef4v+VUHqGNTu3+FCI7HQ8V51LAzXA81HiE6c7wxCNKCpT1QMDF5hTuV4YuSjfZGvV0dDEeZHtlVqPL1kHqcvuDJ5ZZsamCTE/u/sqOtsThqeaNVDekjKfL/mO2bdvxdNckaim+iqcHDzLJoh94Rq2WmhZmo6fkA6ZmPBE9A3fSrzVy6JntSlHmruiVPUZNFINeDw5R8BsF9HG6Si0qCei7PY9q1mui75n3TEqaj3533gp0aiQGBMhS8lA5XjwUSJn2yRiY20ShXyowsAcoT+8lXhL8s1JXm2LwJnsqsWUYskeVcq6+wtCUf5jPdlcMzfdihdaKGFoVxk7e1cMw7XAmMdSFYXMU2JW32zFsfinz99LCsNUlzPnTRwxbZ8JmfDiBYVZ8pngmHMM/OVLitRKMEK2l0BIPjJT5TSO9ohh5aB8F1Y5i5P3PFJMzBSP73Zk7BmHUQAFllR/FGN82Cntli/GGqRTfIorx/POUWDEZE7xyKOrsBkw6kk7Zprsx5dIVKve7hemP1QS30o1XQiUo9nAdZsrFUfzWF5ipIMWOZQrj9TvelGw3htmqqZTtUoPZdWVU8z4fc6el0W2D/XjD2Z6uXnfCvM+ZlCfihflWQXT5WAcWrVanjMN+WFrfwhzv/4N3PnpTwd7VWPFJlgJ3tGCVRS7TLziPVcni7GzzIaw+/YbZeeRi9ZsCSjA/h9XDZykV8rH6+wvBO7ATq38GM5Hv2Vj9O5o+ftPAmnHpjK+rijXj+7nc6eewRkyChV2IwBrxNIYXzmONRC81aeZgzRRik/QeYo3sFPrcLYE18gZUO6cQaxdK0W0hH6xdJOizeeex9vNris9djnXyMUxdJQrrTvQJ9NderHvYw5RqXPBeQRXTbBzCe8/O0keHG3jvdS9bqLwX7/UPUbfg/8FfasAGhWSRn+ZJb54GYeNRNequmvd/C3qp4A==
+
+
+ 447.536834716797
+ eJwN04tfz/ceB/AuKl2WXCKlm25+Nd1Es6j3+/v6uJRYiVzSqNxJNrZIck2IE1OhVArdpAuhZWWyLhIl0kWFYlLo0Wg6KZ3z/B+ekJ+fSL6ZGVCwOujyd3gFlGWWLpWpaRhhEcqWJv9gtLYaGzwshO54L6p5qAOD/hJ64LgdRtoK7HWiFMaK/RwhlwUzvUKSM0nFtxcCWS7oKyb7z6CD+WNhY3CKR9veg015EMtt2Q67kat5WkQ/7BU72S4lFw5fC3jCEidM+3cUnd31F6ZbVVGlfSumD9mztusCOBm6ccS+E3AeUGVeHAyqXkFtVhsBQ3c++Xo+Zs0OI69NyZhdWM9jHhPmrGmnr7t+h6tyMteEvYL7ZyNWLzeAp9VyNrw1CQstYzk88AsWT97Dn02fwtvDg+8VfI8lZo+50z0Ly/RHsP+aCiz/+KN0wfIqVhRKNOJMDFZZu/CpYy/hPyvR5Z5aJwJGrOUDHc5YY/qUHsUYYW3ScNY64I2NE72pteE+NllP4VnCFoGTWqnTugTbrZqhfMoBv9gb8GHdjwjWGUNBD1dhh1RB+VGfENa4mgPHxWHPkxBeXueCvcHJ/ENPAPYdiCI5CyvsP1TGMs2LOHBkGd04E44Dg/7UwddwMKKeXdx1cSgqihMy1BERvp7zBx7gyLEUOqi3HEejN1Of7g+I/GTJa9vycGxPMp9/X4fja93ZK+NXHL8lo6hFL/Cf1Gi2ON2Bk2Oa+GqfPU4ZuNEn/92I/k6XHR4lIPpyPx9LnYHYWRrkt+0DYvt8Sdbng9M52ZReXo2zB9dDJ+JfxOlrkd7B14hL/J4+u8QjPiyBp5hXIv5LKvv9Eo5zJwck/0IrJJzx56PD25AoP0D1E72RZFxG77YlISnXmCPD23A+15ZWNZkiOa2N1U8vQYpBPw9vbkRKVBfFdx9Bytep9GSOES5k9FHA1jJc1O+jt9qtuGRjQuZOz3Ap0Z8CQopxaVCbSuUDkWb8UgpxUUHajZEkq12E9E1bXbJenEXG9CpyPB+KzN2W0l5jd2R2LGTHjGxcTohkj81qyMp8JyWqdOLKWWPSax7Ela/uPHkoC9nxS+H0RxJycqbRa56N3GNqkppmGPJs7fnI4mO4mmchWQc8xrWpK9kzoxHXYg5x7zZF5NNcvlwVi+uuW/nLxgRcz/oRpp1fccNnkJ1sFuKmphefp8O46Zchyb7Vx83rRZT+Ux8KVvzK7R2+KMipZE2lMhQMqdEV1xr8HtAl2aTPQ6HJdWnOsGYU7lzOgSk+KHw1j2TdObjlp8xu9BC3is9S7K54FB29wJPkY1FsFsGeBudRHLlF2hJgjOL2R7x+UA63T/jwkp0d+NP4JsUF1+PPxHXS1KEu3FGVYyOnGNz5eTd/Z3YfJXPvcqurJ0qSpvDz1Ee4u+G8NLvbFnerx7Gqbw/+yvJjo/YelJpG8MXSeJSmLZamrd6KshM5FOpVjHKDcFIockN59Bu2vL0AFbIhyUFjPiqq+nj8h1DcO14kGbUpoNJUiSfsCUHlpyTp+WIj3Oc80s38C1V6OqwydwBVZW2Sa3YmHqxLkBSMW/Bw9H2o1O7Cwws1nBR0F9U+P3HFsqmovtLOvZ2LUGPpK9k6rEDNoR6OXQM8Co/i7LL7qLWqpuSAKtR27qRXN2R4XOrKDnlH8MQ8Rpp5qgFPMn2ljaOSUBd3h/o9B/A0ox/LHxxCvYkvinx9UR/aIRmfmIEGh8+S9EQLDW9u8ZOXEWh8bC66l/aiacp86YVJD54tu4qmSDc8e/5MMrCvRQsH8c6OTXgevIj3fFeFdoVW9g58hVe163jhnR68bvChMw56eLs+lZfMaETnITO6nt+LLrsNLORGoeumjKJ/e48P1YspPPAOel7soY5hA+gdiqBZ7+7j88v9ksPVsfjiHMIF8toYSE0kzKzD0JQSev+GhNyqL/QhS0vIvbvIyZEWQkFPkQcUbYXCnBaa5FEjFE4r0cCRA0LR/RIbvi8XSjP/yxO0bgmlv8H6HYZCObqLo/pChXLD76w+eodQMb3MGmPNhcqDt5Sa/a9QGVzJn/tPi+HWHpRl4iOGDzZQde5coerOfDxmnVB93UN7yl2FWmwIaxRUCrWmeVT/XhLq+47//89XoV7/M8lp2Ihv5L0lqfKA0DQ+zJ0mXULTewTJGp8LzZIFvL86WIwgojcv+sWItF7Se90jtE7P4VZpqRip6kg55jvF6MhM8vp5nRiTuZL88vLEmLofJIWBbqG9V8bdeaViLHopyDRDjPNJ4NGXUsS42osk+7VO6Hisk/aeWyB0zvlQ8nwhdBqG0dFrHmK82T4uVL4uxqfvIJnGSzG+zpDz928Rusvi+eylOKG77wHPTnUQes3qbFTrJPTzizlf4bbQb7fgBO0CYTDzI5foTRAGe4+wp12TMLhbSF7+BsKwxYS6+uKE8QclatZ7JiZWudEN8hcmeuo8EOcmTOaGscqGX4R5mDVtabEU5s3l0PSwERamIZLrDQUhaxgpzfhoJywnzZXCZP3C0ucLt+jLC8ubyry0JURYtvzDM+3zxbcpyXzSrlVMbmA6afVUWG9woqDJvcLGzJP8xvgIm3Q7+uPaMGF7cQevXrha2OlH0R+5qcIuN5BDfH8Tdu+UqDKuVUzZfYVquz8Ih3GBFNo7SjisHuKJkY/F1JRAkmU2CsfNOvTorYr4/scY1shuF05aPtykGyyclse4vBqmKJzyI2lwe6FwFptZv0hfOAdt55oqT+Gc6UihFauEc/0VKnIOFS4rz/H+Z/ZiTsA2Vl1hJtzTDXnChyLh3vsNpa+9LTwcVlDL+1ThkbaPFgZ0i6B502nWOcf/AVgQ0bY=
+
+
+ 597.265441894531
+ eJwFwQs41oceB3Dl2ltv8dZob1fNJZdIyiuq9/f7/76vk5HWRA2FbuvMylacRZh49iSXs2SxrKmeVLp400Qz7KK2eqrJY+dM1kNtNCSPx6XLKZfz+Yjn6kmU6vSZBNoNsuOaMglx9qf8R6Xy3sLbhKQh2aK+Q9XTKmTbWx/TrJurZa91Os8tDJJEs3pS99+TT+wP0Ze+K2Wf3QX6IjFVUmytWW2XJQfHfuBsTaIcbkmmaqdkOVJ6mLLT46RovJ2bW0PldLyirOp5KadbgqkgeYacn5XNv3d8IBczoyg2zFWMgXX8ZuYFuTzjPs3Wq+WbojTWXkiRGl0GT4ibLDWVY/xGZL7U563i7Dq9/JidQkafM9JgdYN01fZyw1hMHVEB8ot2NeVurZWbZQGctKtKbmcpZDyaKnd8g3l2Y4c0+b5Nqau85bdbCv2g9Mt/jRl0f9BFWnJmcGnIFWl5AU7ULpXWyDrqvZUqf2R70Kllx+TBz+FsnDdfHpqG0P5tGnl0vpFCc6fKX+732Qdp8vhiO+W4zZW/7W9QVa2HdE8Kp/h/ekl303H6zCtcerwt2NRnnzyZXkgNlSK9OX/TsFu8PE0J5nz/y9LHKVzWVSx9g048raRdBrTDfHWORgavOlHtjqkytHSY5516Jc8WXaLZanv5n/8gK4GbZUS1mSvL7suIsZMXOC6RsQc7OLTgjoyvKKGqXcMyXtzIvotrZPypD4nJpzBxt6CTuh2YEJymf/yrJSYeuEjnNvXC1LJeiQ5/AtMtzOuX/gzTga84Lf0wzIKqKPS5F8ya17Jm2RaYjVaT7iM3mP/jPf5+oh8sPi9QTOzehkVjOFV1hcBy1j0O7BqC1cwT7LfzA1htzaBzO+1hdf61YnXlJCbtHlQ0sTpM+k7hgZ49UGm/4y9rb0MVZsmq0Vyoyq9z/04LqP56ptTN1WCyRxD/8WodJr/K4283jWFK+JBEaX7HlH9fV3rc5kMd6qzYvvs91EknONlUBfVPRfTOkC2mvoxVzNc5Y5q+gp/dzcO031o4csQIawP0nWe+hXW6M59zdYf1xTCqfn8c1i37lYrKENhMtFAmrKyADT7mJ24G2Fyw54arTdBEDbBlVSE0/eWyoASY/uZppdIwCtvGJG5sXADtkXVUun0D5ml1/EXMCszLWkuzyptgf7OLz14dwYKYdzliuAJvnbXhr9c+hsOB6YqtIQcO96JpReERODoEkWvDPjhmPEEAKXC8do0XnY+A42gmFbh+DScPP878sw9OzQ/pTtcBOF//lePcZmJh4WVKxS64JPdQ2UeFcGnP4jzfP+EaY+DF/QNwvxKmLHUdxaJn9sqSY8fg8U2OqF58Do/eXMXzeTE867IkwGQDFocu54CXR7H4WCQ1mh3Bkh3ZSs6edPjsbCNDwnz4HE9gr40R0LW2UrNvNJYnZXNdxgP4n22jpm5H+HfUs+9/DmLF5XN8ptsPqya/5l/sl0Mf2cah17xBmnLOb1PAke+TwbgQhqD1lBs/hoD6NazrtkbgHC/aPVqKwKgXnHLyHgLzHnDm3WQEPr2l7/R0QNChEv4w3hXBTgqbzzyN4FgH9tPtRfCgp2g7D2GNq0rx/qkIa850cG/lS6wrHeXag6UI66pgX7Unwo1u5BJSgg1aczKJc8fG6nE6tXEmIuKdOV19CRFVeuW4+SNEPG8jkxlzEHkghW3/5Y3oTW9wTaIG0YVbOfNhN2JGlvHdQ5uw5VErrZ+6B9tN7Tg9fyW2b1vJKNqN7VX+FPO0D3HzO8k55jbi9rqQa+wg4spBfZ804MN2BzZpPovdCy9RrPdaJDhMIcOJcewPvctBCVbYX3qUZ+sdkVKjY8vg10jbnEDFZlEo8LIhQ/EwevNc2OlHy/8DxUxfhg==
+
+
+ 665.632751464844
+ eJwN0otbzXccB3Dp4tL9VHQTpXqSImWdnjR9Pr/vm8VJ4SQrrHBsXag1MURNnQjNE8khl5SYiFwq5JqGInsqNZc42SJjjZYSnvRsr7/hJcK8dClBfUTEh4ewkUmciO+L4vlO8SLx/hOq8IwR67sCaKfGUWy266JsG4XI+jyU9vubCY08ld4ls8gv6+JBm7xEgctOylEfEkf0XpNy911xzFpG8p7hotT3DouqZnEmLIeK65NERVECB0Zbi8qRrjyo6KC4fKacpzX1iyt2lnTqplxUl4TT3I4c8avPThr38YW4uV3LRdq3ova4ih1OQDSYv6FxNWXi/o7kwHZlonjokM/3tPmitfcvkr/JEW17onm6xlV0PLxM0qVb4mVlM7112yU6ZVUsLekRneqpfC76gegOCqISzV3R3TCZh3yxUvSOWEK5JfGib/gzyqzuE33zP9DiRB/Rd2ETbfC4Kj7mWrKJslz0F/TweRMf8Tl4O4dvuS0+d//AOoo+6IxvobKZ6dDR9FJ8TwcG+9WQnZBjsMaNt36eBN0fR/K0x9eh2/+Krda6Qi/ySuDz7q+h75vP+R73oL9yPIVPXw79U8z2am8YnFBwYdQRGLT6kLtBKIZm6fOG9dUYdkBJysDjGJ4fzhOpCYZXC0l+wRyGHzK4fOEfMHI7yZeiVDD6eRkPyQqGUecoSVk5Acbyj+xufRwmZs9ZL+QhTKTjPPniUZhsriC17y2Yenry6gkamK6ax1/SW5hqOwJfyKfCbHE7mz9NhnnZFWmJiwoyoxa6se4pZH4OrCxNgKwwhs5OdIGs1ZHrZNdgsaOE0095w6J1m5RY5wjLSS2UOO8RLNftoruxB2CVG0uiORFW2qXSsI2/YcRPrdLIiRGwXmvPufonYf3kFQ9QLWzSvLmxOB62tgHs2r4PtgsrJIulabDVplCEqhh2vi3sbeoOu2atNCLzNkZFN4u8vt0YtW85h63NhEPAn3wmcj0ctj5i2fldGB2mZMrcjjHRgq9fu4oxTTrS7C3FGDNQKM0u1YPjojlkd8YSjvXrpKbIl3Ay2SrNOpwGpzo7yf4OYazBTQ5vj8PYsCeSZX8ynHULhMwsAc4+ndJ4eRecEzwkVVY93A5tZguT0xh3tp4Nbb6Fx7BzdEw9D16UxoEDHvBKyuYFjn6YZPaW1P35mKxIZG/zZ/A3NubAUBX8T9eQWirAlMY6urTUGwFe//+M8QRdu0XypkKwwkUaPmUMxOojPHNIG+C8iPfWvMNXTbepozwJQQ6C14zzR1DwA15pWgqFWYlkm2EERdgVnrFtKBTdNuz6qQ3Bu+2p0SkRIW6vadeBxwgprKWG93oI1a7iykp3zL6cR+7eUVBO+Jf+/sUH824oaKeOKSLiDSm7NBaRMwRf3FuNbzRKqm0NR7R1Hlvv/4jFVStYN6EISw9WsPx9FVQZ20gZewGqEwvZxbgHy+LK+fv6RnwX+orcLVIRk1nHUpQH4j0Ok9bvE5bXu7G6eQQS/qnh+qk2SOpopBuOMUhRLqDiUV3YUFJPl1MWI9U5mq1a5iC124Mzj25E2gIVBzurkA5fnnWwE+mpxtSkp0XG3AGa1rsIGY1qatBLgDo5jjNjGrGpbYBWNOVhi5UTtVWfxbY9e3luxHNk76ilvKwy5DbXUG6KP3L7bkqjB+shzzYgsH3zGmi2/s4pEZH/AbP7Jcg=
+
+
+ 782.867004394531
+ eJwN03lczfkex/EaU5No31Mh1WkxKS1a0Ofz+75lHcvtKA+ldS7NzYRbQ1K0KOFIp5RS2o3mVqMZujLH+sidua4iS2WbCEfcMKIxukxdf73+fz4eL5G8PpEO5b4QmVk3+MIOmcj88zFdzNARWVtX0PLgH8Se+LM08nyuUFi30YmyKKH4Zy+FNN0VSuUw9Q4miuI/wth7CYuqb+NZWlAmajL7WSfaWdTaBXD+2mRRv/U5KS9liqbymzR43Vccs1rPC2ecFy3HT5PBTQvxY1UyxUkO4sRhP3K5tkGobAJ4YZWdUD2z5mC9VeLM1C7JknvFuWIPEr/eEOd9Myik74RoLwbrdKeK9nd+PH7QQ3TqG/OznsmiM9uZFTUVout0PSm2tYvr3/xEmvssxc227WzsqC/uTKyl27XGoq/Zl2KyGkS/cQNPHr0iHjXP5hJ1rnhan8gGsrvimWUwT4v0Ec/KjNnBaoH4r5sx7b15TTxvtCSbTaPihY0vbRubL1466XNCd7d4mfeBAwvDxW9zhtkr0lAMzfkH80EXMXTsnuQ4qUC8XrOR/mUaI37XDqXiikPiXVooqerHxLsRa3px66wYOdjH0H0rPpSDBnsqxWj1at7ceBkaWvfYzcoHmuV5JKZuhOa1Qiazy/jE5xqp1FvwSXQEDVc34ZPKjRQwkopP47bTuNpSaJlv4TcJPdA60Esub0Oh1XWHj2t0QNtoC+3cCWiHp1PVy4PQ/nmMVNeuQke3jkI2H4eu21X2n9kJ3XAtCunvgm5RCsudN2NC6yMKudePicGxLIsYxsSiKsp5+xJ6E6z4u/T10K86zE17kmCgpWRf84kwUCdTzG49GPpNo1mtUTC88YDqLDfCKGuABl+9gVHnS2mRugHGU6ZTzJrdMMn4mmsKvoRJgw8/8RuFyYAteQ97wdRtMaWXDsI0R0Y2BqdgZp5IZWaeME9V8dKkHljonOOu3eGwSCznJ4uHYVHyGxXKAMuku3ylcxiW95voGMthZa2kogpLWDtcptozG2BdFS+5P32CSbcKJN9sY9hM8+G5J1tg07+C/BJsYTtowU3JStgVhfH9fWmwG91EuWVyTC6fSteD2jB56Ciphsww5bQy6FLkK9gvzKG46iOwzyb20HSHffdyrvJ8gmnWOWzQGINpv15hjw4rONhl84F1J+HQlcS/H7CGY/pJ1vR8DieTYdrv5wgn+TK2shqCk6qX+39oh9PDTknv7U7IIrR4gu5RyPpO8gqdATinzaXeX9zh3OJB6dtmw/ldM5/I94VLcZdkUKmAS99LmmeSAtcZ3mSk/RVcM81Y3pwL14FZ0kyv23ALD+MzG7ZguiKT3XXM8Hm6ktNly+BuMY96M9sww/Ft0KXPmjCj0oSPzxwPjxXFpM5UwqPnEj8+LIOnzV4psTMDnpFLeG/4KXiZ/imtGe6Hl5TAXsnt8OpU0H/yuuFtZcQ/bZwC77JguhhqDu+bX7Grbjy8x77mTZ5n4VPtz0nltvBltSQvMcSsSTeC/q1Og9+aF+zdNQS/+lwKveAJv4eepBqRw7/Kn684+iKAh/h/Z88j4KKcWhstEKg3n099U47AbfelCWXrEHj5ghTkuBqBY+/54B+jmO3qQf0pasxWL5MWx36POc6OrO//GnOetPCS12oETWGhb2qOoKgGabqtPYL2b2M/m+Ugw62cfVABUnfzFQ4D++bQPFUD+G+6vNrlHbh8iyQbP4b5hjPZ1sELC44s5CMBpVhi2Er6Fl34y2NLdt1/DiHOCtLL9II8P+7jZwOQ91XwQ/1XWBldxzrHoxHmpCQbzWSEbVVzm9sphD+OJEWePyLWRtKDDesQ2VdHDUusEXVIk794PYpo43hKHPZBdGgpzeocQUxdI531X4TYdec5cFc6YitDaNLAZ4gd6qVj9kaIWzvAT8cpkFATJA3cikPCw0Fp2SVvpKyZT60PfJFyL54/FFpj6+RNLO95j9S2+WzmcwdpdROoDxLSng7To6bx2OF6lQbUS5HRfoJq5q5G1qo01jSfgWz9ZJ4iC8JOI2M+Ij7WYz8LlS1ypu+m2HFR2LUyQlIsX4tdf3dlr8M22OOxihUFY9i7251tijqgsH7DQbIs7NMMpYbZudh3O5rnDqYg372Ai/NOIT9iH9vFz0P++4X8qekhFCQtEtXOJSgoNJfyul6goPFn6lDGodBiNWuXRKFQbsAFevdxID2FYg77oNjWhqd7OqLEKpqK/JpR+sV20nexQ2mqPo+fsxZlqRof3TpQsaKC7rcOoHJlLAd3VKAy/SibaPyC6sJB6ehtDVT/2EJfrp+KmtHvKftoPWrN35BSnYLaljDOsLZH7T0VHfqrL76zH6Qd/npoPu/Bn2ss/T92zAtm
+
+
+ 1173.587524414063
+ eJwFwQ1Qyw0cB/CivF3mWnlYdpZbZ/LuaOO5uN9v/29xIapz4lx6Wk4RbTriMSNmMWteFmZzLXFpq6bL03NOTyruUUcnnPeL6LxEKK7JRfH5CDfG9pPqcLzwwpVBhvpQoXvKOv5brhX6qmXsHyQXBkOCqdh7HEOb+ylR+hkjGhN55/w8BHXUk0MxDiESJV3f+w7jCvWUZGvAeFEVib/GQtKzliLrFJAtslCavRXhR+9yjqET8nMyvrJQjEhnGKk6QjC9MILlNQJmCGLSb6lDlE3JubE5UL+WsFXjg2B7yqbDn7A43EI/lgRisW4mz9sswjL3dfrPOhkJbZu4cNpKJJ/8yhMDJVijKKbSXAfWzbnPG4LasV7ykfz0FdBIZ3JG5V1oPFcpoaYA6SnzqW6kG+n5V2nrzwFsKkjhscsnYrNNy9vddcia/gf1NhC0o0TqpGAjtH/eV2dWbYMuuJntqwewPSaDdz8vht5byuer42DwvKT2yEzsW+9j2Zso7J+qpO7JVhxIdfOYIx9hFA1S6xd/GFeUc2DtSBhtQzi7pR3GO51Uydkw+m7yaW8vTPJf1JuaD9P3Xrpo3YD8zBMcJb+NQ3YPZ3Z1wZz+Tj31YQ/Me1R8JvwJzMVeepoWDXNPN1OwBRZDMkdHv4XlbRYPb9qPgrleTpRWw6rqpB9do2E1/8VpRTtg/UfK9/Ie4ZiuhC9cFKFwVTyJJlTAbgrlf/uTYa89xdLTSbA/yCKvsxmOIzHsd2ojHI9nUXZTP5zDdlFifSeciwJIdHYjXLqDPPvZWbhK7axVhsBVO5yLbLFwPb5GN1rfo+TcQXKoGnE+IIL9loSidKmcMzS5KNP5ePwlBcr64simkcFzNFo9KyAFnlqdWnzCjPIJqVzR8AGVC8ZwVU0ZLqcMY4VhGi7r42meSYFr9XGc9uohGmOXU8yOIjQN3uak8gjcUk6hsmx/tOTZeJnvE56liqkvrgVtCQOcI3xDh9PN/+vb0DMwiQp0dnwJS1DLjuXge0cJucOW/gYGJVTf
+
+
+ eJwV13k4Vtv3AHCZCZV5nkODNFChut3WWvsgTVTyvRHN3Yar6TZRqa4mSmSei5KkTJn1epH3RWUolKEoJZQr5CbV7/399Xmedc5ez9rn7H32OlDgf4Y741kEBXHzONjnB4Ua/eyirS8UajUzM62FUKh7i/LOG0KhwTjFubZC4ekRehhzDwojQylYfRQK43qZkrMbFCYr0qskBSjkS1CavOi+78ZM0fMWFGkwEtr8DUV+ByiNCqEobA3TEPeAYq3F1N0yCYr13lGppyWU6Dgyzc8+UKrPUa3MNCi1y6HrmkugtC2Myc6qhdJBMyoZ2QqPtOOpp/8BPNKNp0BfZXgUGexww00KHhVWchOLOoA36SJdNlEEnpY4Z5byDnjTj7EJChLAm8OnbLdrwFvmSbEmx4CH9lTeKQk8pwK6VieKbyimVo2pwPPLYM6vnIF3cgeVzzoBvODZlDtzHfBC91Dmf/9vH6VrTwJe2CCT0zMGXoQPcx/4KnKM6U7TBV5kPGspaAZelAK30u1/wIsOdMpLvAu8mDpW//Ms8GI5ztZlmsifjAvtBl7cNnazJxV4uYdoV1+VyCbaHagDvIcxTNYuFHidmnRzzyGRg/TCpxF4g4rUma4FvC/t1DYuBN7wHeJNzwTe2EGKkqoE3vdpbAIMA++HBDVME0CZ+Ge6tvgOlEkUUc7DZiiTH2Kqq5SgbPIXim9pgzLlQTodrwBlWgeYpJYorj3ueNLkM5Tpb2emL+dDmZEuDXZOhDJzQzqyvQTKpk+nvRu7oezES0485yKUnbzpaFs9A8pipnBpOyKg7GUhmxCkBWWt4Bh1rQvK2v6kghFxKGuXYcvrM0Tep4b0OJG/KOrAX1D2eSedXN8DZT80KfK/GCj7pcStGPAHvs4Rh7bmWOAbBnESL6OB/8dt7uLWAeB7FlCHIh/4J1W49FQxkSMUsccT+DEz2azGVSKrmHn/FOCXPqb67nzgP17OLI5tBv7PABoa6YdynXn0TeMClOv9opplCVBupENnJktAuW8WW9jWAOV+99muGkkoj41ic2qkoDx5N2enaQ/lVd703HAulI97sHkrjkCFZjDd7TOAClMBfRqth8qN9ZTjJgeVcWIUP3sVVMbnOUTtV4bKjgEuV28LPDYwY1WuWvA4+hJ31PISVGm/YEoRQ1C1TJdaeZkgUEc6O1YMAp0Bh57vBiCwmsmtmDoLBBtNKbJ2Eggu+NITyWsguLidIhfbgCAwg6JXJoLg2iG6/OgXCCIsqNJtBATRb+lsFgNBzDYKbRKNi/XkLk89C4JEawp+ZwyCW6sZC+wEwe1rlBUxGwQZBezCSUMQPPgfBZVGgCDXhcY/ZYDg4VF69X0cBHmG9N1cVE9+OAWX6YCg8AJVHi4BQaktxZ4yAsGjz5Qj9wAEZRnUqS+qv6WeotYjCIZ20bEYSRB8T6GCBbkglD/MJh5ZCELVboo7lwhCdT4zKBQDoeY0prrSB4Ta+kxuUa/IEebx9BkIdZawy8v+AKHueu5agOi63uflsn+mgNDAmjPenSaynIu77gRCw9Ms4sN0kcPs3vVyEBqfY3L1QyLrKLtCFoQmY8zEIgqEps+Zes9OEE51YZr1gSC0SaJEA2sQ2ncwBe04EC6XpOT7n0U20SX3zSB0/U5dVrYgdM+m8ivfQej1noLGX4NwpxR92uMPwj9nUvSh4yDc00ex/vYgPKhGIV7aIDz0H5UdcQTh8Q7mZZADQt/5VBegC0K/Z/Rk0i8Q+l+jX2M2IDx7gc5uEdVxTo1uVj0C4T/qNGbyGIQBPUxZ3gCEF3bQg/xdIAwcpdAQPxBe0WfmJwNAeD2Y4lWTQBg2wvwniOqPUKNbMz6CMDqeyv/5G4Qx3yjnyGQQxlYyuS+i5xM3jc2tEM0/fp3j49gJIExkTLl8jsguSnIsBWFSBL2ME+VJcWVaEVUgvBVC9ftEedKGKH/HTRBmNlDjPdE8czSpVmwfCPOW0L0pCMLiYor4VwuqZbZTrPcjqFby4JzueUK1frCDXtt8qDZo5d4IFaH6hAk99/OB6qsxNDqzBqrDjVh+9nqojm9gqZ8SoTrRmYW7aUA134pub5sA1b+UaO+XXKgRO8KW2a+EGmV/cu9uEzlA215+hJrwAqaoVAA1kTMdKg7FQK1mCLfl63Ko9Z1O3yuKoNZvtaNpQw7Uhulxk567Qe2PUm6GkTY8UQukp1Iu8MSXz1G/DDyJPUmf9x+HZ3pv6WFQJDxL9OPaCkUK19GV4yLfXCRfvhPUGQxTx9QiqBOtr8wNF6EuxpQZXtGBuspBtvRiKNTrIVf5hyHUG71z6NrzAOrjpNmYeRTU33Dh/L+UQn3qGgoTfwT17cvZvFN7oH5YktXvfAgN+neYquR1aDDsoNqEVmhw9KI7Fwgarh2jKzGW0BDSySJXmkJDfD+FH9kJjfr7qVF0PjZusqSE0IvQGFrAetZOg8brTQ5NL9ygMdaMnd3aCc/VFnOHw1fB8+sZLNkpFJr0FrClFougSf8+23r2d2gy6GBTDnRDU1gfk1Hohaa4Jla1qwWaddy5XQetoFnPjVJODkGz/gJKXhEEzX+EsoG6E9BcOYf6ezZDi8EShzZZY2gx/EJPZS5Ai0mng9ImG2hJSOWyxPSgJTGL0pdNg5YkLUqW0oeW5OVs5HA7vDRCTtZMEV7Fr6COtk/wanQL94fhE2idNJ8ttNkArU55dPv3cmgNtmWrl2tAa+QzFjn6AloTbtPZn77Q+qqNoiXNofVrJbWu0II29UxK7d8HbboLKMikDdqN5ZjLYk1o3+xIaefuQXurClskindo8uhyYz50WOTRlSJV6EjqYsGW9+G1EXAOm6fDaxNtpuv4EF4nFTE7aV94XXGPm9yrA6/beCzh8Cl4PfA3G93fBG9MfuNst6+GNzdTmKyXDbx5vYltb/WDTgNfZq08BboMFehRbgh0hZszy/Px0BU9TvnPneGdwUp6//w0vHt9gJsWngvdBveY3Z968N7QnzkcNob33gVs355V8D7pLZv9Zzx8mPobe5jrDR+cG1j7UZFHHjBy64EPN9ZT6cpD0ON9i7paLKDnrxmUVNMLHyMXEq9zCfRuvEz+Mx5A74EKOlMcBr3xmnQyqEnkTTr6Ogb67q13lNL1hn59E07lRwL0m6ymLwot0G/5iBuIOAT9ntuZvabIDHsSTFGDT0Y1TKn6JXza3MFM5r2CAf0AqrzgDwOG6nQ3RxcGTLOpxUkAA55BlHREE/41qaZ+vWb41yuTMmxq4N+vlWxBnwYMJgRR0JVO+DKziEnX1MGXpHbq8zOHL7UnaMAoAb688WHxLdYwZJhI+ZcJhoxe0os552DI9HeqMDwIQ17j1Pd9Agwd2kR+KuEwdEqTSzNUhKH2Ss4Tb8HQrxDKtE2DYX0pTqaHD8NGs5nk7s8w7GnGFJv9YPhkAJv9KRuGI09T5ApRZxQ1iw7fCoXhuCGqXWcOI3rplB5OMGJURQ1a9jBimkVjYwtgxH4ZfRKda1/1f1DwRGX4ahbBrpzzgK+pMyh683EY9TajBDtP+M/IiVlcSIBvEYspqtUIvn3Nofs3xGFMfyazXVMEY441VGq1CcY8D1N14nz4Pm035TcEwHcvB4r3GoXxY28pfNJ2+KEeTOHD9+CHRTo9f+MCP7uM6EpUM/zafI+e5gWhmO0Am3gqEsVWOTJ577UotvUh0/d+jGJ/+VFZzB0UGw+nW9OzcMJf25nZgzGccPUgM/R9ghOCvSn3bQtOEKpTSU0KThiwp7DASyg+X9Rfc19R3EWfKWVLooTyBgq9240SLks4iQ/ZKHHAiymM9KFEyF4m37UYJbIuUbJ5LkrKzqG6G4iS8u4UGDyGkvv5lNW9FiUHfCnlqQ5KuThQmtIUlAp2oryDNih1bTP953wZpepfUexCPkrP5lOyXi1Krxan9JJylD7jTDHXelH62i8mvtIcpZt4lJmtgzKTCjiF0CGUURZQmpkryqz6whQ//40ya4pZ4NxYlDkxmeKm9KNMcDSVn7mHMtfl2aqzKiiTvY4uR61CmaIPdHEeQ5m6z5Ro9R5lGhMosiQYZb4spfjqLJRdo0ZhvaEo6yJNZ+Q1UTalnpIM3FCujkcC379RXl6KAk6sRHllbXq5bATl7d4yVam5KL/aju11voLya/gsuW4qyh89S29cw1H+5iSKNHuH8k9nUuq5PpRvXs3N2L0A5Yes6emMHThRw59h2Fqc6HKRriZcxol7L5D/enecGJJN11dK48TUHLoR3o0T3yZT+8McnDhozclLv0SFKa4sMP8MKszZxcTGXVEh+Dy3xPIAKjxIZdmNPFSoy6UC1UuoqBxPzbe7ULHuGPHEnqPS5DJ6+vkZKilfpfQNrag0NYZJPBdDJbv3lJq7HZWevKAr26aj0rAKJehG4SRlV+IbbMPJOXKU6NiKk4d+sZTeApyiasYmWJjhlG/zqfq8ESrDNRrmNFDZxYj6Pp1AZddHTOqZOSpvKabXe2ah8vFutkXYg8rBGsyIZ4PKYduZ2MhUVE6ZzqTUO1FFWYGSvl1DFedDTCn6sMivbFZnBqqscGRO6ZKostLLScvnNKqsOsNU73qgympxdkFpNqps9mT+3rqosoXnJL6+G1W28tmM7nxUOabseKdoL6ocV6fHA/8TKdoXHS9R5cpuR9lQGVS5GkBXDjiiyvWlrGi1GKrc5DvImF9GlZy1dP8JD1UKrDmriftRpWwiZawV5Xm6iEFwNqq8OEMpHYtRpTWFso8+QFWTW+zozSpUtV3OFFa0oerKB0wj5j6qhgUx822TUfVmGPumuRhV87+zau1UVH26k96cL0bV+pl0R7Qf1dCObW3rRbUVfuzm3rWotkaHVa9dimoeA0z45yCqbX7FXPZaoNpRc3rOZqNacAXb2liLaoWN1N2qgGr1c+ni+Y8ic+nk7pOo1ihFDVWqqDZWzBQdYlBdRZ9JJtmiursme3k3FtWjXJmJ0StUL4jgftj8g+pP/+OKJzqg+ru13IpLq1D9WxZbk/oNNSYp0J1tu1DDJ4DGZ7ahxiFDug8yqLVWgj76jaGWz2ZmPZyKWi8eUYjnTdQ+70ipH0pRO2sLYy3LULvuKaVUuaB2QzJV+mxEHZ859H1rDuqEGDP9CVKoc8OYxc01Q52suWxDxl+o8yWT0uvWoe79nxS/oA11c9qo98lj1P0yg+4r9KHe5H/p6gcp1JtylOKXXUK9la0k+G0K6rlOo9odi1BvfQu7kxyAen/3sjcf21EvfIiJ35BD/XXXqWK9PuofKKe8G+aoXxlGyQdT0cAmgDLOqqLBYSk25TgPDcLUafBuARokHKCmxAE0GFKgH+el0fDwYjoX/xcahilRhpYBGk3+QRUG9mgUGkg8E300FjtBMY16aGwWw/0MPIjG9r+4UYMSNF7jzZ24dQSNt5eyqmP/obGvNDXtM0TjkDgqHX+CxlkR9CHZFI2b4piOahcajwQx8VFrNFEborK0EDSxSaW7fqvR5MQLCiFLNGmwZxf+Z4mmqr5M6f4MNDU9ThdrP+HUv69T5YFMnPphKmXc34dmroZs3p8id/oSv+4kmrtqU76dyGwHh9l/eKF54xbu9aMQNB/y5WxuSaOFymFmGDiGFurX6V7DV7RY/ZKS0QAt/G6z0uO30eKCG+s4L4kWIT/YoMQPtIhLY98be9EidQtLOmeBFtmKbL6HFFqUCJj04p84LSWc3k49hdNV/JnLL3ecPquI7sra4vRTP9jG9nicHracWR/7iNPTiqkx6w+ccUuZLVz6DWeMrmFH33bjzHXHmLvLbzgz7CENjBrgzNFa5rFrOVoq51JzRCZaapQwfU9PtHTfS8/TM9ByWI7a+gZxVlMZ8a+1opWaLusKVEUrG3sW+cEQrdatp6HJM9Dq4UEmkeaAVk2eNKJMOFvdn2oX7MDZwd+o+Z4yzh7wpEI9H5yjKqT0ZxtxrspVdnprGs4zv0PvJ2jhPJdY9n10Nc7bqcZN7ivEeX4eLOVqN84LKWWmnuk4ryXKgX7lorXma25xuw9ab3jPbKTH0fr6E/pYvgGtczVpJLQArQukqXfbXbT+NoG5VYujzZEd9E9fOtp8m00FVhzObzRi5nN0cIGmDUUoT8cFUcF0d85GXJiwnGK8f+LCB+2UphuHttddmNmvQrR9UUd1XUlo29zADhhvR9uX5xjkiaNt60LmXxWOtm0tTHVqG9pp/k1PvXloF+ZM45XeaCf6rzvifgntcl2Y7nJ3tB8a4gb/CcBFqtLcZdOPuMhan5M3sMBFrt305pIPLjqqQWHzU3FRngmVPziHi1X53M1bHrh4nTh7snEcFzeupI7Dh3GJyhCVZMXj0vmZ7MCepbh0bReL3JqLS9fXM/0PS3BpmBnba9+ES7v4dLvRDH9X/cSmHPTA36MbHbTT3+HvrQrcHDFFXKaznM0JuonLBvZRm8wIguQzpmx1EEF7PoOcLoS8SFZ+ehHCi3F6RHkIzYnM7k4DwqvVFK7wDWG0iEaDexE1iijffRmSJ+OMLXqRIjOZ3G9ZSPEnmLOrBLIZ26g9+SlyG47Q5ehO5I4Y0+NoS+ReHKFesQR0MvHj5joPoNPsFdyVHZroZKtL9x270GmxLnelJRmdHIc5D/dH6LT+KXvMDNBpSxyTvxSBTj7BTLHlHjqF+1FSHuFyzVB66wHoHJfscDykGZ3bO7i0Q4W4Ql+OpWX9hivDXZj5omRctX4dizjRhasOtdGdHn10DTSkCkkO145kUGaNDa5XF/U7aZvwfy80qHjwX9wYXsJ9HbyEGx/qOFi/fYcb89w4uf5o3PjCy/E3I2fcOOLjOLOnDj3Ujjk8DPuMHjYHHJR5R9Bj3VVOxiEMPQ6nMa99b9EjIo1y+l6hR/ZjSpazQ4/cMhr62YWeL2zp46YLuGnYkqnpm6PXCm8q/XwDvQ7U09UIKfRqK2GWZz+g94YF9NDaC72z+fTQzQ29v87nJKrdcbP6am6a5mPcPF/Ur0xKwi0yZygk4CpuufKRohXGcatOCtM+9wG3BThR6iEX3B7lTMXTzHHn8/dsec5d3M37Rjl2gHst6qnQSgv3Tq9ky+T9cK+lPbPRsce9Vs1sfPI39NFUpkbzWtwvH0eZPpdwv447NdUIcP/LLEpsLcGDWlmsa+lxPGgrek+z1+FB9xEW7d6ExxadprZDhMc2VlDPnoN4fOM8duJCJR73GKShFDc8kThEKQrV6BurzSxzLqLv3W7qjr+AvsWMNcwdR9/+Hcz482b00+uhfPMmPK1gQlmjM9Bf4TGTmdCA/v0b6JYeH8/cK6e2q0V4puQJ0+1cjGdXNVK0TSyes1pEaamBGOC5iIbGOAzYK/qOtqtjwElxZr5yLQYEjTM5Hh8D4p7Q7TkleP7yFOqXLMeLBj+oYJknXhx0oOJaTwx6nUZ5JhoYrHKfhmQ34zVPP0pTfI4hWdE0YqWEIfyr9O8kdww1LmLmmh8w1GoSJ/35JobOvU8F5qoYuqyeOfTHYegqU1bsIoGhLrdpPGMEQ/8ypb7RfzFcXZriH7zCcM2JbNqmPIzyu0Q1nb9hrNR64mWuwDhhGz0P3IE3Jv2i/LdRmGqwjSJbhvGOhh4LAF/M7OFT+jpvzDqnQ1dnFWK2x0/KiPbD/D1fKC54Kubv3UsxQbexSPAXO3vZG4uqU+mrdR8WfYqihMYsLKmMoogVG7CkqoVNLVHGEmEY9a3Nw5KaaGr9vRT5x6cw2YaDyPeTZfKZHPKr3lBpgwD5NUE0OnoKy1O+UcrqPCxPu0/lpz5jhUQZ1S/lYYWUP7t7ZglWyBqx50bXsUI+ifPt+B0rFF5TsqQ8Vkw+T/WnjfFxai2dc3XGx+lVxJ+ViEL7Gey75TSs2aJMnSOX8OnwSwrOfofP9r2iMLLAuv8SqeKg3P8BVR4yEA==
+
+
+ 629.858337402344
+ eJwN1Ic/1QsbAHCSXbISGZVRaYmUupHn+T0POUhZrVPIaUklURpIZCRRRlTnFl2kt3U1tJemRNEyQqGXyhUfUkTd+/0jvjRXVx/n6FwmFxkRFBz6RAub4zHg29+0enIyeB5WpcBJx6C1t5mCJ0bCiiZP2qpbiUtNJlCY3gKUdz5D27+2wfsntyh8zFKIXPeDIvqGgf7LcopOPGDffK+FYrQTQLLgPe2x1sFXpT8oXlQDM01X0j6ZJLgycJX2X5IKG9rtKcVIESOMyyllkwSNX0fTQbkOQS9vEKVbSiB2o5TSz/SgoXExZUr/gopGX8raJ8DQ2+4kPX8Tsmpu059HTgvqRk10XCMRIlT+oeMb9mCiXjVl5yrh0lY5OjF5Csr6PKITeXKwQsGRcieHo1fcCzp1+AJauwTR6eaNcOViB51dPARNW9bQ2bzbaEDL6BIk4nCXSLo6yRE3Vbyhq3/WQ1XPK7oWEo3dlt103ewIDL22hm5M8oe0eHu6PXU0LN+vQnczt6KFVg3dS1UAi3xnKh73C63OG9P94/VIxs30cP8bKDJ8R4/TEtHykA09cR6JCeXdVBLzHoqsrKl8w3rB624oPVeXQlH/Snr+wABNZZ7Ti/R0VO5roMobSShyPE4v7SJRY5chve1wRYdvM6mqfjDuuvaYqoPiIMdsNtWKU1FxtSq9M+oAz/h6ele4EFfEf6Y6fV1UCs2ghtfZmHmmh953RcFq7S/UnFsEWfqnqMVgEMys1KVWtwTw09KgTyeiMFnkTZ+v+8DP1XnU5lOO613HU/vQQYKOKIvaQzzgaaCUvio6UmJxHX294YWaJx5Qh60UZC7HUOdlNzS5Mo+61ulgxQZ16rqXhC61N6nbaTT8PptE3w0b8eCetfQ9NRoa2xfSD9V+vPdzJ/XK5+LmFTeo9/EvcHwWR30BlVhVuIr63hnBvtpq6k/pAfNlqTSg44Oq4c9oIHiTsFimhn6lnRMUzl6l37kClMreZxnvDDx6OpZlMmTxf7ONWaa+FEr8y1k2zxvVNk3lQeldgvm7Ih700gLSZvSynE4DGJwZYLmqOXjB158H62/F5IsuLF81jFTKv7GCvLdQuDydFZUe4cMN11jRXwTnxKGs+JRwgvtkVjL/m499a2SluAYk4Swr1V1FR9s5rOxvLsgqq7Jy6UQwb1jBKlqm+Mm5gFU8yyCnbwyr7N6Ihcdvssrln8K0hiJWdbyI4SejeMglkVDob8lDGkvQ77eUh9q9hWqPZawmbyaY7HVjtXmMwkEDVisewA6vIh42dJVgXtnLwwrScNqHY6yubo5ticms7usraHs+YPWBLcKhuG7WGPdFGPs5ijXF1vhtZidrpr7FkIUKrNkSAm2pQ1lr/H6sGx7EWm+eQf7XF6xtrIJWPJ61V88WZN4za2flCDN+F7L2i5tQsCWZh/snC0vkT/LwpGxhr/91Hv7oLry9v4d1csZAX1Apj7gTIpiClHUHO6Dg6sS6C15D0LYy1q2pJZuUZtZTiSeL2vust7QVwzMusF6RmaCv5M4jyz5Cw5mvrG/qTTkT81l/uYYQV3eXRxmtBMmsLTxqRScYyI7g0ev18f9m6WzcYgM+sT1sMms3pkQ3sUlDJRSCPJsWmGC+gjybufXBXa1EniBWxScXtvCEExFYoTyFJ2adxum317HFpK8oOiViC78m6DKp56neAo7zucVTu35AcZwvW847jaJ9UrYsy8NFI/vZSuKCaUeestWxWjj8Loyn6ZXAL0U9nrakEA+VBLH1MTGGjfzC08csh3rxC56hWy+M/R7MM2pb8WNgJ9tUpWBibwvPGvVKcP9QybO8JVCui/yHOBrUzN6y3egn6N8yku1yAvH9kgKek2aCY4Nb2N6nU9i7rodh/GSoD/Zj+DIPgx5pMo1rAnO/UKaSXthXps4OzqeBdSXscFADlXwC2NGwB645eLBjy2a0Pp/Ac8U3cMbmbp57Zw2GvallJ5k6rHNxYtEiQ2zMuMMiqR9E2A1j16Cf+LD7Ebue/I1C+CV2fR2OMaVbeZ5OIX4fCOB5a3txgmwluxmOgr6pS9gtbbb9J/0f7FbjD/1Oa3n+iGOwPnwYz3fcjRJnd17wWBM1WlLYfUQtxM6PYPfI2Wjz+TW7vzSG7XNa2eO+HozUtmXPskwctbeDvQpKMMd2Ont1SSF/8nf2XvQE1eRfsffRbWgZGMMLg6Q4tqafFx49hSjfx4tFa/Cvqg+8OD8dKu1m8JKj9mh9/CkvabLFwrHqLB67E6oNvFksdcftuyaw7yRtKHC6yr7PSlHLaidLztzA6qLPLPkRgtejZXjlGBMsNbTlVRuqoe2XhFddXAQOmTq82soOKh5+4rVTu8G88xYH6EtQ3CvHAeeiIMWhlNf5eKH8vfkcqJUNDrvsOfDUTzRtM+eNRm0YtseLN+ZkCya2arzxjR/mbnPi4AxrCP90lDc7HkW1hO8cErwFbP77KeRjOPofaOdQw7OC3E8HDi23heTuBxx2QFvIaGvisIfKeCi8jLfPGSLI5ijwjim58EQplHc+24TjZlpx+GZTlPVI5Yjdymht+4EjLVWhPauVI8W1uPOmmCPvyoFfZyNHpfmi8aQqjrru+N9TgRy96gicM67gmPNvIMhjP8c0pUOb+0OOHe6BOUamHHslFot3VHC8pY79xyH/cPy3VPxgco4TtLNxvqSVExqlqFl1mPeK/oDireqcqBGBcpktnOR5HXcGWHBSdjnsUFjA6Vk70LLfmTMfN0H74nSWru0Eh2SbfwGn8K4w
+
+
+ 559.769348144531
+ eJwNzocj1wkbAHCbFqI4SoiyKZSS/J7n+zyUSjKSSjSQK1xR6SpdU0slKiMUIgqdklRSKb3GcZ2VSEXROKNEkdF7n7/gQ7Mk/GBd+FyyGl0nqvEOoDl9b6C5JYPm/iwFqyoNmifShK9KuiS4pcAd/XAig/d4zOw82Xm/BCunYrJvykT5zbbk4BiHUrkytFi/A54uUKJlQ9KitoUHycXrMYxreEtuntvhz733afmBDHih4kYrdF6gba0veZgOoeTGVbRy3XbUPHKOVhnehsrPmrR+mqOwgDRo/XAHtJbbk99QOqrMH6ZNQ4UYk19OQQ1yUNSTQ1tn5OHkUEsK1tNA05GntM3GWNj8YTxtNwd4Ii1L+/44CZ/UJWj/+D9R8h+mA8cLwK5mER0cMweGK2rocMRVNLtTTeGxiiAv94SOyj5EtJhLxxTe4W9bDenExBQ8q9ZLEdYEkzf8pIicUpyjsYpOnn4oagvvpdPS3+H4rRiKFF2G5FXzKfKnNdSInCgq1B2i3/vTeS1PnFzxlGIuV0PbmRaKM0lCKYeVFG/rhpPtrlB8VCHOPuNF8Z2f8fkSB0pQ1kUbi9mUEJ2H0aV6lKgiD0a/i1Nigi20PbCmJOM9EEG2lDzWDz5aZlFy5AwUO6JBKZcVceLGOEqVrYezn59SasU+FJdYRpcNZHAeX6E00SG4PnYrpT3fiW7/ttO13CTRSOvvlHWpHzJCailb8QPaFVpTdugWsPrwJ133vIS8M5hyR6vDWeMjdFPnJRZU3qebaeZgtbiH8qymQoaHLOXdCoKTswS6pWoNLimLKT/ZHQPMDOn2zFMYXl9CBWaegqLvNroTpwLlI5p0b4Yb5mvbUOHNWmh/W00Pzvfg8juJ9HDWf89ON3okvwodLIbpUdZZmBQnRsXiDXC4IoqKPZ5A/p4bVDwSgFJtg1Ri5iMqDXOkkvxX8GSMMT31HouqOtpUqjUWRwX5UFnTUtzUs4nKDTwwsDyQyk8Zwq24NCof7Ac7uEaVKpai8msnqfKEEqZG3qMq3RR4hh1Uld4AWqld9LdtBwZN6KJn//rBlXCgfyoP4ek54VRta43iazZT9d1+cDUypdqgv3BFlyHV3RSwv0mM6vWHhIlG96k+cilelhqm5xI+mGljQc+LTVEuPJperHEXdCScqPGiG+Q7XqAmvSDhZ/APaopYL8gWjqGXMWvxtkE3Net1QOf8JmrOT8INngP0yswfCydU0KuoABgnG00ts7eg4Yf/UUvREqhW3kWt3ovwgHwSvS1IEox+30vvvgAEdPZSG1ahc4I+tQ3fxYZjNtQesgWiD3dRe80eXKSgR++PfEbX3Bz6MFULzcVD6CPlo3rndvo0ECCMu1NG/4YXwBvHr9RhZQ4fVVupo8YFa6dWU+cDXbDL/4u6bBjrDRqp60IDLCzrou5ZXoLsybPUXSKDi1oC6XPEeWHKj1H0RX0qKhlF0ZdMY6izN6ae5cGC3rgh6ilahHl5D+irtT2mn9OlrzF3wXBuGvUa1QpKDTLUZ7MUW53S6JvJUzikkErfeo4LV/fvpu97J+Au2VIaKNmFV0ZsaNDmh5B2JIsGT/dCcJ0lDen2o8jjJQ3VPRSMJGfTsHcwdtzYS8ODL4Vll/xo5MIhKJtiRz8zdwhajkEsZvJeiD8UwGLrA/BToyGLZW0Qzke7stg7d0EvQI7FFU9BtuVnFvfbjf1Hr7H4xe14JKeEJST34NWP/iwxX1ZQj97OEr/FQH/lNJbIUBWs6zJZoslb6CsGllS4JBjFLmNJUsaU/b4sWf0H/pF6kKUm9+HyZy0stXIrfh+tylInd2P7wRGWanIXsOsOS1s2CQbOaSx9vAlHjmqxjLe5sP94BstcLxP21E1hWQN1dPynmWWXaQoD2Z0su9NLKHULYNlUDTrh+DfLthRjb2Qty2m+xt8Du1jutCq47hthuWcuQuxkLR4l/UpYCj08KmULGcjs51Etv7Hc8gM8Wq1fUBBv4LFj4lGzspvlf9ktWNiXs/zyMAxxsmP5ejuIuLaCFZQ/wqTDvqxwpgXaDrez4prHeLyoiMebLUKzwBesFJWKOtN2s9LjMpiDDqzcbAzvvv3CE5VL0Tf5AKvoF2Br9llWidVB6fRkVnmfBunPLFlthircLYxlded01InrYPUP73Dv/ljWuCkOmVVNPCVaD/LFdVjzF1eIHjeFNY+VgMG7vayVc0aIjnzL2ntngcHVHNZ+poPjlmXyVJlGyJGx46lRNyE2/wrrxPRD0foA1qm/jV88v7Ju8FyY/tcg6+b9ivsazvC0LxeguCmUp2tXQPbVQp4efw3k1U6wvpkXjjYsZf3cTlFpmgcb7BvA7nVBbOjpAAdzC9g4NgcGPxux8Rs1PK7QzCbGSyFs6jk2eTQGXbuvs6lwGE+pHmTTIzH4/pUtm/Y1g0HfWjYz+Y5+Lc5slnEF3p835xmJq6H5hxTPnJiJrhZBPDM+C010Uti88ZFQ9b9Stph+EXMXSrDlr+nQYV7Hsz1K0GtsOVt5huDb3Gy2atFGQ6edPGfSRozM3MbzVOMQz8mzja4rhMWeY5u1CdD4KJTn6xdAFJxl0bwBkB/twKIdVTjLJI9FH2pRtK6NwcAZOu/GMWo/Rv97SYzRnwRZjmBs74Iyf1cW1CvgdhEwHUO0TBRj+rseut0qmafpoLt1JrN3GBa83sR2MzTgXOJMttt3D91mZ7M9bsDHJ6XZvtcG8k0leMFtV9QxSuaFKTGYrv+VFzYeg/g+RXZQuw8HG4fYIUsG9Wf08iK3/fioy5IXByZC7I6jvDhnGsrbGPHib4fQVmIXL8m9g1LFs3hJkx8Y9Bbx0glxuNl0kJ2+qGJsmRgvM1uNwrYudl5zFI++dmKXN5IQL+nNrj4JOPDdnl1j3+LCjQ7s+oUhPryV3RX8IUzoYfcduuj/rZzd0zPwAK5j96YaYTxfZY+EyfD4agivjJXECz01vEpZATM0lXhV62ta0G3KqyetFDaH7mRPL3+UhYm8pjkS3gz2slfWWAiLvM7e/32W7LzHayX7wEdTgtdZnIOu1W28LvkWLpE0Y5+lw2BVqMw+CU0odSONfUb8IUG6jn3nRsB16mPf5F5EZxH7fgM8cCOKN2pfBPklk9j/TCk+U67iX9f7o+CSxAEWiiiZvIUD29WgwnQXB6Xsg3sLfnDQ6wuo4KrGwT8HsN5TiUNMRglb5KQ5xP0CdAbM5VDPRIgPdObQZE+I0hR4V+8kePC9nnevsBS9S3bhMBdHiN8kw2GN+mCw4+b/AUquYfQ=
+
+
+ 973.402099609375
+ eJwN0/s71QccB3Ck3NJpSKxcdnQhnZoilMvnc75vxTou0eWILmcOEWPsmVC6iIQz5H5Zq9ZKJWNNPTMq6SKJclmUJCpteephNWvVU+vH1x/wEoqMgtjZeJZQ1BbI0xY0CMUSEZvOsBXqDfy4wvyqcGWqmCKrRMJVfUuO+y1d6DGMY5FTldCzo51LB2VC7+TrlHZiVBg4tp7yxBeFwRwVHa87LTxNG6eohM3C87NEw651wph6Ki/pK4Ba0R4KuBMK9fS5FLPNHRpdmfTz7RZoZmXT08nAxOm5UttJ1ZhUeIIcVz6Flo4u3TZuh1bhOQroaIS2iSmd/XMjdNP7abhgFnQHvPnwDUBv2Ty2VL2AXlcy6dd9gSnTxWwQOAKRqxGdE02FSOnAhW+8MTVrnPyVSTCYvY7OWDyGgbKdZRHGMDZrcG/19oPJzJvkkSeBSfEoO6AV5g6x7G4jhkXHH1w1UIpZQcm8em82rO/Y0pOkDsx7v4QVSSmY3x3HtuH6kMj6uTnFCZKSN3RPPwoLkE82I65YaGXLkoAA2HX5soWqDIspi6rDNLC4vIm/z9WDfbAnqS0SwWkgkkLmpmPpw3jW3mwKd18d987l20HmtTztiRSkcCDFXnuwqJL+zXcDsi+yPLwZK/oEUnNZAU/9XfTftVx43k8mj/w+eBmf4aikdngFSvj3ADt4tbXyFCMbyMyDpPNq9kGmvMuHYQ3vNQ7UvSoJ3sWF1BOcCe/OX1j2KBY+ZrN5gp4An7Ay0n93Dv5bLFmpaQH/ocf0pWEYVu9fxZl3S7A2QsFFWjpYJ1lDf9dqQr5sO1tnzIc86S2l/aQDecUmqiqqwIbOXvK9pA2F+BFFRidCsdGB6rWtEOKqTg/cdiNkt4m0zPUFQk6PCS+t8xByz0y4MNQEpcYAta1TQNlZz1Ge1Qhtz/Ew2mmNMPVVWB9mh7CjfTR+6FuEvbZiWZ4SWy738+jCUITPMedh51hEeOtzR6MTIm5cpB2pP2Cr20nWvLIFW+O6aU3TdUS+/oSfpU5H1GxfqWbJHERnREozLnghutFL2vvXe0SPOQpTIq3w9XOJNPGuC2Ln3OJN0rWI39/LKeSCbTrHWFkkR+KpVGrXDkdSx01SxX+D7TM/8OYbXkg2TyBWuWCnTR2/Eqdhl/y11Cr+CnY9tuT4ql3YE0GcrxaEvYk1LH65D6knrlPF+WTsKxhk7Z4AqCJz2WCDNVTZpRzkNgPfHXCmI8Iz5BhqsqzTEDmOy0kl/+hND6nzQy5yn5+imJJRHAhN4GJuQJ7cSDpf4x/ku5zk8sYhFIzEkD2cUWo3TAWj/Shzbqa3lIKywFoK8GtAeWobTxgawcFYF8rsuoWDJxv5UvdhHHJt4gpqxpGPr23eXcOxtWWcprsSx5fWcmX5GCq0bVjvQx9OjdtQjFYlKvtbqGtRE07rPaAHYT+i6r6C1fwsUaPrQwXx2vjVMIWq7c+jduPnHNckRp01k1nWp6jz+IzOv5Oj3vQZh3S9QqO/OQcPFuBacA2brdZCi0YEW0xsR8vSCZTuM4DW3UM8t8EWbV9to/yjwWjLziDHhHvoVJXRijOF6L6czOZHXvwPTZkF2A==
+
+
+ 682.331909179688
+ eJwN0ok71/kah3EppxDFkSUk+yGhzdKI5/l+3hWTUFJO0pgKKaVocaLNUsmWlAiViWhIi1ND0cjSlcoy0cIxyvGjUpqmPdFM/8H9uq5b+LjkkqVrrwg21aSwhZfE5rW/UXtLr9gxbE7xNx3EHmt1HjctWuy1VeG1JSNF7NhoKtraKQ6ePkVyFtNFcm45r7b+VaTaBpGenJc41D+CendpinSD+ez+NFEcV48l3TdO4vjhq3QmtkbkVH4ltddx4nSqFWvvcxf5Q1kut046i2LLdVQnf1Wcv2LN6qn94kpGH23qsxDlp6+TfU2NqDz9jOY+uiSuVxMrPR0vqos2sn6embgRvY/svf1ETeQWdrrYLGp1OiTlz36iTreUAsqaRb1+OA+duCJuluSz9sHj4paKCU+dnCQaAqy4NHyDuJs1xkV2u0k0xRiRudaPojncgceHV4iWQxp0+WOz+K3ei8cYhYp71zp4pk21aLWax34XSbRZKNGLKn/xYKE7FWYYioc/p7B6+2jRXvGV4ndWiw69Ilar9BOdi5WoYaWq+L2uhOXe/iK6zDdSjnaZeFwRToMH5EW3WEFdbbVC5utELx/6i96xY9mre5LoU5spjZptKZ4HZPDOpgWi33YP7ZTfLl44a1LMMU0xYPGORz05Kd6ZOLNKRb94X3mQsnNSxOcx5VwzGCM+V99mR5M+MejpTte2nBJfSu0orbNVDKu/ZMfG1ZAzukgtGq6Qy94oTTwUCrkXznRlzTGM8Cqge3a5kNe2oYDfZ2Bk6m4K2/NvjErezQbmGlCw3Ex5ewug4CuovWI5FPLSKG2wA2Ms3rCyfjwU1fyk1cFyUIy/QPb9u6HY4cSJbU+hpGPBWkZ+UGr6IlltXoyxA7f5k0MQVOrzWcFOA6rW1aQ7lADV9L9IL+oqVHvVeJPFF4zfUsgrjjlAbfZimmJcAbX4RM7f+wHqxdPo3adBqHcpcIrrNmiMquX/d7VjQvgFfua5C5pn1STD6ZHQ+sdJ6nXIgNb3b6k1xRvaboUSIk5A+3OjdDUqAzqumRS/ZSt0YrbwTo2PmNhzXFL75tdd4iqtz3gI3U5/tj+3AHquc2j9+e3QXx4mTcoygf6RZsmIXTHJK429TcswqfsS65juhYH2IVYqHwkD7zi+LzsMg7Pn6JcVy2DQ85FTMpQx2dxXUnPOgqFBIlkqdsPQp5GzhSMMD9ZLFyJkMOxsZqOHGTAKmyblps+C0bkCqWV5EIyGPTnCwwUmIaf4rLsMJkWR/GieH0xRK81KD4Dp/XNsauoOM51IqegnVZjN+yiJ4UKYnZ3Fl53mwEwmpHfzqmA+vpVNZS4wz5JJu4/8CfOWO7yvsgz/EopS3Ns4WA510jVUYcr7ELrb3Iapwxu4W/YB1uWFnFZeARvjddTW/RC2KlX0pmIcbJOKKX2lFmy7JlBsaS6mmcioTqEd088EcrptI6Z/deOV0yox81kEq+raY1bvRhr6shR2U7U4RiyFfc9LqlN3hYOxOXmvdITD6xMc0NsBR+MNHLhuOxyfGbD3/55jdogkqdkk47vwmzSoWYfvBhS5IbcKLjJT6ejFGkjGTHrmCcC376NrozE3/zmHFcyAq2EczS1TgWuBMxs0GcLNJI17Tc7CLWgHZ2ZqYsHAY459vAMLH+Tw/LBieOiO44uv38BjfhertY2Bxxefb72l8Fw9laudIrB4mx5FR3RiSUY4RRv3w8d+HYcOesCnJ4fzGpqwVN+H3VwjsXRbFOk9LcSyklySc78B39RcGtjtiOVltXxmuxX8NoSS7q8/w/+fmXxsTitW6j+iU5/68INBqItMeRt+uN3Gy2MNsCrAk+65uWHN8x52WZiHQJskHnpCCIw0oZc3QhBYvJZKN09BYA94WchkBEWPpD7PKgTrfqLhXm0EV+ewutklrPW34KIzzxHyuoEsV7Vhne8S9tK3wvqCBNKzC0Zo/i1KyjmHDfaLePKkGmwymMvzzc5jk28JWSgPYVNPFOtE6yPCfz15e+xHRNcdHr3sACLX/IeSGy8jyjqHd71qwM4/Q3lZ8SLsLVtF9gOqiDnsQ/NjLyPW6zSpOrYjzrGS5948jvhkedZbI4/4wg9UtN0O+5oLyXCEP/ZnNNK+iTewv+UvbqALOODzgfK2jkDCeldKT1VAQqs6/ziogYPpSpyQcRSJUcV8srURiXf6efQ2GyQ5jKcU83lIum/Ll0cOIel9Hy+yvYdk5RTKrI9Bss0T+mNsP5Izq8j+UgJS6lyo6KMuDl+34wnpBUi/LaO8mPtIf5XAdw39cETlKdnLgnD0gy2lb92FzAdV9N9Vwcj6NI7XvtqF7An10oQdJ5E95ydWmNGG7JJU/v76H38DWIEaNg==
+
+
+ 518.238220214844
+ eJwN0Gk41gkXgHEtCgkVErL2ZHuSNFkizvmfE08qKZEtRcZrqTTaJ5QoEhWS8kai0U57qcmbHqMmy0hGZdIMkr3EFC14+3Rf1+/jTaraSSBTlkRTv/qC9lYr0h7phPkltmQyMwvE/I5MFYrgeE4fmX0dBjHU0ZzRF0DGehFZLquD/h9ekZX+b7BWmkHW6h8gOrCFcIoBTls1joSWPdBzPo4Wdq5HVaft5CSNhYHEh+T8NRIilhfSIqUecN/8ilzHtqC6fRgt03iBU6rXkFuvgE5DDrRivAQuF/xOXqauaNHfSn7D68G2vY8Cxt7A81/+oMCFIbjXKpMCuxVwavIuCno4DL1xyRQqPwdOKEdSuMoadPiQQhs8VOBscQpF6GaiuFGDIgaKIcBZQpHKZ6DJpZA2m9bB/sBB2qKpiKMvqtC2YF/EDCXa+8s48H8mojiTbVC8zoz2WevBLfc2SpjoB227OygxQ0mQezSKUi6PhTrFd3RojAQCvBfQYWMZCAjPp8OpEkjlCkoVtUHqWk1KT6tHdTNlyri3B5XoCB0TXULDJlPK7EgC9/5+Onm0HPw3iihHXI1rVmdTzhcviLrXTLn5iihnkESnLY/CfaNPlGeZhln7VSj/vATj5SLpzOVCsL6gQ79kxKNIvpMK1MrgfsBtOqtbD1nyMXTOKB6SoxLp3N0tEDAjii4YaeCPsbPp8sx4DBsbTZezwvBReCldtanB3YmhdPX6Jdw1f5iuiaox7v0buh6XhPbhV+imoR7sS/qRbkvyoGjVR7ozPwyuRMdQseQJyrn9ScUnVTB74AzdPb0JzVIL6V4W4PrcISoRl8PBdqaSr/XgfjSEHqx9IbjsKKMHUmPoddShUq1KuGdVRaVn9giidZZU+q0dPt8Q08OiMjiVL0PSoHh4ezGayqJiYGGqlB5FlMPNN8n02PtfwcAhiZ6Yr0Cf8t30pFQJeppqqeLBZDR3uU2Vq2rQa2AnVU2Kx0n3pVSVtNLxdxhN1ZcKILfvINXkq6PXS1V6ekBHcJxlSrWXbmGMpyc9m1gCT/4ppjr5XiizIqq/bo9XzSPpeUQDbh7qphfxfphzrZ5e7q2Bosm7qaHwKNxsl6NX4gZB9m4aNRqWoHT/cmrM88R5vf30eoYpmLy4SK9LAO7LT6amgESc1axNTZVH0HOuDzWvVBe8ZTqoZaIBrslQoJY0BWifvp3e2F1Dn+Fl1Jqgg3tT91Pr0ArMXdpDb396JYy2C6K3fwdDj/xJ6hhlJczqQurw7cb2ei3qdCvHG//Jp87qlXCHHajrvy6wLyiOuk03QsXsJOpu9BGcMsyox3IbJNeF0XvjbcJUI03qdbXHawnbqbfSVGgqGqQPgapY92E99c3Pwdpxr6mvQxFjLIOo30cGF6/Xof4KJcx6nkL/GvtgsWQBfbSrxyXXD9DHRhv8taCZPvV+go2/LqaBS4MCKMrR4GyxMP9UMw2e/Rmu8Hv6XN9HMvOr6YujAhVImulL8Sv87aWYvmp4glLiFfoarYd1urH0rdhToPF3aMiM0VflNg0VvsPW7Coa9oyh63bTaLjUmPUsjtGIUx4YnRd4lOWvKOf0F49+8gh1yiQ85nMZzrntymNN5sFPFkksq5yOqyRaLFt9EKctc+Nx44vheO85lvd6jHvT/sfyJ9LAOvo9K2hL4eHd26zw0RBtli7gCXN3oX3rKZ54qhVuratipbXj0MB/EitrnsQpy4/wlMztMHPXKFZzdHZ879HFaqXP0Pt1L6uvfocbNB6zes9y/CvSiKfqBoBzTCVPHU7Cq5P9WAOeC84RIawRG4E367p5mvcJaOquZc1IGbR/upI179rCh/HrWGtCG+aeEbHWy5ugZDaatcEe0o9v4emNbcKYI5dZR/cQPM1JZZ2cg/DAcYR1E7biox0FrBdaAxmuO1k/ZANMfHSL9bODUG2uNet3WAtzF8ezwbxmvK8nYoN9xhC19TQbNBjh474gNlQdi6OymA2ziuE36X6eEf8BV/2rwjOedYL0hAuL9LdB//phFhXG4sxCPxZ9SkWlgGQ2yjgPydkKbPTUAw3mvmJjo7nQfaiBjTeoYV7UdDYxC0VbsGIT/waQqDGbVF5FmQxlNj2UiY01j9ns5FpQGv8ni0PzIfcPBxY/HxG0nmnyrH+mwUfxJzafZgfp4dvZ3L0Uiiz02fxUFewb+O61meAumsyzL0bjiThztpi0BgvfHuM5KXsFS80jPKc8HRO69PmHNn2MEFeyVaE7Th6cxzZG0Riqass2sR54XquBbdoMsSS4mG2n6oGMSRgv0PoMFbqLecHZXljoXMQOB8eA7bynDOFS+LsbGP0342DFDsZsSyFkZyzTz85Yo76K+WQKFNn58sIp33DJnzm88HWX0DVizk46PwhOUM5OHlXQ1mrDkrXhkJunxpKmUJyX8DcvapEF67gF7LKiF+3W7GGXq1II2HSGF/tvho+yYbwk+6Bja1YCL53jBzKm35s5ANZL29lVbgLamMbwsrzPKJMex8veOkNUhiy79WhB+JsZvMIKUeTvwB6KN/EiV7NnpCJu9z3AXn5vMHnTX+x9eALuDw9iH6OnkGW5iH1DvHBM4yRe/ea648jsWvY3zsfZ9W7sv24LOtzvZP+0daj6/V/A4y4sNDfgwAAxREkNObBgJ64eOcfBmipoObSSg4MrQNvFg4NPWaCWxRcOyV+K9RZuHNJ4xXHkUBhveDIDImIreOONKqgVLedNE1scW3dd4W1VsnDimCv/fC0RsryL/g9k/axE
+
+
+ eJwNl3lYzd8Tx4sSQlqlfUFljRZKITNzPmXL2hcpS/ohslSUVNrLUtr322onWpBKue33pmiTErJWyBZCxO/+9XrmnM/MeWY+z5x5Hyg+uoUCduyA4oAj3IJsCyjmTWWDs/6D4p++tPtYEZRMesvWJ7+CksnN1KMvCSWab5h46w8oSXImj6SZUMJ7ydyDF0NJzhCT+F8ulFQMsClz5KHktzQ1LPGH0vitlN2gD3cmm1Kj4RS4o36fotNM4U5SN/k+74IypQMUlxUEZbzblNDrC+Xqw5Ru7QnlGR2UoKUE5U+8KTtlFdx1W01F0m1wNynE+uTLxXC35C4nHRoK/El/aPHtFuArf2TfxnHAVy2gV72NwNf4QUkrYoGvDZRqYQt8nZu0bsAe+NO1aXi/NvDnbaBVaXuAb/aLKqUmA3+hM3mOmAv8ZfF07lUk8Nc20qluZ+D7prIJaSOB7xdMkbydwI8VUskiFeDH7Sc+fxfw42dRXZ0oXvw58j36S8TPlPwoGfiJRA+Sb4h4k61prgR+0l3W8CIa+Cmhy24MZAE/dYiTPqcB/LQktmDGYeDzJJmYzQkRLzKFk27ATxdnkv+zAX5DEJ313Qj8ljuUafgB+G3eFL9lK/CfD1Kg0yzgv9xMD4cHgN/jRXZ9+4H/to/23ZIGfv9bitojOueLESV+dAf+95cU5qgL/J+JZINGwP/1mMo9q4D/O5IiW1KB/1eeku5vgAppQzZj5X6oUHKkS0GGUDG5moFJOFSofLHxG/wBFaoD1JBAUKFG5JRdBxXqpyhnXjFUaKxkUxe8gwotGQoPbBfxFC3+3QoV08LofM4IqDAOo/0z0qDiv8OUvL8WKo49ZL+ry6DCL836HblDxfE82vtWGypSpbjI3yuhosvcZlGuBVQMT6GsUb+g4u8f1ldmApUqtlS8LQ8qVd2sIzProFIriNW89oRK+2RuzFJlqHTMpOtVRlDpN5Zz3nUEKlOV2VS9iyJWMrP+aVBZnk/h165DZe0CNq59GCq/GDCxjQBVqrMo2O8HVKl3UutHEX0KaNhcBqp88yjxyyyoivknqm8kVKVFMM0LY6Hq7A5WMTkLqv44UtndUKhWPkEXFFygeko9NSz/BtU+LuThDVCdvI3WJo6GmrRH5JbaDTXp16w9StWhplqaOKNQqHn2kuMdZlCrqctUQ35DLXeGQpseQ22KH6fNi4Q6lcc0dHcH1C0dQ1+9c6HOr4jOfk6DuiextMVEFwSqb6xvbTIAwZwp3By77SAIH6ZdXutBECFFB+TKQRB7mQoKXUGQkEPd1R0gSDxOuWNLQJAygWLWTBDxBfE+iPzT7DltrwYQZC6iWJcxIDgvy+aXzADBlZt08ieB4GofhccEgeBaA5tAi0GQN0SnPQ6A4OZ1+ms/DgS3rpNgexMIbvtS8kk+CIp9KctzEghKXlPQ8RYQ3JGm/P2KIKjIpiiVUhBUutIpxecgqCXK9ZICQd1JCpqyGQQPJlHIeh8QNDtRZNxdEHRsJx/HPhB0PqK8y39B8OI3+Rm0g6Avi04t1QTBh7eEbeYgFJOjcqvnIJw0kmJt74i4mSrOXQehshGT7xwt4mc2rvEuCCfzmdqKThCqnGaL0pmIL9jlLW4gVJPkRmaXiXiJM8sU+au/WfbFUABCjR5WUzsXhJp7OeOTDiDUmso2vZQR8Qw7qyqKp23OXJ0+iZjLrKZfBaHOMeqVfgZC3XlsxPRsEE4RMlnLbyA0mEdLMkJEdCWbEZIgNGmlk4mVIDQtotwb8iBcOJpQX+RvIUaP9O+BcGU3pZ9YCsI1A3RFqwiEjpsosDMOhE7hlD1zGQh3PaDUEEMQ7k6kLDoAQpc8enJElO/+EMqXyQfhgRRyPnAbhG4GVKTYBMLDddQwVhTXu5ot3HcGhMfPU6aqqG6BUST02AzCoCtUmacOwuAUejYsyjPEkwoetYMw1I6NqdsKwnAjSvcS5XFqMQ1XW4EwahOd2WkKwgQ9dqjUFYRJM6jmvuj7FKDlFxaLmEu+fo0gTJ1JV2dqgDBtF6OrU0HIk6NLS46BMH2ZTd4PUT0y1jHVMgURXzOtnikgzDxIEWH7QZjFp1IPUZ2yzag08SkIc9Ko6Kg9CM8VsVFPRfW+9JlW+c0GYeF6ClQR/Uf+PNq+ZwTUT7DlDHxdoF45n7CxH+o1wqxlCxdBvaaA27fLAOrPZNLjiiVQn6DE1qvrQH36AxZQVw31mRZUVHkO6iuGaFfLergndogE14VwT8WNwuvfwr0ELzZ6VD/cS9K2ztESg3tfPlNgwnRoUD7JLWwCaFALIH/vfGjwmUQFGvbQ4MtZD9p+g4Z4WW52GoOG5BGUvZQHDcOFnMzOhdCoGEYhvgwafW5y8h6vodH3Fd28Lw6NadYU5zsADzLdudIjHdCk2UHB6/2gSauXFcalQ1OqHLPvLYemzGtkef4SNNUM0/V+a2hWN+Us9S5Ds/Zja/+WJdDM3aQV/hbQnPYfFxC5A5qzGbeq5BU0P4lhVRPsoHngN21Zz4fmb2PZpVweNA/epDMZI6BF4z05qy+DFpsgNn5cI7TENDKu8wq0Sl2lwBf90KpxiIkZiENr7E1ubMRJaI1rsA6x3g6tadOZw7lj0PpkNznPd4Q2BXHquFMDbYpGnMb3XGjTfEC8zUXQZjOaTg9bQFtcEvNaZABtL2WpftkdaFefTX+VJ0O7Ri7bWnoA2uMfMn2rH9Cecpo2Ps+Cdt49FmE2Gh6pLueWrQiARxonacPGq/DI3pNdixGHR9v+0KlpGvAo9Q41bFGCDjUeBT9whw71AGLGx0X8Tcllp6BD08T6Cu8IdGgl0svxAujQ7eCGq2OhIyObWzc/ADrOAsuSPg2dMs0UELkPOjV2UuSlFdCpvZCluSyCxzr+dKBqNDzmzSanOht4/GMVpz1HBrpktJi/rDd0RU1nS2Ydh66kampUKIauTBc6IKEIT5QiSXB/NTyJUiXee5GdsZLCJGbCUx0xpp6gCU93bKCUC/nwtEuKMj2/wzNVc7pYqQjPPNrYqMFn8Cxciy5/iIdnWW1sT8EOePZUjQ5LbINn38Ywef1H0K09h7MIDYdunW9stP4a6M5KZ9Mk90N3dRonPecVdD+pZD4db6H70z5WdLQDnqvYUMzOJniuO4+T+6APz3PaafemBnjeZUPHh+3gebcl2+LzA15M1qPkliF4sSOeXLI4eNE9jY4kvIGXCQbU73oLXqb8IQcrhFcOV2i/50F41b2UiW3th9erbcirwQ1ed+9itcM74I3mVbZeyhjebK1nGjmK8CZxNbnYesGbnD669uAv9Cg706nwg9CjkUD3o/WgRyuLus5uh57tVWyHzSLoyfrCtG+6Q+9UM3b2v7HQu6KOTfoVDb2eGWzdlWTozT7ERs7lQZ/qHIof4Qh9OmdoUKALfVmb6cwKPrxNC6KyP/HwNuMBeVW8hnfuc9iIoqfwXnstBT8ygPdZluQf8ATe566wfnwwHvo1NNjNrTOgX+cSHQz6BP26uyhaUh/6ZxVz9dp7oN/Rnm3/tQn6r5kzw/A06H9mRok7reDDVA8qvOoHH2bvId8X6vBhRy0N/rkAH7oHKF7NDj7mHKTQSgv4+DKQoko2wqcpufT8eTV8nrqT4p8WwufBeqZ3eSN8yUJyXW4AAzradD3oAwzMLKF3Y2xh4PlOtvhWBXzVSqKelCT4enwit1Y4AF+flnEHfrXC1xe6tFOJD1//eVPiiwj4pv6eNVs/hW/ajtTvrwTfsi6QW2grfNe+RVHi7+G7KK89C+bA94W2dMH/EwxO9aIwn5EwOO0kvYUJMMiTp5w3S2HwvCVFmCrA4MAKcne7CT9F/eBg+Ah+1r+m9J4OGJqYSnvT5WBIQ6Sjxq+CIcdwinPxhaHuXnIaVwi/DXZSoKkK/P5lSnuXG8Ifex7tb9ODYa3DtGf6IxjWP03lWZvg76mZVHJrLvzN2UkhHfPgX0MAxes+RbGJ1XRklwqKmb1g14+/RDFbRg/ehaLYTpH+KLRCsRtKtK9QtP/gPbV0XEVx2UPkHeCF4nND6ISByD6wmZ06YYDih7TJd7cDip8JppoTJSgunEpdCjNQvLmIEvZk4Yi1GlRUpoYjoo6yg2PycEQM0JmBPzhy7QL2a5oHjjygTVXHXXCk2zbmbbQXR8ZsoCd+vShx6D6l3eehxOlyirVTRomoAkqdBSgR3UaZW2pRooXoitcQSgwk0eF8G5R0aqew1S9QMmoBxX9chZIt02mDIQ9HGXoQr/Y3jlqdTWkJT3HUGmvaqhwh4jtyHumLowJtKPmYBI7KNqY01484quA/Cn9nhFIyheyn4TiUsn3DdI3KUGrNbWbucw+lDs2lxlc9KBVVxhRf/kCp6O+Ub/wepeJGsISdfSiVNExByZIodUOPjV+8AEevVaP4yls4emMX7UldgqPjxrHRU4pwdKUpea0rxDFyOZR5XRvHxGZSEJ3BMYWedHxLC441b2ErXivh2NXEFA0/4dg1t1jeaTsc63yH4l/9w7ExElSjXIFjHy3nTDWMUHpSIHP+mo/SK9opwv8lSrvFUekME5SOsqXQlkKUjrlK0XrdKH37Prko7kLpT460N9ENpb8YcrJOa3CcrDVLf9WH4/aXUfjYaBwXFcpddTyK4/LOcmMHc3BckxH9ntUjYgfTkzbB8Qtei94RIt5YQ34X9+H45gIK2v0/nPBPj44lbEeZ9c10zj4MZR64UsjmeJT5/ZYijm3AibHJVPgpDCd+G8kuba9CWQU5KmweRNmYLNqm0oCyeXmssuEtyjaVEA++otw6kS6o7kM5t3nE2+aGcu4iHVf2C+U8DpOP1jeU8+5lo3aroFzLWWY1twXl2hi94Hej3Pd8yr4Rj/Kr7G1K/T1Q3vYKXZ/JR/kdZykmeTXKO5XaJH3OR3nPanIJfYDyR2VsrMXsUD5yj3V2wEqUj1vOgv+0ozzvM7mO2oPyOVXctcElKH/DnUlVpqF8sTLztfqF8m+jKWfsWlSQX0ox3p9RQTeVrlq8RYVV5cRbKVrPiWRfh4pR4fYA6/o3BhXuH6ceN09URFOWuMgcFVceoaGBRFRco8qCXTNQ0aGbndauR8Ud7ykhYyQqupQz78QlqOh5jYp+yKGivwKdT36DilF1zAXCUPH8TIr6IETFZn2KmB+NSutqKW7fb1TapMzSd/aiUjzRa4vvqJS8iRJWlqJScSx38eBdVLr/kzttWYlKD90ottMWlV47c6PPSaPSrwvUvXc/Tjq4l5n4OeGkqCRKsTfASa2nKTnjI042nU/RaqNw8sHV9O6IAk4OnEb9ISaoUuDAtP2dUPXgArq0MgFVo89S1KMaVBX1e4nfC1TNnsJifmuhaoEKVW7WRtXKWRQviq/aupbicpVQTXIMHcg9gWo3uuh971JUu2tFvuNtUa3tJxMP+olqX9MoQe0oqk9sJb7UbVSXf0wJk9tRfW0P5em0oLrdfdbU24fqRz4yU90CVI/yp4GvX1A9+g2Fvv+LGkaR5OMdhhqx5yjF/ANqlJ+gB58uo0aNOZ3oiUCNFjuqsnVFjZ5gatM8hBq/6ynu+DvU9PjEzPYuQs14bSpdvh611ntQvOie0/Y3pR0pj1E7NoIuOeeh9sMl5G0wEnWmxVlv6PRDnYVD1g6HHqLOmi1cV6A16vwvn3PwS0GdY0Ms3HET6sR4M6uQrajTHsZWZzqhzveTdH/7MOoqFjC5BZtQ17KLDlT8Qt3dcrS/vxZ1W/RZqug+niJnT6l5pjjlexuFrFmIUx/OpAj3tzhtXiC57/mI0yyzKHP3CtSbzycfI0fUc7tN1b9MUS9G1H83G1GvELi+NjfUa3XkDlkZod5XL9Yzpx315cPoYIAU6vueYiaSi1HffzTF7XyF+uE2nDl/E+rHDHO6vcdQn3eeGX4W8eJmtu98JuoXSrOcOzJoEJdF0SE30CC+grIrb6NBWQgdb7PF6bMLmdR4E5xudET03k7B6YvCKSB3BE63FuXr4IfTjz9nOjkWOD3ejF7ND8Lpl69RmLk4zvixkkkq+OJMJS+qN1PGmRs86W7NHZz5o4++fDDFWUs06fxqT5wVI5q7jw/irFhX8gxZj7PtHChmmSvOUVRndwf/4ByT2eyM5l+c8wzowZUUNIxWp4vbn+FchQ7iLarDefKpLEVrFxqtPcsy9jmh0bqv5H3xMBrtlmT3ut+ikVcWeUwoRyPf7eywdzcaie7RWDvReke0tVqOIhorN3BLZ5mj8SZxEkqKo3FMOt1xbUfjuKdsZEcEGhd00af+52h84yXd3MuhcbEUG/n6OBq3tFO+3Wk0/tlHjy97oInyN8pLcUUTu7P0UKUOTRIXUMSBTWjSqU4+1j5o8kuOcuepoGl8N2U4SKNpqwKbZuCKpl8NmWGcP85/2E/ncppwgdwrOmVwHxcYqVHcjrloFreNbhq+R7O2bUzGYDaaPTxIN7zF0Kw9mHzK69GsQ4v2zw9Hs8771N2vjmZd21lyzTk0j3diSz+0ovk5a7Zjtxuav7lIJ/XH4MKvfVyb2k60UJDgglJ70WKSGeWbZKCFsQYnj4vQYr05fbmajZYK5dzyNh+0XP+NOXmVouUXM8oZsMJF8tcpROorLnrXRidWvsQlpmfp+ghvXLL+GTs6LQWX2FUy8YCbuETwly6k78Mln9KoUaYJrRTeMWvndrRKuccVDQWhVZcE+/bLBZeqmpFAwguXftpNw3abcemfXdT9IRhBooaepPojqMyj8xNeIhRFsfTN9xEefqDB9BKERxdEunk6wg8+nU0TQ/zvIr3eUY80yZdSNa8hOVpwOrOkkJKy2cgFK5HS/Zj5syRkSo8ov2E+shnmVGUfgSxAi16tmYOslSihio+sz5PiPk5Ezms08dLd0CbhGIUESaFN6gsKPydAmzYXyr42HZfpHmLhuk24zHAxN1u8FJdZqnErmQkus/nCul9Y4DI7Pntw9T9c5lTMjB2e4rLMx5Stq4krpsyjv2uycEWAB0WWiGxeirWcTTmueNrKBRd+wRWDfrRu1WRcqf6Vbbq0AVclrGaLlL+irYQknazfjrZ2lswltQhtU7fRtY1HcXX7Fzrvbolr7OvZmH3uuPa/g1Qh6YHrOj9S05aluP6nKhUbGeMGn04Kn22GdpPEqDrCBjcm6VLgDTe033yIDvrr45aEm9y+ytG45ZaOdWTDAG55aG9duV8Wt3x3sfYfX4sOigetxa280MHEjTvE90GHDeEsqPA6Ohw+xPQumKBD4iUmu+csOqQkiOapHToUtlF1y2N0fLiAjcv1wG1PitgrVRXcrvaJqQwdwu2D6uxiVybuUNrAJv92xB2m25i+HEPn8XPo9eN56Jw/lW6qpeH/bFJouEIG/+esTsGdwfi/mH66ofULd0W6U47cDNzd1ktXphXi7u+i/bw3uPd2DO2WmYt7O+eQx50y3DfZlHLvdaGrriW7f8sVXaecZ5tsb6CrZQCdnDyM+3/IUtK/ueg+OY+zDtdEd7NaztmvBt031bGHZtnofrSTBTzfjO4pelRQ/AQ9HfLo9HpfPGpxhkL+iaP3ujg2ticavX3s6XToVvR+vJIiRs1Cn4Y5TEbhBPo8GUMp97LRV/0G8w2uQl+LDApedRp9HTqoRP4nBoyrZmKOQxjAs6MXhy0xIPcIhagswkBeJ1XoT8XAckmK0pLGoNlDdF3iGwY3KlFK+RcMdVxBBZfvYKjvP/rIncDw52PJR7sZT3xUorCCT3jiiy19zniHp/R86OgZDzx93ZJJZbvg6QcedOfCUYx8+of4lXEYJX+NHm5IwOgoTyp6mInR5Qso5MgZjClYThmyiRjzexoFB5Rg7BxpLvQvD2NtZ3Oztfwx9oAh2ziQhrGRP+jEioOYMHECU75XjwmypuTqswzTtv+k0NEHkSeUoFPz9DDDaiMF8k5gDs+JvIv+h5cmyTDbecV4KfohZS2Jx7wponm3twfzpjmy8Qm+mH+mhvKHd2H+pXUUsHkuFqxKJM8zhEWcgCI+1WDRpbf0bF8T3p46gTwjHmKxXC3FLJmIJSpbKMB0KpY8+E6uG5qwNMuHvMMksbS2k630+IelgmNsotVdvKP0kbLwHJadcqagKxVYlpVEYTq9WFYUSO8MJmNZcT1jjZ5Y9qyBgr4/wMqavVR6RAsrhYvp364MrMoU6SrnXqz63kUXUzdh1Y+FbLJTOVb9TGPjPX5g1dBFunHaEavFVnIhUmexWlKTMjrjsFpqNlPu+ozVivMpLK4aa2PaadDTEWt/OjDZkl8o6LalSONEFC6cyurU5mG9jgL9MZmN9VN+MlZSh/WzK6hV6TXWG7rS61PH8d64KqbDi8d7TmrUmBmGjTcsyNsm8f+MMPLu
+
+
+ 385.207336425781
+ eJwN04tfDXYfB/DoFNNFzk43Tlr3ctnWShdP5ff9fX54zJEwkprCqpURWrw86khqPd1Q6eKSKFEHhdIFicNiciuR5LZS6MlqNR4dw/O8/4c3fxIWwG62WfDnqyT0osWc93k7k/SgL/9jTiWlmOjxgbAW6t52gA9GvuUWSTl8qGcMFXR68rcNy1jBsWlcs3QZHdR7Ca2116gkqB8j5EswigqhPa6XawYtIJk6zK8Hy6Cj+1g4dKuhO7YMDdUp0P3oyJO70zGaryPtFcYY063Fwj8/jbHSMRS1yRPSl8+gWbwPMlkETB5lwXh0LT+gOwUm3/iw15SM8d+uZZ7V52Dd3gKtClfYfBRc/DwCduPOcVPJl5jsdIUpreMw1fItGUwexlfG+fxVUi++1n7IB3Ms4ax9QzhH++CbSa7CyHM/XAw28aMPc+C6qIfF+/vB7f07irocDk/THqpJdIfnwCmKt/LH9AdzKOqGM7wmZ7HUBD94f/GMTTfthc+4v7i4LMUMs5+EZdAgZrzvF6YBw2CvN/GzhkrA5gF3SAiB0PuS+hseYyZPpIvR9zDLPJh6Nr7EbMd4lpYehznTJTTr1ER8O2uYijd3QjE/goLUHZhnoaFokybMl9pj1bP/wm9cNaRnbbHAwJ4XJ0RioUMqL2h7jkXWP1Kd/Vws1tRyY+8vsKTtCW17vReBlmt5gs8aBI304x66i/C9kwL+8nVYLr/Db8zMRfD8eJ7QshIrFT9yswZDrLIbIMO0GQi1sKec4J8QYZtIJdcUiBzoRe+NTKweuiXmnujCGpk+MhpWY611OskeOGKdqpTeLF+LDf767KB5BqKn2/KExYH4WWaG+jyGmI4LPDbcEhuVJuzqqIX414uHMJBcwpb+WOR/XIHYoUiYGxtBaXWLq2sk2Br2kroWXMG2Am/W964P2zN/pzeqR0g0UtNtLwkSswyg+8IOSbKx+MFnK5LSFvN/6vrhF3sJb+k5j+T1Y6jIU4V/xwqeGP87UhxyWU5MDtKOyAX/+wjSDbcK74ZgpG92RaaXQIbsNp0+74yMQ8d5bFkMdsiVcKq/jB27Wrnj/fXYGfo3tw03wi5lGbFMJTKzrFlc1Wtkpf7A1P7TkF2h4McGxmK36wCkORrsLpVjg+Y4cvRaMbCiDjlp8Ty+pBu5Sj2a1NiGPfJ84uX3sDe6blb2u6vYey+RN+nkYl+yB1+uccP+0AE6crQZ+y+m0FtFKwrKaqhIGoIDJyop1lQHh3ga1wr1QpHhFfxWcA9Fu6v4u8BzKF6ZT6rorTis58Jbo17gcHMnz+/fixLfJTzg13QcaWM8dbU5jjrIUPkpEqUZVlS1FCirtsfuGRuhkiaI5eF1UOWHIbs8EscsdBGjjMax3Ah+ekk2jh/K5Ob6d1A+5iCZeLujvHwR7azeiYrVfsg61YiThiu49XNfnLwQw6d1luC0uwf7h91FnK504ZdGB6Ky8Cm3ORODqvQtfFRsJ844HuWWRsdQozqJ7LQA1BrVz3SuL0Vt3ieROrkXdSeGIem7iLMWSTRl9jDOrevidhO+xvmiQR7k64R6j0w+01yB+owdrOxjG+o/VHLH/i24sNKZn08zwIWTn/GAlCpcig3kG5kn1OYjWPt2DzS27Ge3opbi+vpm1p//HZrcN7NDHrNxgz1has0F3Exdxd3mfIdb8kckiSnF7Yp1VFt0B3fOe9CpZhc0lxcypUET7n4IRKpkAVoXdbHEXbPx1KyC37x7GN2kJOVhHXSXXmVPU3TwwmExFdcV4FVkHDe6bY7/uE/klRtb0Xc9kKk7XPDH1CFim+0x4LCB7sfsw9DSM+TUoMBfh8+RgY8KbwfbqVgvEZrkNLJ71IP3+t2sJm4S3h+4zKf6uuLDnjg+vqcPn96UkJuOVGgtPErTQ6YJrQ4tam9sEyPD7LiZvpcYqb5Ob64OCkmeDZIb/xSSe04IsnQTOk+96bm6Vug+8MWf95+L0f7rWVVRoRj9OJA1SVyE3q7xVNTuL/RaDJinxk3or9zOsnbEC8OOTFK0ewvpQ3vm1zJBfB6qJtkyLyGbkkcVYc7CJK+SIk51iPFLFZQhDRFyS23a/dlcIY+YRz1PSoT8aSjFq1yEhTwKE0L8hWWhHTOynSasjO5TVddvwir3/+f3XBY2vxyifWvqha2NJxVavBS2B4K5g/SasG2dQ7m2+4R9bwTrWvJKTFaF0cSm9eIrq3mkaJ4qPGKJmu/WCm/fYsoz1f8fNAXzng==
+
+
+ 597.066101074219
+ eJwFwQs01QkaAHBcb12vCOV4pTy7yjII+b7/91VkGpf0mA6mFMddRV3SzlYag5rxmMUloiJJNTtR29X2oLGiFFaUKYXUHFJzm0pThJr5/cjDbw7UO9VTVHg2jC4boASxEZ5sv0qJLmWQNHcbJfm8hcyaSdq5DkH0pzPJzZZAZVcwZRbMgNKhlHLmVKLRcTcqnOeAlVa/UFHlMFjHBVKJ1k+wRjhDhzwGIKfOnkpzh3HL4BOqnEyF6RNPqKpkI1wLWksnTynBpcuKahXfwvEEOZ3SHkWnnRN0xkuCEs/9dLa2FWPMDanOwRnVRvaQ0sQMMmPaqcFbH/ZFJ9B/o0yhxX0nXRKr0H/V/+lq/gzqvo2jxpJ7IEj6qSndFXoNI+m6O4OafJxaVelg6GVNN20vQvaNarpl0YKhIXK6va4ZN609SbffvYYk0WfU3RoPL4/5UM+iI9CQE0E954vBzfI19drIMS2jjO53+kLRza/ogVM8FFkqqb84AqxFV2lgrTu06t6iwd5GHPNso6GMp9j9s4ieiK7gzbAEevaDJmrOBNKYWAMdN+2lsZZxDDh3jp4r09C7SEm/+STgGekIqXpjUBZ2hV6pqrA1ZRe9rm/Fw9eK6I1rASzP2ktvlGPYtayFxsWxqNST0LvROaCY95betzmA4otnNLngd6i7a0NTrw9gZr8GTdf9jo0pkzTTcAMa1fPoY8OPoLblFav5jkJkgi2rW3ZiU7mE1Xca4L7+PNYIWYVne3JYo3QXGg6bsUZ7OlRNJbJIqw9vSN+xqNQIYjr/xZqpaYJMM441eyfgtE4sa/lOYNVQB2vFPsfQiHOs7VaHL/6Qsva+ISxRdbH2NQU+8HvAOmF38WLIXdYZDADlEW3W/SgDnwu3WS+uEjvDY1ivohtffe/B+qZLhIQeB9YPbsDGwF2s314qLPZ3YAMDW5weXsAG61dibrAzG9y+C8nlFTzLeznesLPhWfGTQkFtI8861odZ3/az2LNJWHL2A4sT61H1KJLFteOQqzvOhmvO4LKRo2x02R8PfNzKxoo84V7oBzb+5QOJRnrZxNYCv7r8lk0eeYOiRsam0Cyc3N7JplU12Fy7gU1fOZDJnHKevWhY+EdJBM+OmQ3tj3fz3FB96AhQ8dy+SHi0dDfb2ufDZsUztj1dgb6tj9lOUgzPcuzYLsMTyrNm2L44F89nbGeH4Tuw+YQ6z48IE8y/9uD5Le9gzWopO5YdwhLvo+z4YD/qBC3iBQd9qf5ODS94WoJt3w3yQtPpoPaUA7zwg7Fgvk2dnT2boExuwS6XGnFhVxq7mgWibp4zu2kEYscGQ3a3mMAONVt272+BhuoSlsx6DGGDzSwp7CK1F8dY0pEiSONWsUfnS1qi28OL12XhEa9w9jRygkjxQ/bemADLR3z5s4/heC/iIPtRPCiiXNmvygqST/2dl9qY4MHC3ez/9S4sNXvPy+Tf44khOQdZD+LeC1YcJHuJat9FMegWQuVUNYPsKigbHJnMM1HvTSpT2iI0+lTFHG0AtUbZvEJUAYdFS3nFShvIS63nFeUWkNv4nFfqOKG+ox4H28vwctInDj5fhtHZNhxi7wejkwKHbN6NtNWPQ0bFkB1qzKGa+XDf0pJDC1D4vN6YP3+jLvz40IS/OPw/NL48n8O6lWC44yFLD1Vi3/ssDj+kh/dXA0duyoc9RVO8bngEo7rbeL2zM8pfBvL6n6eh8ZYXf+kVjfn3O3jj7BksTivnaHGBoK56wjF/Cwef6GnePIagDHbl2IlUSLa+yFtONMH+6occpxjA7px/crzdHVQPkHG8Qgq1l9JZNnATrdwDOPE/fTCv4ign/nodE1+s4G0p1/Hgv6W8PTASFMJPvP2sD7QoQzhJczUaDH7Dya7ZkJ0q5h1uKsiOXck7ko+Ayw+WvKN5EvZURLH83hb4tC2dU6ulqOsywGlmx5H9/+BvVDWgteEpZxwuwsVDX3LmdCQWi7Q568JpmHpszln9iWi3tY2zZtrRS7qUDxRqg/TK1F9KmJ+Z
+
+
+ 731.300476074219
+ eJwN1Itfz/ceB/D8lFoldPlJ9VvRT1eV0pFq6v3+fl6iI8V++7V1GZHlso4f0zmOa7r9RtLNj0LohhbZFPJzmUYOa9tBHbkcqgc/lxWxNIqdnP0Rz6dIdq+moJgXItUlgO2Sb4gMlwKOeGwitmwbTwuUIWLrilg60bZRFCp/5KiLH4uiIRUZhVQK3b4TVGvcIHQvTtO3oc2iPOepFH4vRlS6/s4+HU9EdfByqvnnUVFdW0hGioXiyD8WsdeSy6LO8RwfKRkUdWeHqDgqUBzf1kcVWRNE/VpbMpqnFidWlrMmbrvQH2/niXfDxZn1x9jC7KRo8jzE5lEQP+gWker8AXHRykBWflni0geL2fp2nGg27ef0nWdF8958csz9WVz1KKf6P1JFi0MuVbiZi5ZzHWzTGiZ+OtVE2f6Z4t8FV6nG90vR6r2fx109ItrsH5CX/2Lxn9JY0my5K9plRrxzKEy0V06iV8Gl4nbfd9S0xkTcWRDL9ltfirslxiwdPyzufd7E+jcRosOpi/HfZ6JLkUgr37WLB2XgTU9OCoN5H3m+mSKeHptPxcaTRXfaCa7leNHzkYvkkGksnqcX067ULvHioIxXx8SLPmUl11sbxCuy5RkpGjHQmMpuHcZiUPWSdCbLxNtTL9m4w1S883KitrpsMRQ9mWv1m8X71f8irV0/jLTNPLdsD4bdek2DndMh26qhSz8TZJ1eHGndjOHqKNKNmArj1SM5P/oZjOv2U+fM9Rhx2U5SpNjDNLaGvp3XDtNnJuGGumswc/bkRp0lzJYE0J6F2TArHUt5nz7BB589Zr/kJJg7N/DXPeUwz/agnHwTWOz+kcdNtYTFHRWP+aUFls51nFA0Cpa7Crk2dSKsMj0oqEqN0YtteMYjP4zJquKEtNUY057Iium7YW0zkTfOlsN6cwbX9LrCRu5MTsOSYWt2mH0yJ8C21JyXXiiC3cc9nLdpFezKfuNz9rGQT3EglfoM5EcteMGym7A3G2RFyEPYz9TTWZ8xGCeP4aILzhin1tHgIzkcwuvZ5X0SHDTLefNiNziaruLuqYlwzCzj3MOr4LTVhTrb18Fp4ChHnZkDRWU8SUGRULwbSYqmLfjwvpLvVxvgrB6UwvVX4FzhSOdH+MJl3nzq37MP49OvUUvX9xj/YLoUaduDCfKDHH8sCBMWDqfzse/hWvcXKXrmRbg+KuIX2llQjlRQebQOym1HON0lEMqhl6ztPYWJFw1SeogEN6M2PvRLKNxCmXcMnwa3VD2dd7gBt44KnuH6Bu5iDNda6OH+xISvu1+FR4qezU5EwWNvPfvNDoZnxlipYfZYeP01lOdoRsM7WCbJ2gPh3d4rWQ4Bk0ZnsaJLj0nrZ3Lu8m5MOjOZ/SPr4DNiAVeofodP6H3pdPAAfIrvkMrqPnweVPGpXBl8R8eRU7wffDPWSDLVJvhe8+eTp6Ph51BAqhem8Hv+AzdVHcdkD0eueDsK/mErKeZBGvxzznLLQUZA5EyB/9UgYIdGSpysRkBbC/XZqDAlLItdHXoQaDSMW7SNCJzzjn3iDyEwx1MqK3uKwKMlkmlKJ0L2bOWE24sQ8rSBDN9k4aM2d64/5YAwdSPLA60Rsa2JvEL6MMt+GueHyzE7JYcuKfMQ5b9Xsh1wRHTyEtqxIAFzX++lx+YdUO3T8DDFc3xSWUVvXZygrmvlK67OUN97SPMMA4h9PsinT0r4NPUcR1RnIM7RR5JlrkFc0i2O7L6I+EPhnJG1Fgm7n9DbqeaY37OPnJSHkKRQclHeeywKqOG5wgrJ85t5pC4EX3hspMcHZ2Dps2scen8Wls3fwNpXWUhtfSiN6pWwoiSNnbRp0Fj9Sq+vS9A8bqCgWylYtewWb7pzE1/96eBLQz++2q9muynfI61xCTn29WHNoiQ6+CYZa29eYJvKHqy76Ucv60cgPUzB230zkL7Fm7N//Qbpz/9G5VvkyIj5gj9L2Y/MHQOSw2IDsnRp1NKvQfaKAerkFchuDGaL+mRo42fQJHNfaIuesfvG69A29LN9Xz+0XRvYpf5r5I6U0x8HliBPlPG0Px/Iu5dIZ4M+RL5zKXl23EF+tIw/uXEOBVNNOStuJwoGCsnwWzYKKYILT7uhKM2Y3+4qR1GJnDpk1Sge1Uqdh5Uo9vuJi4csoTsaza7GCdjZnUEne5NQYkOk0S9Fyc0c8p5Vit3T/s7bh/Kwu/cyr3PSY09IJ1uOnY6yDXEc1H0MBzq9qTXxFqpSXPjKa09Up4ynYhr2f9qS5+I=
+
+
+ eJwNl3c81l0UwK2MCNlbaE9FQ2nonHN/aIjW+1YUbaW0p5GVkey9k+qNSkhZecyexyq7UEJpL6TSep+/vp977r3nc+65555zLhQcNye7TcVQcM6Ls63cDQVR9VS9owgKEurINugXFCSupDUeEVCQNIPT9nkCBddO0OWSOigU9aWra5ygUEyatitEQaF6DwsodoFCzRGmm2wMhbr+dE1zMRTa+9O+jTOgMF6N9ppLQ2HSZ7ZBLQwKU4vJdr8eFF6eQKElFVD4U4+NOdwERerTqCK7EYpccskxMR2KotZS+jkbKEqqoDPe4VCsOYOJrteA4sh1tLp2MZRoL6LrNzTgfkorNUjdgvtdnmy67HIoVV1FqcNaUKp1hK60CaDUgkfbP6ZCKeNTR+BrKD10inY6SUFpbJBlzHQhCx9w439rAE/eh9yDpYCn8YOT8fkGPO139CuzGng6P6hOPgR4BrfpdPUW4I23opZ0BN7Ug/RHtxh4xrMoO9IbeLM30TEnO+CZfKGWfb+AN28Rpf54CbwFe+jjjgDgmZ2hzLF7gLeoiHyblgNviRx1nL4JvKXTKVpeuI42UESxEfBsrMlP/j7w1i2nLS+igee6hQIHDwv5l7yeqADvmAOd1NkBPLd4arb1AF5EKRvV5wa8qFgm8slTyH66ZegDvOgiaj/bB7wYe9Y3eRfwYnczDxM9Ib9xEsuSgRd3lBOJvQ68+ADrzre7gZcow8k3jBLyO5OwCAZekieLNxCeN+kHu5UwGXgp5nT1tVCe0kjvD70CXtooerbfUshICva3BV5+DnlvBOBV9lKMXRTwBMfJu1oUeD2jqPijAvD6btGOLnPgvfxC5aJiwHtvRNm9ccD7oEzhC52B91mDcnc+Ad4AUfxroXygh1ItEoE3bEydp38A79scKh+6CryRISqLXgu8XzOpcOEmIf8yDbHNwPs9Qsd7bwDvrxyTW34HykR3UXFtNJSJ36PkOoSyUVZMNH8llMmqsXGRHVCmXEgdFrugTE2SUksCoUxzIr18lwRlWl+tErKMoUynh+re1UCZ7j5qHbcayvQCmfbWvVA2fgnd9+BD2aTp5PtzFpSdaeF0lGShzD3ZSq//AJRFaVBgg1B/gipXf8gQyjqXWo3PnA9lv40obkC4/68Mp/vACcq1T1i6T8+Ect18OvvzM5SP82dBdXOg3MaUXHaMgfJNb1kEBEH55nTWmjMRyh0u06M1+6Dc8SyFNEdDubsCF+hcB+UJU8jdQk/Ih0z9WQaUp0jQqSoXKL+fSf5emVCh+46y2RSosDtDm/OuQsXZPOY/OBsq3OKY5qQ6qAieQh4WD6EiMZG+D4RAxeUDnKr6Kaj45UyxF6ygUiOHCsctg8rxXfTJ7xhUaU+j+FppqNLNpdBdN6AqSYsSs74JeZCuu5dCVXK2pa/VQqh69o6rq+mFan0DtrajBKr908hTvBiq489x5s/4UJ2TQ+mL/4MH6nsoKNcVHmg+pRVqH+CB1jum+2cUPFiuxmx27oIH7lkk+LIFHiTYUtzNL8DXfmV5548y8GfN4A5sPgH8fVp0dIkG8P19KOx3AfCDmijnpFB+cSlV+HsBP+wU3Xy2FvgRcnQyXRf4kYzuTpIHflQgxQXMBX50A5OZthj4MTWUKy9cH/eJcr5eAX6CCBWIjwd+ohNnp5gD/JROumWRAvy0DEocWgP8dBOKdagB/pUlbM+JNuBfW0LbtHuFvEDrxcSBn+VJFc77gX8jkZozE4F/M5apKFgDP3snfYv5BfxcCTbPvBz4d0zY8hAZ4N+dzxTuXgL+vWZKEtwEftF6il63E/jFp9johHDg31chgUKukN/oyP4pwOfdoP/CtwG/Qocu5zoDv2oNRdYuBf6DCdRnOh34Agfq3iS0o/YO5S8T+qu+mLpaGoDfUEYRU22B3/SEGrtUgd8SSDsvJAO/VYm2T2oE/rOlwnmhv3p+kN9eUeB//kNBo2cDf6CMkgwvAP/rfXIcmwH84ZnkKCL0z0gCBc6eKWQrBVuGgkCmgjIkd4NgdB+5UQ4IZA9S4EghCBRGqCimBQSKHIV8ywaB0hW6uLMKBCq5VHR4BgjU/jI11fMg0EhiFrlCueZ6JqovKuQgM5g3HwRaXpyuyBoQaNsyKe9IEOiYcLsqz4JA9/0KnToCgb4nh0nSIBgXxBI79oLAQI4VeTYIGc/aT/4GgaEX9aybKuRLNv7mDhAYrWTigS5ChjOpLRogGN/HJAMPgWCCN3U4TwLBJGEde9UKgslrqS2/DQRzOihJshIES99Qua4rCNgCSpBFEFgX0cOZASD4x5b8784GgdMFyr3lCILd2+jwwZlC9tH2SgkQ7J3MtALtQbD/P6o02gSCA/ZMo+waCFyPUvfacyA4nEqfP+qC4OgIXRFfC4Jj7+nFiwUgON5CmYuqQXBKnSmmXQHBGQum8TYWBGd16fouIxC4KVDJ9PUgcJeihybTQeBxiY0/1gcCz1am+mUWCLx9qI8nDgKfl0zVUXg/vnzqVvwAAr+vzHuSNwj8VaggvwwEATPZnixtEATdp/zw5yC4KCLcN1nIOBoaJ/RvSDGbrSW0N8KBQty3gSDSmNJrhPNR71lIs/BccSL0MbUUBPEW9LCkR8hmtiztBggSs5jpzjgQJC1hpw6VgCDZxupFldC+lIdMw2M1CFIXU9VoWyEbyWum0P9pF9jo2wNC9jBJ/mUQXL7P5NUMQZCRyqQPCePhajLdsWwHwTVVCo6XBMF/1vTURKjv5lwqPjoMguwUqn4pjJPc50yl+y8ISvUpsi4BBK2q5Pn2Ewheb6UdKAuCN3zy+eAGNZJWwjz5HWrkN3HOykNQoxdguUlQDTX6lZy93xWoMYgn97xBqHHoZUvqk6HmjDydnTAOakISmKbWRKiJVmGe5kI9iVcpzu9fqEmuY/HP50BNKtEb9xlQK+LCZmdqQq3mUooeIw+1+kAXjidDrdcZaio9CLXRnTRiWAe1seMtf3zwh9q4GvLpsYE6jSAuwFID6tysrJQ6M6HOnShD2JfVRSlx+w54QF1sPrWr6UJd/FjyNlSEut93OO38BKhXDae+zfVQf/YeN2VyCNQnOlFmUTfU/55MQfGt0LANyO2UETQkB1Ny60V4qLOQIvJt4eG+WlopOQoepp7hWtW14GFnMu0ckwGPdI3op8sYeKTfRElnTsCjcS9ZrpE/PErQY0Ehp+FR2j4K17wOjz430l3/39Cou5Rzlw2BRoNOy6v7bkOjfQ1dCPwJjfH7yScyCBoT/7U0EFsEjSmeFKyyAxovWXJ7M0yg8ZqzsD6+gsauUO6k9FVoHJJl4a+6oHH4BHks1oImDVm6dvQPNOlUMduu+dCkV8Vm1xVDk6En+RUKx+FNlIgAzXo76NqLt9C8tYFOnCiF5og8bpbrL2iOrLe85bgdmhNnsZXpt6FFRYNiJedAi+oibqufL7REJrJLqmugJe0+pYu4QUuvKg38LYBWVSN63HwLWleK0n/xr6FNV4maqu5Am14Wi/6kBW361ZQ1Vw/aNnpRTE4PtEV1MLdLHdCW9JY5pY9Au/ZKTj7mO7RvjmF5X7SgPTaAUoR95GPdvxSmZQKP9c0seXei4bFRl6VCky88TrnMBTv4w+PLjN0KCocnBgtZskQsPNnkQFdmpMGT9AkUZf8AOrRfMinbtdAxzpsK5JOhA59Q0Jjd0JG8gfpXPIeOoT/ks8oIOr6t59C5HDoVDNnNo8ugM3Qa8wq+DJ2RkygmOx46Y9uZ6dgd0GXvQt0x2tAVOoOyvwRDV0o4+UoGw1NDcXbR7SA8TQohX0+CZ7paNPh1DjzzF6Oo3G3wLK2Lnfe3gGc9S8hHqgueDf6gJlcteDaUzZQ9pKFbbys19yyEboNF3Npt4dBt+JEebmiF7rRcalXfBN2V6eyb/FPo7mpgm+TsofvTGTYlsQyea+2htwdT4bmuAn2zvgbPjcw4RQ1reH5hL0X7ysLz9Fxm6JAOz7tXMPPBtdCj70v1zUugxzCc4lrHQG+0AZPdFQ69SbkU9qYR+sZto3POAH3T2ijmVym8SPCmuKZD8CK1gQJTD8OL7qMssygHXupXMRl1FXjpdJlc5f6DlzvSyGvKZujXS6Ku7eegX1hfZuaugX7HO8w+oRf600aYQpUSvBo3RDszleHVBAtOJkYHXq1sYD7/foFXJ3zYRqMn8Coji254t8Kr3mOUuuUgvO5UoYAnivA2WZOypFPgLb+ZSV2SgHeXttFtr6Xw7oat5fue4/BeT5F1m7yE9zOKLcWfP4L3Dv8wmw0v4L3TIIUJ4+79TQX6Pf41vB9Wo8QNNvBB5xZFG/fBB10/OhgyAh+MFMhtYDd8cNxD19YHwgene8zknRR8NHChG+X58DHjHu3PFodPejeo/nQUfDIMoT1v3eHT+Gg2/cci+NSnS76zh+Hz8As2I6UZvox7S2kTHsCAjj7dCdgHA9Mr6dujLTBwworyOztgQPg/iOJ+wsDz/exW5TUYeBlPbyJVYXBcFlNZLwuDRm0UHvoYBj1UuUCrGhhMk6TawRUw+LSIc9BfDoN/XemV7TUY0pNlxTprYEgY/6P/fIEhB0UanjcGhtxjmfq4STCUeo1pn7CFr4ZylO27Fob1x1DFAj4MTwxj05Kb4dslQ2oQXwbfDYyYorMpfHcUoYAH7vA9pYG+eozAj7jzFNR0HX5PjmMy56Thj95Rcu/aB3+CzGig9ib8uTSdeJpv4M9lFQopyoC/TjlMQu01/K3Lo5/fjeHvi4N0c4Md/P1mTbdV3qOI2Qd2LH83ithsokHmjCIHD1GbaAGKhCXSr2X9KFIyQAHxF1Gk05iOW2WjqJ0dBdrfRtHdHRS27QKKHrRn+cvHoGiIC/V6daOoYCIzcviBYjIb6dL7bBQbM4qiNeaimLkYeUT5oZidIvPyd0Wx0ANsrIUjipX+pqR3EShut5CzHehG8cObmNXpZSgewlFmhbSQPyhst5DhFuQ5dQgl7BQpw55Q4lAl3Xw6ghKB6hSg5yFkELk5fkeJMD1KP6+JEnlmdK9ZBSW+TKSAuyMoaezFRsXfR8k1iUwpqw4lXS/SLY9OlPSaQ6mLYlAyZwbTWBiCkk1bKXaUDUq2PaS423EopZDNjdeYiFI2LUyf14dStvdYoLw+SoXeZo5WnSgV9pkSjp9HqUhJerisGKWy9egRtKJUri+965BGqbypDF+8QKnmevKWVESplqnkOYIobezAtPTmobTdGKqcOgWlw82plAtF6UgFejQlCKUHAqhhtiXKKJXSf+O7UCbsOMWe+4EyvdmU9NkORy/sYEcy9HD0msXMuus6jratZhMya3D09hlM+0Mmjg4eoru7LuPovBj68Oo+jm5fzZ1LDMLRg4zuTU1CWfVAlmbfibKHg6jJqQJlW97T3aXeKPtiOwV8zETZL8asNmcFyn4dR0kfzFFurB3bNWKBcrN9iZdxAuUOtFFlgFAe6mcpedge5bIvcYXLD6NcjgHFsRso9+g+22s6HeU+d7MF+WY4ZjbQtQWjcUxjJ/ndrEX5CRHUvFcP5V31KGCTKyooTydP8z2oYDdfWBdthDxCF+o3o8K6h0zzX39UnJJL/plxqGibTv6Hw1DRbjKl+Vai4uAf5iJ2GceqyDOMzcSx2Tmc6YV2HPvoKVtZvRjH/phOFfskUWnNHbpx0A2V7FKp/oE6Kq1dzMTlClDp9CPKmZiCSqHylHF3LiplHqGkK3Ko1JTCZowooNLXF1R85D4qr6yn3y09qLzKkSlGaqPy6k1WoR1ZqLzOhipEP6Py9hIrpzeDqHxK2UrWPQCVL+61nDNVGpUj7CleRAWVIxewOo8oVE6v5vyvP0PlgnEM739DFaO7wv5dFVWinOnWxZmoEr2H4rQvo0p6GCdeWYsq90ZYS/JHVEUz5hexBlVXHaVh82OoaqvCkiu+o6r9e+bdOhtVnXLpSkAEqjpXM9t/VqGqpy7xa4Ty0Mfs5KxBVC28wUZt+IOqI1n0/m4Tqv2rzor2EKqd+Ewx4smoFrWBaZmoo1pBJKezZiaqlRhQ1tmxqNbwg5uplY5qL9awpA3VqPYjn76EN6O6aBPltyaguuoKNlpGG9Vd3dgEqSTUMOVTkXMJahyxoTZxI9QIs6XQJadQo+UoU2y+jpp2Xyj95jBqxuRTYv4r1Cw3ohsNLagVEUp9/jzUdp1DyTkmqB0uz8yqk1D70lSmbRaP2jmGTN71BeqsG0Oxv26iTl43NV16hDqDOUz8VxnqKr6g+iIp1N1Qz3rZAdQ93seMD9eibqgH1ZlVoW6MGsWu2oh698op/gehXqkx3Xo2G/XKwyjB+hnqVfRR9mAm6vX7sJKCKaj3s58tLxhA/bHWbFWqDeof/cYcN/mifvgNyrjci/pRBkxGdQbqZ21ksh0vUT/nGcVub8FxOUTtiQfQYLCV/rNORcOJMZZ5OWfRcNFPy5g+Dg1tN1hav3JAw10FXMisS2h4VoU9O6mAhmFb2Jz2i2gYfpK5/LqMhm2pjIoXoeHXILbmlTkaqV6jjyo6aDS3g+6Wb0ajJmOW+9oKjVosyY+txPF2l6j011+cMFhDjcMcTlTVpqA/n3Hi4lL6kP8RJzofIJ+gTJzo9pHup9TgxLsy5B/Mx0lRgVTT+RQn5SL3pL0fJzX/y63cr4aTWnvovHwFTho8y6Lm78DJyh8oYFk8TlY9wLTEu3Cy/yrWfmUtTg7/wHZf34eTY95TWro9Tk5KoJ6UmTi5lE+Ht5XiVOU9bJKjKU6zq6eewa847coC+qb7AacV5VJpjBtO68ili4cX4fT1PswnowOnxzZQxEtvnLHdj8490sQZMbOpGvfjjMGfdGmiAGeGK1Hwvm84cziSwrXG4SxVI5b0oQpnqffTBZaJs+bOZZ43JuOsdfspapc0zlq/gZ5fqcBZJ8PouZcPzsq3oCxeDxqHSTD9n5k4R9mH+UpwOGftV+qIf4omdhmsa8oNNNkjy+pFXNDEzYnaBBvRJLyDrkgvQ5PH0Vyr5WI0eWNEfsdz0VSjm5OYugZNw/PY3tdj0TSymp0r6kTT2Ap6Ml4MTXPaqPuZAprm9bOVwrpmWvAP5a0+gKaP/6Ukz3icOy+RekfO4Nx1pykp/C3O3XCfGQ0gzmuewGZItOG8QQ1q7zbA+RrGTEprMc5vfU6HVDxwfpsrOU85jQuURemJwz+4oH0xJT72QbPjTlRSkYhmkRuYSlswmrUdoOZbg2j2eDJ9LTyMZh3IIsbGoVnXfro4IIELfRdQ/PdtuDBqHrve0o8Lq5DqjiIubN1BF0MzcZEwv/nkS+OiGCnydnyJiwZfcU8/nkBzFREuInc+mpuqcUoLwtB8nT6TDV+G5ifXUYuhI5rHSFJJfwEuVrnHPokM4OJ1wvdTUo2LY1sp6HMqLmk/Tm1dsrjUbi9lxcvhsnm32RalE7hs3WvmdeUZLttQwRbhVVzG76Vbvmtw2c9CilAcQguVETY9yQ4tTF9Ry9VxaBFfz6Uod6PF/TDyvRaNFp2SrHLYFZcvs6EOOSH3iVKX6R9cHq1GEXIOuLxIh/I0uxAkihkX8gbhbgQrLFiM0Pqeqt39EdqTmHbHRcSN+4l/bxpigy/lNb5A2txHv3afQnJYwklnbEGKvcoMlqQiJTsz7/BYZFO/U+kNA+Rak9goa1W0NjrIHkMaWhszVp+3F60X63JuQyVobfWChXx5g9YbitntoSC03h7PtI7I4YplX8iLfx1XxDpR0L0cXGn1nVqPiuDKpFRLUf9oXPm0izOe14KrdPvp8/VfuIpLoyT9Llx1wpWyTkjg6mhLBqs/4Op2ZbrSLoM2Gp/p70sNtNnwDxMTjUGb6As0IjeMtpt7WYJgCtomTmIi59PR7s84evNPO66z2kN5J0/ihl+D5F9liptMJlJocj9uic7jJp01wi350ywrzs7GLW3zLK93WeKWwePU71uNW746W3reqUR71RMcP9QW7dX2cLHzRNB+rjs3JjEN7eeVsvhjLmi//hizvfgP2h87RFf+6qF9VADd4+LQPuYeDf6QR/v4B5RWJIb2uT+pd7s+2rcoUOEnE3TYkkXhMgHocGw30xLmX4dWjh73VOK2rtucpk4AOuq0sGUT89Dxn/n0XmIpOg7PZ5Mj0tFJzYFdCC5Gp3mbmHrjTnTaACQozsMd2v0U0voLd/xzkHg3InFHqizFjQzgzqJaSlwwDncFlNNtwT7c/YRHIecn4J6WHsoKjcd9Gu1UqnsPXQwPUlPcYnQZf46NftWILhOXM6nJW9Bl0ifmeVwJXaaosrCmEnSZ+ocFihqiy0ygRyt2oIuxI8W6BaOL+Ro6P6iFrgsm0BXWgkc0s7hkJwU8oj2TvK108YhZLedTNQaP/FvHWZx2xyOnxdiVt8Z4vCOSEnheeNo2lNlvPYJnsyzZhas70E33Fgud0I9u9kP0dfMbdDcdRbeFfaxHyiMqP6WA5+QEbKKMGZ4rCaTb2unoldROxTKF6FXSQw/Sj6D3LD26qSSGfvrxdPXUIPo5/MvsAmahn7sfE/14B/2eAsWcuId+bwwocp8PnhdfT3E98zDgiwN1vfPAIHkVqtH+hhdcV9Inj1S8cMuCWhbVYqjyLXon3o1hoX4syt4cwx6F083hSIyYpcDdPvUVI2ymc0s28TDi4Gxme0YeI063UmFhN0aEmFIpbyxGuvbTxXmnMGpxAPm8qsBo5SJ6NnMKRqv6Uu/GjRjdIEm35bUwYfdjijscgEmzh+nMlL+YlDKBgv90YZJgPRvDiWOGSx4VVQVixoXVdHWrNf6nrsO2nUzBrPCZVGnjg9mqa+i/YWvMNjKhmuIazFkhRtdO38K8z24Uutcb87PWUco8M8zv96dkfjHezZBm4pOM8J6CG8XBKyyMCKEKUxssenCSJZyoxWIVoMhp5liS4klXxuRiyR2OyXg5Ycm9fHpkZYX3FR7Qjf0rkRdcRVecXyMv4xAFb43EskIfilBQwPIIARMRE8PyClU2OsUQy6tmM61Tm7D8wQ0SOIZgxekHlPI9CytSTYT/2KdYkVFJ2btCseLzUbr71xgrhqPYTHPh+PdHNum+CVaKaLDzp9ZhpZgZC57SgJWjpnF7lGZgpeR3TtHgNVaObmYXzxlhpVwbxStnYaX6ZbqZ04aVjdqUY8nDqptHKHdZJFb1rqeLqVOweiCCrq76itVD1fTF6wE+cF1B4Yb/omCROWve2Yk1unZ0r7cda/Rj2NL8CKwxDGczjHWwZrw7U936FmtmnGQmc+ywBgwox3Es1sqkMJEME6wd3c6kLm7H2u3ydF1LGms/X6J24XuvS3emyyGe2Lw1mRr6Z/4Pn2FubA==
+
+
+ 582.760864257813
+ eJwN0olDzYkWAGAl3Lrt2ldMRWnVKprO+Z2TV0pa1DRCGyWKIhMPM2XJtCBT6iJc3u2qhgpNBq8aiREmskw0JSWyZI0sld77/oaPLB3bYLubKU018EOv9hfkYDTg3evvRU6Ls8FaupBmUAm0Vi+nmU96wWdtPnkOZsHhmF6aXTAFyvxnEYy+AuN5zSSU/wO1CZMoYFwCBs4bpWB7Mc70iqQQXWU05fkU0rURQlrFFKbvj6UmtrRkaiM0n55EUfPD4apvI8X2eUDWam2Ku2OH2g3xtPxFB5xZUkiJJ95BUOklyjC5g699gbZr3fd+MnKOdry2xOEPivTzJilYh6RQtqYKxCjYUfYPqRDjNo129gsgVVxKu48Mgfp4GeW7fQQbUxfKlxwVJksF2qMXhjvzZPRLuhx+U46ngtxvvUdb42jvaD+Kn52iYvFlULs3jySip8A9A7SvqB6s25/SgaPr0eS0H5XkS6DAQo0OpzRh0aQHJJU9hyqHfXRENQO+xDyiI7lZ0J+/i45uqQDjzxb0n4IyiPEuolJzEaRKn1PpcQ/Yn1FD8uhqeKhSTWVVv6PTtNVUrqkNr/58QeWH8jBO0ZJO5P4o5I060imzHDgpbaNTRWk4+3A41cjlKLh3U+05W/Bx6aKzJfm4vuQTnV8fhEkte6h+diAGLciihrBdaOnZT3/M64etlUbUaPxv4XrhA2psLYR+8Rdq8lKBu6pIl4/MgCbLdLqyIQdnubdSM7/DYO1Oaq5oQbe56+jqrjHgs8WDrvYwJHE9Xa/cBZsvr6IWjx9gQ7sVtZSGQ+wBV2rVqce50tn090UDWNktojZdN9hsEUBtJXloH9FA9zzLoEblIt070A7vVw3Q/f0iGHDIpXblB5hhUkrtv4VDj34YdaR/BXfJbOpcbwQ3Xt6lzo/voElXmR4sysGlmqb0UMUMtzZV0sOFQWD4+DB1H16OGjIP6rGXoHBal3refYLy9dOp1ywCssbr0OOkIrwRn0J9BTmoqJFNTz8xFtyYSs/yDGDojzf0/BsRxMy6Rc9l49HVcC31H5wLX4/Z0KsDg3h1p4TeJlZgyhodenvlDeTd1qJ3PjVwU9WDBuanofi1jN5Picbebj16v38LBpxWpkEtT+xNsKfPDY1wyceXvtjWC0odhfTlZBCeve9JQ0Ijdvkq0lAxoFO+Ag0rFWKTzJGG84wwR30BjZxYjlWr5TTqWoln7/TzmF8C4XGaL495ES0srLnDCga1QqSiJiu8XiRsSTJhRSsntDmWyIoyCdoa3uOxyoOC/pwRHhtl4t37Op7HlomxVnyAlSxWkkLUOlbKuADWlXas1GchiB548rjcMKizjuPxsTcFl6tuPD5/G0q31LDI/hKe2naERYfsMPNzN4vuaAmYDKxsEoWhrYGsHGEJ53XKWfn3rcLEN8Os/HwtFtv0ssqkIRSGNFkl6z6WtMtZLEoXnFcMszhrB3yITWbxlfOCqK+QVVVLhPrPTawaYSVQow+rbgvF98EJrHp7L7Q2f2Q1635yvRXMaksnCEGSSlbLbcCTT8JZbTD3/x8dWX3v33gbZKwRe4+KXtixRkGZUOAvZo1zj4StxZ2s6XcbTewdWKvYBLsfr2Otm4k4+PoUa48Zi5L1v/LEIE9UPbOD9RJiIHqgig1qEzFFV5UNunLQRPscG06ygWqLl2yY44fJ+fFsJA8FyYlcNjVzAM+QajYNjoLQmCw2k2zGMTHH2awrDLOt9Nnc2R0u/FXEkw7tB7WWGTx5dxZ8cTBmS514VNB4wVZmaajesI+twmvgpVM8W7dogSTdi20WizG8rZunGzeAcVc+T68wxOLOGWy7ZByeTxpgu3ErYfuxLLZbMR2Nx21n+44AuGivyU5xWWi71ZOdapPBetiKneNqyGBKHzuXTRYy7b9j5+5U+FgXwC4JZzB7K7Lr/GTYbK7JbkpN6KZXzu56MiHUsIjdo0bwn6PA7tJUkPdMZveuT4A937FHYyCet6jjmdkr0ci8hT3vVMHLcRKe1X8Nl422stelXmH1Vyf+VvQBdfVfsRB2G8V26iz0bEEjl7+Yo2zh7spC9pm8CDMyz/CcRZpgJa/kObtSwGelOvvOcIWgTbvZ91d/9Bu5xX6vykA+5gzPDTkO0cNuPFeeidk309n/vDMqWdVxwITdOKHCkAP2NVPEz8Uc0JcrjKTu4nlO2rChey/P1wqDmht7OGh+KezWr+DgmAs4b7oHB0u70UXuysFPDEFqbsqhlhFoe62ZQ6sYw36aw6HPFsCXEUNeIJsIB28IHJacjOUrfDm8NAIDU/bwQp2H4L43lyMNrgl6O005MvAkxgSFc+TOTrhXWseRPV5o9LyCF03zgS4/JV4iK4V/zd7MUW/MIXRjOUefaoZVy4c4trANJx+L5LgDheCTPZGXpjzy7p07k5dZIFofvM7LknVBXvg9xx/qQMefLnFiRzEMmIfwCuM8VFi8g5OmFeM3U7s56WEGfEjdxsnHZPBYJ59TqtSw2H4jpxWY4MbMMk4PqoPanIWc/qwK3ms684bjxrDfP5Y3Je5Gxw//5R8TCjBoXRdnvNXE6j9LOBNcoOr7NZxZcgHXpNlxlvMCCA3ZzHneJoKao8H/AOVSZpM=
+
+
+ 635.600646972656
+ eJwN0Hs41QkaAGCXXEscl06LqHEpKrGOHONU3/f7PrvzFM9iyuCZpEJJ2NxKuQ6GUIshdDGWymVymTKZ6CIra7pYSpxm0A6lrSFHqzblsvPn++9Le5xzoc5Kjfbf60UN6wWKNJfhqZfWFL3OFC6+e0kxf5SgUYcRHdPThIWPDZRkdQV1N39OqRtKMNfsM/pKoo4Zm2MoQ98fCk0dKEsUgvUVKnQ80QzcfnpKuRWReNKznPL1juHI3v9Q/oVpiEh9TEW285jxcIKK9fxxj800FbfIUHltEJUVu0HrlCNVnlLg8bA6qjY0BLe9vtRocBStvHqpMbIJGho30OV8bfQ/eYKaRL6w1OgY/WBoLCgXVVBzWjm6VVnQtcaDeDfoNLXkvkP3C1JqnRmEgVQ/uh6tB5VFkdSeOCJI/mtId2ouwokDLdSVWA1JrQfobtEn+HT+FN0rFNDDZZ7uq+ujR1IH3f9+HJc66FO3/ka4GSVQd+cs5CiXU8/mcqx330c9HSWQ9uQg9beXQF3JGA0UpkNS4zKS232Nrm31JE8fhvyoP9GT8j68GhtIw5suge1aFRpdNQzjAQb0LHYJjF7/hJ5NWkLT3/JozFKGm0YO0wsnd7wZqUq/OWpC7psyGrdtg9z/GdDrrSux2O80KcR5GC6M0VRcIPw98Dq96V+ESSYzNP2vABhXy6a3Z/NwZfQ1evu6GsfeHKJ3c3uwdDaS3jsr4em2RJrJGEHtwxL6MJCAAXrG9LHrJG595Uiza2uxyTGB5tUKIOwvMbTQeh4Cu39hJVE+uHnLWXnvbVwd1sjKTVuhrvR3T9bD+uYvWIWtoGFFMatUBmK2UzKrpvyItR43WbXzKQo/jfCidSXowPW86EEy5Np1stqRWWFdRCmrC90oiehn9fAOQRLdxuoltdA/tJE1AlKw6IGINc5J0DvHmjVdtND44BnWjInDsZUK1irbhVrX17DWXDpcej/J2kfvo2dOMGtPmaNe8igvHvoWvwlK5yWG93CkchPrnKmGe4vzWed9FUqtpbxU+grif3blpWWncTBHiXUNTaB6fQnrFnjgkEE86/YsQO9CE+utkEOGTxjrpW6Azz00WaTfjTYT61gUe1uwT1nOoppOQfx9D4tey3DuaiHrmzhhZs8j1j+6WFAqnmODvOf4o/ZGNhjMwp3lFmwYMIP9vwyx4QktaI+xY6NzroL4+T42GruBJxNu8zLZI8G0L5OXZd2FSf0lvKwhGCvXfMFiY5ngZVPA4u1ukG8Xz+K8MzCXp83L237Ftzkt/AffNEzxf8HG3lrCzbPTbFwaLpiNdLNxbyyp/OrFJrOp2J4Qw6Zpk+RkW8eml01wn18zmw5/CX1lD9msfjdwxyU252w8NEW80mccLTVD2CLzATofX86WFVcgosqArc5PCmbZ9mytMwl3U6Z4zZkdWK7RxTamE/CN21Ner/Qd7ov/me2NtFD1lTPbv6xFJZ8hdnjoBs4BnuxY8m8Yl2axRPclyG+VsWTYEZs//MBOE8p4eTSEpYuusLZVFEudWrd8NEeWns8UTF+E8afV7XC1WJddjUIxsfkcu26bgYLdMyzTeQRdvx1hWeiCoB/UzFs0nOCGuTdvOTAHV31cWEhzgdUXFeymIoaxAXv+c4cEMWEDfxY/hHqNXrwt+jsyut3J28qaBRlassc/GtDL1pU9qyZQNBTO3hbJWPx7jffHPmhvseYd2+VQcyKUd4z6wV5FFvvMKqD9UBP7PfurYFsxz/6PJ7A8RM5fKhxxiW8T79z6BFf1j/AuUznYjG3nXTwNd8ydODDKCCP/Oc67Vd9iZk0B7xmbgTDFdg5q2ATX9u/gYIcSTDkr5v0DJnjBbhWHrjgLpb23+MDgY/g2dZijPj2CTh8sOOrJTrToEDj6RQaYXFTn2D4RLG9v4cODMtSereKj5xvQ800bJ46LUGqiykmZ9pBdl8tJbfvRqk7Eyf3uGPw8mFPCO/CWwp3TQiVoFqfGaQPzsKurkNNVXqFkdS6nmy1GcUgNZ5hdgnbDWs5wUYDOnUrOiJBDYIwPfx3XtqUrQYtzfHVA+Ubc/wEQzbMU
+
+
+ 722.3310546875
+ eJwFwQlcz/cfB/AmipJ0rVTr0rHutORo1vv9/bz6i2qdOoxa8SdiWouyIinRJb/ug3WwdCm0Gpt4YCOxckb1pyL+Ermaq2HPp/BxT6fE3FCx1OtLdpmtIlbYJ9Dfp3vFqsV1rh8NhsVav4Xkb68joqe609D5RSK6V5e/HFQXsRbT6ZdAPxFnFcrJ3W5is9srRneQSNYeo45/CkRyyjn2mh4itpeZ0w4jJ5ER/5z/muQsssqG2cXIWGRXBJOBwgex2+wOFVskiD2TNFmtpEfsyXIiy2EzIVP7imbrmov8WAdWO79d7H0tR6WKEaJiuTM1FXWKiuZezrc+Lqo0LlOZh4OoKvnAnrJmUbs4gQ1W7hJ1ZkNUvrBSNKjb0ByvbNEQ4cm+H6+KpupYah7sEb+rBRAyzooT+/eyV1WaaFPUpcZPxkVb1FSqXNElTqZPprdBc8WpJHcaOzZTnDvhzDPCD4jzOppMg8mio5ao0rVGXGz8jj7kPhfX0rM4Z2Sz6Ja+pjPHYkX3337s/zBL3CzQpzazo+LWumlUXJ8s+r5qpyvy8aKv0oQuYrYYnNFJF1IMxN0j86nxySYxVLOWXp/YLx4WHmDz6xXicYM++zRniNG58dyu+lw8tbNhufh48fzVAzYcaREv7Z3Jr2WZGNMNpPAJqmJsXymHnukRf8+bTHMyw8Vr60fU6mIg3ujfpQ8B58WbnK08c363GJ8+jaXAIPHPF+5sMXO9+Kec6J3jJfFeX5/XOA+ID78ZsVidBDmDPF71hRzkAqZSdmgL5DIz2WthCz5R/5VNHpnik4FA1p3VhQmHyvlBZy4m3BnmtBsakO+QZ/m3EZgYbS99/msrJnansO3PaVAwOE1tXe+gsHOEXkQfg8LAE9Z6/wqKy1xYzl8Lk/2+JpUTvZic/UKSn/8Ik2/WUXVKF6Zo+LBTXSKmLG3hlO5voaSsQU0Ow1DKHKOMPnco9W9kl73voay/korvtWNqWo7rkII9VLQLJNU/I6ASsY11OougktfBFk5tUJ0xQmnGhVCN+JYVI+WgWvQ9K65WgeptLzYZ7YKazQCnvRiE2jUZ6cUC6urOUrbOUahHShSVfx7qV+/zaK8+NAxVOPtoJDTCmyTv/YuhteQM9d85DW0tMzZ5+grasXWclzwM7erl/C4mGto3iNMsFkFHYx/7BIRjxhVtSTMsFbrWXmQZXw69cAvqeBIMvYLXUsrWu9CfdpZnfFkF/e/1+ccYXejvyyGd/q34rCeTVzbMg4FKC3XUKsMgtISPiwswOG7LBQsGYPhTHkfGhsBowhGpaO9jGDX+7NreWwKjMTd6+VAdxlvOslL+XBjfSOdnF8dhMtGJhfo6mMwWfK52DCZlXlz/rBgzyzQkqz8rYOqyji80ycE0ejeXNe6Gaf1LLh93h+ktb/pfhBrMdO1du55EwczrIu0IC4JZUhPpnYyHWeNbzqpbArPXctLOzBMwN5hEFnXFMN9whPbPXwKLjTEsb74Sn2t8pI5rNbBc0crHGo7CsiqH7/zHEJZ39GjO3E9h9cMKKXJhIazqfpBs9ONg1V3OplNcYO1yjioXyMO6VpI8bkTC+lUee1lmwcZklNI9T8Gmsl2S9R+CTU+PpCyOwvavQW6O6oDt6+2Sad0q2G3MJ//gPNj1rJbue4/BXkuVjnu3wj7Qg5c7TIf9YLbU/zYODppXRJ/PNTgsGhGTRq7CoVzGst33MEu1TVLSuY9ZjYXcNy8LjvZNUmlIMByXHZH+DLSDY/EpnpNrB+ebbaz0vQ7mXc/hqIBFWJAUxzPPloL+SKYNcqOQXhuyepkWEDxCO/yfwc34GmutOYOFfv0sq7eDu/ot9jBNwCJ9L06yTIeHySjb+h+Ap8cCWhJuCc/2Ftf3+0/D6/F99ru5B1+napGbWA7voJOUuNEZPqHubBrsBB/ZLBq/fQu+1k6SvPIz+Eb3cVLqVQRf6qWxdbYI6dFj1ZG1WPqbPadbjWFZ13X2HFbC8gM1fNl6CKGWQ3zYtBphn62QfKIfIyx2Na+Oc0A42dLtB9kIXxtNlwNrEBH1kBLUN2NFfwrlhbXgv0UJNBaohFX7ldnznB4il/6fK/MeYk3hJMpVlmHN02hK/KiJtY+KCGNxWOfVwD/EpeO7lV08+5QCvns+RG6xW7GhPpayklUQIw3yPv9BxPSOsVP8XMTazCAnJx9sVKwg2eIvEG/ty6G7E7B5Wj//NfENNoduoYjLR/GjZwNx+mkk3L3NrW2jSJyZyle/8URiobck2W9C4l1LpnE1bHG2oN8T12NLmgdPi4nHtvrDbKOyG9suTeVG1XxsP3+YOnbcQ4rNdCr2VkHKBUd6kfsGKW/s2NRwPVJjuulJl0BqdQJFLX6FNHUflnVoIc39Z/b/uBVp+5bRidaDSLuoRXlLS7BTs4L8rC9jp58q7Zrrj13v4qlAXYb05rt0aMIlZDge4IDrvsgIOcaqCluQmbSHM83lkFnVS3M2hSBrUzMdNFyD7NQzFFT9Bjk/VrPTTzeR0z1bWrzQBjJFZyo1d4Xs0HRe/lkNZI+fSuWFccj9dBdPOGmCvACJ0myNkTfwgO67VCDffJk06cwvyN+1hXZsdkP+4QdsW3sQBaqPyDI7DgUvgznVNwNFG7Zyu9SNolJHrug8jBLfs5SkWY+StRU0p3kMpXHH2GRcCT+1+dFA8DaU79pHl4MZ5Tc6OUTTCuUvQrjiQzYqNI1JJSwSFVccKaWzD5XXVtNATSCqjDTI/4+zqHIK5skVK1EVxKz4WykO6NzjBVNu46D9Nzx/TwQaErNIFhaFXyxqqXX9+n8BAjasrA==
+
+
+ eJwNl3c8198Xxxuk7E342EVb0TCa55z7pvWNyldKy6++2kM7UUoie29R2guVyPh8zM9byQyV0KBdCGmo3+ev5+Nxzr3n3vM6j3Mf50KuIILWWfyC3BNHuFNxtZCbPJlT71aF3MvedEUogNymGRR4QB7yhh5mOn6GkKf1mTmO04S80e+Y3GAr5Ali6PxSHvJm3qedXZ8g74QSU/xYJ+FlCnLZAXmxJZStNAfykluZ8FQ/5J1/Q3yaPuT9MmeyYTLwQGs8HV/BwQN9VwrNsoIHx9zoUXMdPIi2prIbc+BBfDsFrnaG/NEHqMbdAgoMmslv/SQoNGmiuu/KUJgXSXH+jVDYcoJpf/kCRRp7qG2OFxTpxFB1PUDRv8p0QjAJiuLO2ofJxEJRXjE38WUtFP08S4cyU0Aod5sCoh6AUNGbgqubQaj0iAKFU0Co/ZWzDLQAoe5Han/UAkKBgC7o3gChwUh6c+8rCM2HUHSuDwjHx9DRDYkgnPCE8ictBqHF/5jKtAkgnFZIMVpvQDhrO3XcegFCG2tq18sGoW0nHRxxCoR2/XTnhQMI58+mkDV1IIR6Knq3CIRYTTlDJOdz5hQkJ7mPvTPFfUkF4VI/Sq6VAqHLFfLWWQVCNycq/1cIQvfJdFr2CQj3ltCZTcYgPJbOjFfXgzConJkndIAwwpUuSlVLGE/rL1mCMGoi/X5TLqGIGpw8QBi7hYm6lkk4yI5q/AVhvCy3NsEUhAkBC999tgVhYi439uJLCfu5ca4hIExez6JLwkGYMozNj+2X8BGFHT0AwlR1up0liX8uko31leiRhnTR1QyEl8PpyakBEN5LZkMC9EBY6kFX7SV68z4UlSKxPzUgx3npEt6gi01aIHx7lt5/6wbhhzkU8Pk3CD99oI4sMQi7djOptmIQdl+lwmZzEPb0U/qwOyDsDaGDL7xBOBDNlJ9XgPDXWtr/v+Ug/N3HVNw6QDQsiy7ImoNIqp8pZVuBaOT/6PYYHxCNOs+06QiIFC5SfuZPECktp4gBGRApz6PkOC0Qqf6hLO4wiNQXkveP2yDSsKQjjb9BNPoh00yXBZFOr0N6thGI9I5SjetyCf/QQQvJOkE1m5hxFkT6p5ltkQOIDL9S148+EI0dQbdKp4NonDWlhhwD0QYzEj5JBNHRp5y5qTOIvJMdBAnXQJSoytWZfgNR0lmKEqiC6Lmtw9CDgSBqSaLrvWog+v6Vtl5zAdGgJQ1o/gHRX1nOZnkhFOvut19ouhGKDUNYvosFFJsuocZOeSh2fURPvMZB8ep8tnvDayhem0kNH+2h2FuZS1/bC8U+EynfdjUUJ95m2rGeUPzHi84VJ0GJ3hsKW90BJYLHFHZGFUq8rjHqOAElxzLYqN5gKElKIX5MMZRc+I/TOGcHJb/3U5fMBijVPk7nr/2EUtMKZjfsHpT+nksratZBma46ubm4QZmgnKKjvaEseTmTrnwMZSl37E9ciYSy1i7OZ9xUKOv4S3Gq8VCue4iStWZBuYEy21PSA+XrVlDASQcoPxtLgUWboTzBn4NFe6BC5yWTUyaoWKDC5rYXQsXuPxS0rxMqjg2jUHwNFd6vmRyMhoqA17TpzRKoSIqn9Ox2EOt+sC8x0wCxoI78jh0F8RRzzkd4HcSHplJgYiuIT1bR6VpTEJ+Wp9AVKGEQ+TvqgvjMbso8dBXEMZ3MwXkziBP+Rzc9BCBOcuX+WaYJ4uRVzPyYAojPZ9DpradAfEmWlvPPJHzCJrUNgPjybyqQeQvi66XMYIQViG8+Z5Mj3UF8dwHTmHEQxPcuUmg+gTjHiM6POQzi+zwbvr0LxLlfKPWQZN+DJbQrIRXE+aMoeGKxhK/o2qxjIC4kSf8PgrjoIsXlSu4jWsLkP78CcfFBEnl8A3HpNLoqWwni8llMt389iB9mUpH8VxBX2VHqlrEgfhxIJ+1VQPzkAp0ebAJxYwKFWkjivSqjKxtmgLjTldIuNoL4byMNzvQDXmkcs82wB16NUUGNjIRddDY3F3gtDbZ2qJeEhcx8ssSvHUqPRJclfE85sSOBH+1MnXadEmZT+q504HVC2GDfHOB157GbZ3uA17PjTjhMA17wcZHJ0aXAG8zmApotgDfsZZ+W9AJvlM58ilqAN46ilr5qCRuZsvdD4E3d2SLNRcBPvEd/HzcCb1NP+yyrgLd9y6b6fgEe7CjUeQ/w3Em6MyYLeBcLqlaU2FcpUNri3cC7ltI5/f3Au/+iC783A79pM/kdbgJ+sxXdCisD3mM4ldcC8NtS6O6+Y8DvGsH0V+4FfvcKJrWhBvi9eXRn7Wng9zezFR6SfA/8pSDV5cAf7GBSsnrAH05iWh8l5x3xo6e1n4H32s1kHxgB72PChmVfA/64MnW5SvI43k7iSxK/rw69mPgR+JPWbKT3X+D95OiW53zg/Scw+Z9ngA/WZuN4aeBDo5hr5DbgI9XonnYw8FG7GNvmCnz0YSpRWwd8TCL1RUryiSukznCJPvETqSRiE/AJ26hrY6qEdTQY/Bb4pGtMKfxf4JPHMNt+iU4pSx3eKkv0T93PNCbtAP6cFVP8/B/wafZUlx4PfLo3G28p0eG8FV1cdRz4jHRGjjzwWXeYzEVH4LO/UJXaJ+Dve9KRK6OAF1pTnu8M4Eu8KP5TMvAVu2ggURb4J6601H808M9Gkvvhu8B3dNB/4ZXAd2+lQx8k+37doFtRVVCp6MJtKn8PlTpNtHWjACoF0tSi5yLhUmoKCIVK/VD748PLoNLgMbe9tBAqF4+jvXldULk8nvyqt0Dl6tn0TFAMlUfHMIMyaagMTWM6YSugMkadZRS6Q2WiEl0r+AyVKWJ22dsNKs/ZsdOqlVBZbEitdT/g4ZCTjDMNgof63ZR6wwYe+m6hgPmG8DDGn1lN74WHcWPsf+VmwSPtYC7t+Fh4dPQEXfHKhUfHFjpo/ImBR9Hq3P757fBo8AE3+mwDVGlspZqPZ6FKN4fJuAmhyjOLsp6IoMqrgHOasAmqjtXR+drXUDUoS97zoqD63EGucY0q1AjGMD3FeKgxEDMN31FQY9jBgvgCqEmcyDbMM4CaspfUp7saagWzuZ26D6DWqNX+klIC1ErmpaCvyVDLKZBnpjTUJq20v6LWALWpW+iOpH616Q6cxb18qL08h+ISr0NtS5C9ur4n1PYqsaKCg1Dbn0wh212hTnsoZRoYQ51ePnui2Q91+iJmPCCxRzxkQ1c0Q108T25HfaE+IpkSj9tDfeQ9btbnCKiPemx/908Q1CeNZyuXXIAGdSO6SRXQoDGb2xiwFxqiElnlnhvQ8GoctX8haBTosaGnlaBR/xHlhK+BRoMGul8lB41ru5h0ugw0Rr9k88w8oDFJn2JAHRqT61hldjA06boy3iAAmvQn0M3Jg9BkuJEKF3hC0+poduq9ATTF/yVfhVHQlDpA1/uaoNnAxv4B/YRmwxSm6PQQmk1a7Sfe6IZmdoMuZOtDc+oFLtq0BJrTh5Jf4GNovrCMPc0LhKcGD+lL/GN4amTLqnXPwdO0R5Q45l94ZniKbl66Bs++u3CrYD48VzJjZTMlDDNjNwwd4HlcJZty5ii0hI2lD22x8MKonWlVtcIL979Ukd0GL57rslH7XaBVYMT8Ao2gNa2FXQxfCK1fZemkZyi0fntCvO5haDOy5ebUfYY242aKVm2FtrQg+uiaA22lKSwy+hW0tVSw26ejoK31IL3ZMghtX9fRn6ua0K7D6N7VD9Cu95bJrTkE7SYzOAuHp9B+PpvpXloO7W3z2JREd2hvb6GyxYrwUq+XDm45DC8NzrDJufbw0tiTgm94wMuUQcpLLoVXeg2U8agRXsXMpV9fuuFN23ZWMT8IOrR/0ImAGugwuM70bz+FTv0IJv/gLXQaJlBJTQp0mgA14zno3HCfvQ5ugc62LxRTex7ejrHhRjgYw9vFLQw+cPD2YDwV/W8EvE09S0EF9fA2Hejaolh4Z+TNHNQR3iepUPRmI/hgbENtm3vhQ4ovGzauED6yd3TpwRb4uMidzryXgY83HO0/tB+HT3rhFFWZDJ/0h7Gwz3Pg06QirnlrAny6aciU//kNnzdWMP3PufDVoJoyXljBV1N/al/5C76m15Kfjzd06Xygm9Iy0GUySOefpUC3YBxlzBFAt1EIm7V0NvToabFR3wXQMzGBHt8ZgJ60TCotWg89lxfT+5RQ6GnfyKIMFeGbYRob+53gm48qF1ezFr69KOIyIsOgV1+G3X/FQ6/RIjb162joXWvCBJuyodc7krG+T9B7LouZjl8IfZtGSeYhZeh7PIsi5lhD/9gEpi+4AQP6SdR15QUMpHZQf/Qi+Cnooytuf+CnWT7lvFWAnzUTKET6GPwyyqRzK17Dr1fBFHd0Gvx+/R/lbvCAQfNIarppD3/eFlNkXDj8XfuHItesxCHKhlR4/gAOse5hbldscMg/HFPnonFIqCfdUViMQ8Kj2DipUhy6y4Vl2Jri0AO76LjvRBwa6s50W8/iUF6ZHUych8OcNJmd32ocVjOLyi/Y4/Apq5jph4U4fFkCPVObj8OdrDm5PlccvmsCC5o3C4fvXc4ir93F4Z6uFCljhsMjPOjk4DEcnnWKDXvRi8Nr06m8yheH13lR1pgRKBWyghpLdCTspxRFI5S6qEdXBctQWsmN4m2kUXrrbIpo8Ufp+qsUcXQYjpjynrynXMcRFl5suMJcHBHqQ4ECJZRRymZt2xJRZtk0SohtRhnHHOa0ZQbKhOWws/fno0yUHHvrZ4gyt1ro+OpPKJOdzGSvPcKRyyIk/4hrODK8iO7r6ePITB8q7P2LI3uC6E/2Khylqkypbc0oa1PNdLn1KLtsMpNbdwtlHauYjpMRym7spFt1rSi7eRJFrrVE2eBi5rRwB8omudPJI2dR9vws6ujfi7JNC7n/wgdRTsuH3S7RQLk9auStuBTl9iZQY/1+lIs4TdGGx1DulgrFrMpBufstdPXMSpTrnsEGrKxRrucExZQcQnkVYgt+fEB5q1by/9iB8jtbKCNOGeVDXlHOhjUoH+Zvv2P1fyh/+xw3OLwB5WuK2KsFm1G+q4pe+QEqKC+n4H3pqGDXRaem2aGCQwpl5G9BBUcPqleagArpI+nMulxU3G1Hz1aPR8Ws/XT5chEqNpRS+HpDVFpRQrc3pqFSpAElSkeg8oo9lL7KB5VvPaS48lpU7tVlWjcOoYq6JhvlvgRVwt5R4CRnVAk/RafTw1Hl9k1une5yVKl5zCpjvVDltaSOLu6o8sOKSbnvRFUVT0qY/Q5VtXoo/gOgqmUqhXrsQtVlmZR29zuqOrWQ/3A1VK3LZyPlbVH1yS1qzvRF1Z4KNnkwH9UW99OHsU6otnS1g8tiT1T7ZwNTzpiBau4FDpOP2qLaYVX7ur6NqBayzX4kjke1KMYutx5GtfMVbHDBVlS740c98TWolmvKjCZNQbUnxylG+z9UD++imK5FqH4+mG25ewnV7/9kBWPzUP3xenqatgQ1kNhaRQvUWHKHQuUZajjqsjSr1ajh9pZNz+tDjYOB9P5UHmqEVbFFIy6gRt5NejFeCzVqvlHGyGmoUTdAt6V1UVPxEQWryaHmKlm2trINNQ8dJb/666gZ7cpGuc1Hzbv/UJnLBdTMjeVk12mi5uNfrDWhFTXfTGVTXq9HLQ1igihX1FpRQGXybai125u6E2ehVlgifdc9gtrLd0v+/YtQ23Mjk+UkzF5P7Z8rcbT6G0q/Z4Sjp4ZQ/Mv3OHq3NZ3U/YCjfVWpcLo16siZUEKQE+o4+9C9n8dRp9qXjhRMQV1TXvLe7EZdj24SWlahbvgfuuhtg7rpxsx39EzU27OJEmv0Ue/OK7p+5gLqNXTSuZIOFKgY0s9KHxQ417KS4i8o2JbMRjasQcGBJ0xa9QQKYs7RCa1+FFy7TpluEaiv4UE3WDjqO8+ikKT5qL+vhAo1HFE/eyGdvP0G9UtW0Y1NjahfuphCDu9A/c7jLGvSVNT/9ZW9T1dAA5VdbKY3hwb7BliWbTAaROsyG41DaJC6h0mPiUKDu8aUqivxf5tKD/fpoEHvBbp66R0aKm6knsdL0LBtOAW1j0KjyDOU/rsRjcfG2D/96YXGtj/tO3asQmNHF/vjetPRePNdrnUA0djzHIXWOqGxlxILTXmKxuHb2eRrn9E4IojeiMrROMufqU8IQOO6UZR6cjQaN4axJfs2oXHfDqr8+xJNNBqYq9N6NNEUU+KIODSZIUXv9vqjSZ0BCxrTiaaqrhSmG4mm6nuYzGkxmmpMotIrQ3HMwXyq3OSGZtHbmVROI5plA3fKUAHN6jdws6ceRLMnQ8n3qzOafdvLDi7tQnO7/RRnlIDmJ05R0twlaB6pzs5+movmse3UpPsdzZOzmUlmFppf3som9u3DcVG2dK6hDcfPfM2GsNc4ftZPKjlRjeN9XrBRUnNxglMDm+N2FSeuDGHDdvfhxH+FdGPOGpx4xIiyUw7jxOZ/6OanizgpXEABDmE4eeVMum02Hid/N6LgHbtwioYR2y7oxinTHdjQ4Bqc8mc13YlwQ4vwpVTREIYWEUPpjv9MtGgPo2vaK3HqwhA653Ucp67YTn47f+E0tbOsYXEpTlueS3Ux/jit/gBVLI1DS6dkltGUiZYe6uy662e0PLaRcp8roGWEmEl/c0XL+lsU3XweLZ+kUsLPJWjZOJ4ipmxGy+ZwLn2fDVqNElA8349WWiJ64GGFVtrPWXrgEbSKyGG1Q7ehVVQDO+R1E62yXrDz1fZodVeWyZ+ag1Z1fWyEURJOnxHLrM5q43Rnnr6F78AZ9WOpfKEnzvg2jmpzHHGWajGTd/+N1lFzmcKBlWhdn0B1GZFo3bSUqtfLonVzMzNZqobWz4rZe9VgtG6RpYHS32jjN5aNohloEz2XevvWoc3dlXTdxhptbUZRRGUO2vq8o4hjMmgr6fMshTlo++0dVzZaB+3UpbhE0yS0s9LllMdsQ7sVuswsYSfaxXTQj6jxaJczgjLXxOFs9QesvHINzv5Ww3QnjcM5A0MosOgtzo3To+sdIpzb/5uCjKRx7vdQ8u8dh/Nm3GFmHR44b8Vndqe6COdF61Ja7Dacr86zMwmvcb7VL2o61IXzV46ku6elcX7CQ271kaU4/7k0899phAvG9zCFFEdcMG8u+1+TABc4S5HomjkuePWC2sY3IEhPo+CUXIScUOZ82BXhyTsq+LsPoamAOq8uR1r5k4rSPJHWzuQUhjQjxUWyZf4nkVKOMshMRDZBlXpulSGnqUfZe3qRe3KPXlYdR+5HNUUrAHK/P1LEmHq0f25AycsLcKGJG1tAcrjQwp4bxW/GhbP1Of3qblzo8IV9/JOLC52LWbbCJ1xs8ZgNvTodFycncbxVOy5+8Ya96lTDJYK/9H6iEy6x300J68pxSWMU3Y2swCW9FRTxIROXxrgzm+GquLTRk3JnyuA/zo5sy+yN6Lj6IxOrHkfHJDn6sd0MnVLXU2joEnTWkqKiS3rorBdMl/53H/+N16GKP3Pw30wHyh6ch2tiCjjtEBNcc2+SfffMPlxT40V+jvdxTaOtfa5fLK7p22ovSBqDa/rX2RuXN6Obxj4uP2IOuk3fzal5zkW3GansdMhRdFtpx8zWN6GbsxeVUAu67T5Ip+ZaoVvsV3qQNBvdEpKoO2cEumX/YLIfktCtQZHJa5miW685peU549qGXkrMNsf1LfnczjJn3KD3kt089wc39HVQ9wDDjZq7KPamJ26cpUDnrN/i5gAbEnfm4H9JxZQj5YYeDe8oWy8At5nOovi5Ubht7CtKSknCbc2N1MZfxO02gXRrliPu0PIg31l/cIfhdEr3f4I7TIZS3w7AHab5VHXnJu4wO8AWCpVwx7gLLKbSDHdMnML2XC7BHVMOMpXt83BH0nG6ql+HOw9HU9p0Ee7WtqTLs1JwT9ljumDmhp6js7kW2xvoaf2YOynvip6r6ripm6PQ8/B7Vhd5BD3jGxm3pA6PLJxG5es245HFJ9jObESvfFOqeMah16M5xLuPwGOCXJZdGoXHJPMAm1iO3jrq1FAUhd5P51NaigP6rP5MoR+t8YR8AeXnqOCJ5KWUMVoRT9wIpNd30tD30EtK796FvsmDlPHjCPreqKbq6hQ8mb+cYpwm48kvNRT90wZPr11Ozd898PTOY0zD5jkGdEvqN2QmBhYsJd73FAYpq9OdMAsM2u3A5ATOGHTLhcUUGGNQtQOVhF/A4C+r6NI+NQxTK2MmST0YdkiHimZKY3hYEEv0Msfw29mUXRuNEZOaKf+FHkaEfKZL09IwcooCVxf7HiP/mcQtjgnAyJ2vGIRnYGTIABvVswZjVBfQrWl7MEbNjM41qWOM+mZ67OKLsR9WUSzXjXHfxlJmSikm8330fp8FpsltpoTz4/Dihli6oiCPV6QCKPCdJV6R3klvS+rwipYe88jejFeOStFFw368LlalCHldvDUgmQctdTDLIJ9qfi7A+zGMvk0rxvuxgxRzSxHzJkdTUusVzLMaRw/OHsEHV19SpIsIH4i1mK9JOxbEjaXYO/lYUGBLD1W8sTCqiVISnmNh2gIKH3kUi27/IJHPJBTubKWLcjJYfKGUEu5exeJLL9nqDkcsvpzDVuqtxOLr16kv1wuL+55S/KEqLGlwYSMjvmBJkz5zSbqKJV9f0N3ueiz5ZkwxMXuw5HsfNYdlYMmvd0x/xmss+XOFLZrpj6VD3NmZ/gNYOvw+J7dqNpZK+3N7Xmlg6cgo1tkchqVywWzRP1+xVLmHKtvfYfleO4r5FIbldVJsxKnXWF7/jmr3jsTyxi1UdH4Ylj8FSrQ+iRVOZXTfrAJ52yms9aMIK4fJsYCnCVgp28xGVBtjpbwOMxjYiZWdPL2u2oKV7yezlW5T8bH2PspVtPg/DvbH1w==
+
+
+ 419.221313476563
+ eJwN1P0/1/cex/HDN1RC+rr+5ltDhVXUlFLL6/V5vh1WjqWWixCVsq6odCE5jukb08VcTEQkFRVKUWJFqFUaazMktzG62jh1zldCpwudfnr8A/fbQ3qtnURvkxTQkPfwj+ogaLzPlBa/3wXZ59d46vHpGNV+VFIGD0Bb7wLHy1QYa/WGZy7qxbjUW2weQzC0j+RxzQS59TNYF34N48+TKSF9CSyqt9LhiJmYOPhfzn5oAMuOuaTw6YSyfzlddlLBSkvBKtla2Lj1UfitsbC3jaYVLuWYYRPKeeHacNAZwUrLV3A07pEMfLZg1uQunmWXAWe3Wjo7ygbzv5jIq7xkWGCWwUXZB7FwoyPxzTy4WYVJNOQKj4IQSfPRWSxe/AOVP/6AJYpactapg5fFQjpE7fhSRNHb3fVYYalmw+Uq+Jj5kt53I/CdECtprh6Cv7Uf+wflYaXFMhxrGI8Aw1wuCi9C4CIjqlcoEOTYIWl5d2DV9M38ifY/sFpmJWXXpyB0USMNe+sjzKOUhzvDsWGGEXud/x4b7QTtl+qwadMI6SXuRIQ8imITBrF1/hMevfIsImf/JX2icxQ79Z9L81ocsNuti40/W4Oo2jJWV6UgXlHDZgHF2LdvDab8sRIq3R2ctj4Bqui9UlVvK1RDE/nlA1ckKuqpLfNXJLb50v46OyQdvckGa//CgV3NrBO9GQd3d7ONYgYOn8mh8ONtSN7xJ5VWBSJlyk8U1XUGKamTJJdgH6SO7qBnDQJpmSp6daMERyZUYk6wHY7sbaCkvwcgY1oWPYvbhszKPmpP10S2dQ7DwR3ZqXdYnvgOx8oD6MVBIGfbUYrbdwK5uhfYrfE6js9yoerOS8jLKeEJj12Qn5hE6qYmnDJj6NQvxaktIzy32R2nK/poc/xOFE4ZIafL91FY6E0VaW9wRvGBS1CNc2vGkN7fYnHunh4bH5iNolh/PuHSimL1bUnWOQ8lWYc4qJ9w3j5amnxBB6X/IjfvFndc1OwQUX6BuBiULXmtqMLFylY+MpKNS5Ocec6OeFy6Oo/T2uagbJwn6+f6oWztMOltCUW5spplVdNRfmgm/+bggcsZEfyLnxaumBvSm7RduJJlwGXPbVFR2CqcPrq7SjLeo22GSsOtbK21DJXFybzAswRVLps44pu7uPbpRrp8dSqu29+ma+f+RLVNF1cPXURNrzXZiSDcyC3hKOXvqK0p4zZ1A+rszKVT/vmoK7CTCj50oz7dlQa/Ebjpm8tn1a9xa2o5FvQX48f7DnzVaQC3I7R41slY3HW/gpnch7s5o0XWQAEaeBvX7L6AhtPVnDo6BvfWqTg/OA+NMh8++VygMaebW53+QJOyzk1vYBKaKiMlyHvxs6Gc5Ov24Oc4R64o7cH9dH/q37cVLYWj6P5TNVq3B7B5siZaB4O55oop2rV6OMWqFw890+jpiSF0pHTj66fP0fFoA5UoS/F7xV5OD96M7uww9vVi9DgFc3xKMR4fm4Yj7T54YjXI1jqO+M+0VZL+jctQO1+liIpK9CfkUszIt3hpW0ADTT545biBC3WTMTi3iC0+HMWwrSnqJ6ox/NKBH9xZgv+FRvBB5Vy8jZ5G1zxkeCfCKDlhvdBIOSPJx9QJTQcljw1/IDS3e9LruAKhedOGC1Pchey1DXcHlwotj3ZyltYJrcFSenHDRGjHbeeFA5Fi9GZfdhW1YszJRGorCxRjw1w5zPis0L0tp+Umm4Re+x2ym94iDPb8U5J1fWxzLi99NEaMt2j9+LsEMT6kk7c0p4sJ45S8P+KYkLc0S/PnTRZGAT2cP2IvjL5NJNvqLGHU3oSsSC1hLP+Ctu71EiYLBigve70wCSuVNE4NCpPvg5FZt1qYPLzLucU+wnTZIxLbjIRpdybrB0YKs5yfSEG/CHMNXXp7+J5QeKZw7OzfhKKvnzrWvBLKUC8uP7xRKEc0uVANMSnkGd17cFpYTdCg8yHhwuqFJz15ckJY+yxnv69GCeuuTyX7qBPC5l0M/ftAp5hqfcz1sam2sF3qj/NBB4Sj5RTEhRgJx7Vfsn5khXA83kXX1eZi9ncHWUM5R3y2Ip+luvHC1buVfj1cLMSUYrLI0BGe01Rkp1QJ70ZzinnwXiy3zCfnHdL/AZmsyWA=
+
+
+ 722.289978027344
+ eJwNlGlYzXkfh1EppZNSilapdBQtmrHmfL//3+dYUrShRiui1ISxcxiPFC1TUilNK1mixViypDGRjEzEzDVZGqEiUzwy4cGox6v75X1d94tbzJvwFama1cSi4Tvp42ohNnsG8GbtUrF1chXdexktduaqK67HDxBxQ8so3ERT7Dqew0PzZSJBbwBv2vBEJGkNYOXbiSIpbjJPuBgsUsZFUkVwu0g1G06hn7NEaooj/WtnIPZlu5JfUJHIzztGV6cYiYKJuVQTVSeKTl1g2YkacfCBL61p6hCHrQoUbY87xdFZvayjZyuOVieweucJUTbyLE0a3ynKXXfwst6FojzrO6oy7hYVFraU+aFCnNZrIdXOx+JMpj1VDW0VVWXLyfR6pjhnF0I3U6aK82Pa6ZJ9s7hoWMQjoiaKmulFLEs/LX62LqMbz/aKy2YTOFg6L2pLAkh1TktcG5nL6m5Z4lq1IS+8d1DUH3/NCdqt4tdBEu8a6S9uHnpHGavk4nbKflZrrBJN2UdY4dIm7v0YwCNnNIj7Y4r4F+9Ycb9uA1WaLRYP1mfyN9nfi4eb/enKAplosfFgp9M64pHLBlq6nsSjY4N4fclW0brFkTUDk0XbxyaeNvOpaE/VJnnpdPFsAfEeTZV4buXMI8qeik5ze8q0MBBdo5vIz0ZNdCOJ/nqzWXTXu7HBSn/xssuRczXKxWv77SxiA8TrkzKesKVL9DgWKPZ6BIuecleOrNYXbz5tISyPFb2jtrBdy3HxNsCTGy6liE8tIexlIhd9p1p43/9uYMAiUzoSPAQDVYc5f/I3GHi8gs3TajCw1Y+UPn0YtPABRa8rw6DMsxT8wBxq2r+zbEkk1FL/pXMHjkL9azV+W+kB9cRAyfi1LTTy9vP48mho3F9BjxK8Mdi6nxrS+jB4WTlHPr6CwVcqOSv4FDQ5kNob86F5aSXNz9aDlvVc+vB4E7TWK9n5xEVo9c7lH67nYUgo0zDzLgzJi6MUEQPt4UPZsMsYOusM+WCbDnTzYyRZRgRkzuMpF76QvVpFZx+8gF7sbs7bvwp6L6L4zcTHGGanJNUdGYb1upP8xu/QN02ml+c+Qn/5KDZq/AP6e9dyyIwoGIwolH5zc4NB9BHWc/iA4SHnOUS7BsOzC4h7+jD8jhqF/e8rGN1YzOHxpRhh/5xL6DZGpIZzQXUwjPXWcHr9VBiHXeBTY27B+Ox4yV3TBcadZ3lr6HaYWGaRatcsmGy8zRZVOzBy/mLJLGY/RqYXs8madxg19geOblmCUQ+3Us3gczANmEwhNkqY1oSzbOoUmL4/x/9kXYKZzylOXVACc9dz9OftYJgfWsO7146B+e0n9MI+ChYTNbhZOw4W8RqkW3kBFg227OgGWIY08hnyhuUVT/4kDYFlVxRrrH4PK6OHHHa5AKM9jpL4sRujiy+TqqEMo3uIe/8ArKdHSoqKXbDedpce51+B9atL0qCNC2FjFU9oaoeN3xzJqq0ANkeLqdnhAGz1Pbhiqi9sF/ry3dbDsK1Yx1lPmmDbY8wGZW9g53ldmvXzVNht3MIvPg/E2K8TuEvDD2O3tHG25u8Y+7mRX8qewn5qBp+fUgT75Ys5bK8N7FOf0TF9F8g1NKi4xQfysDgucIyEvKBTmtY9DPI/9TmzuAXjdFTspD4b40oOShHnveAQpMvx9+VwyNwjrdrbAIfaZLqnOxmOSTlSwsgzcKway5opdzD+3i2pyisPEzqvSUkbYuFkdEdRpmMPp3Vqktm/ZnC6UyzFRn6Es/4wDL65As6KjUK3eSyct0VJOtuGwLnDmAdevgkXXXf+blsdXA78ynGvP8DVpk6ydH4KV/9G6YMoheuuZXzSQYlJGa0UYbIQ0xIzWGaXjOlmGlRpuwrT5w2k5FQPuD+vZ2/VSyi+mcHatAVSqCV9UnVASu1gveJKSJdC2Sp5BGCbqehvnAA8ZU4vr4by8CM6erMaM1MHsdtnM8xeqceLj9Rijqsuh5pvw1y37ylDaoOnaS7PijCBl8FqnvO2H15B4yljpQG8Xs9k3xsnMc+2lV0q/TD/aBDrxOTBx86Iu1yuw8dfxasuqsHnUA/F7S2C//wk1qn6DQtmhHDiQzMs+OMCXX31CxYFlVNHTC0WPQ1nxepBCJjkw3HmWgjKc6CQJbMRdCuAOr/4QvVr2SDyCyPLqbvxH4SFH6LonhkI113Gm83/xlLz0+R78QyWBpVKK76NwtKK97S6uQQR7gqKrR+PiD1+bP0+CVHXnvOkpDREfXpC0TtMsVLuyP8ZcwkrX0ykKUb7Eb3zPsu6UhDTep8t3pXi25hIXq6ej9gcd0XfHSeskkrYsH0WVpd40cf8OqzJCGd50z58dzORuoelYe2MasWL0jasvahks5xarNvYROXGbVj3XIeUHo7YeOwGTwtxwiZ5B/lNfIZNoV60P3EFNuUU8oBofWxtWsETulKhkn/5RIAxVLsK6baVBlTtuhxoOwfblGvp00kZts/6oOjrP40dDmWsMP8LOyq3s2+1OnY0LqFfB6xDnCyHkpZfQFx3vKJfJwy7EodS2CM3xC/czrNPmCBeZU1hDosQX6jLW0fkIb7RghoDf0LC3WRSenpit+FxnvG4H7vnhXF7xHns+WcwG87rReLSvxX1PxkjsceOU6GOJPld7pc/QZL3MR7nnYakdIlyLM8jZX4o+cX6IyV6FAcmWSPl3tekXPEKqXPvsd22UqR2mNB/N89G2ty9rBkxH2lR3hy4fBrSOg3ZuL4O6Ye1qFjPH+ldXdKtBw3YpxPCVkXB2KdUox8GuCMjw5autkQg4+5DDjc5jowuby58ZYXM5KW8u28KMpvfceTcBGTZdPPVpFnImnyEUjxrkB1WTs8KEpD90ZR8+y4gZ/0i0v3S7UDtcNZe34ZcNQd2X3YQBcd8KLS3GYW52VS3/RgK367lufJXOOgSw56RhjjoYcy7/56Jw+l9pDRMx/Fvc0kZ1fF/IKbWUA==
+
+
+ 594.886657714844
+ eJwNlGs81QkagFU4bsetWRrkckJsjFNSqTjv+3/fmi6SGaZiIt2QkVtGpTuVafAzORpJV6xFqE2SiZRLyrTlMjm06SCddjX5MWgoU9vH58Pz7fk9tGjkJZj7F9PS4f/Cg62d5K+VL2uq8SF/lRT0deJp09L54JvUT8Hv+0DNVp9CLEZxkZYDhXqcxV5bK/ouzwmGb82mKPvHcCz9HkWDLk6rK6AYwxvQ/BEpzkofzDO30vfLrKGzVUEJH1SQOceAEu36cGGlOyVpdoN81iX68WoLar4TU5poHii31lF6sRwjHP6kk9Zq6Kv9kE4ma8DGOwrKmKoG1W059POkCsYkiynbKBbMansou1QbBhva6Zx9LOw5/wdd2KiP5uMVdCnlIPA1f8pLzYQuy+8oX5IByjYrKliQilUxUiqYsEdpdQYV5Xihs9yUSlI9cV9oD5XOuQZunrF0pSoR3ge/oWvnpXAsQEk3TpQIhgf9qfJMOBote0pV4lEIvn2IqrL0cWNFB916pYL6Z7FUOzcEB8OYaiuC4bhohO6kF0J3Ujw1tIeD+cF/U+MsFfqq5NR42Ru+/MaZ7hktxyVf+FFT23Wo11hFzUZ9UOylR81yKe5VNNLDbE1oGcymR+X38UhkObWyCqobRqjtwEO4sCiC2t07ML/qOj2ZtBcCZQPU8UM+mB9LoE6Do9DfOUydcavQ86glda3KhCiP/9HTm+M4O2M3deu34LPKMur+JRpOPmgmZdMKwdRnL/WklsGFnkrqvXwVg8aR+vY4oO3ENerXmkQniRb175+K9ms+8fAK6C74QKrvf4LIYl96dfIGnP/jHzQgs0W3XeX0er2ZIHK1p9cdKhjJVdLv8Xooz1tPb9ws0MT5Kb25bQkp9htp0Gk5tvgN0ZC7GnRjCI24SrD/ci2Nut7HZL9/0lvH44IjBNHb+xuEo8/N6c/q2xCjCKQJzbMylaSC3t0dh+oFufQ+2RKvVfTR5GcSPO3TRB+OFKK6bAOrmcQgrXXhKY1b0TPsR57aOVPQLXTnaWaVqFsQxtPODuPf07tYfUEcvL7czeoncsDXSc7qHxvQcHsdazSswcuW51hjdBAVrzNZc+9ZQbxjNmuOrYeGHZtY5GElZOywZVF4Nrz53Jy1/DwEp9BtrFXjIuj1bWPtUydoesE51lZ9gfmP41hnubpw4Kcy1tl5D/9zfJR1FLsx81AT64Kz4Oldz7qn3uIiSSnr3rso3LySxbqDc7Dcq5v1rtejqqaF9Uam4eE0EYs/+fkDXqzv2wtxTatZ/2Ch4GzTzgamv0JF13k2EPJQpupmg7hwzPR6zAa1NYKRzUc2nCUWinMfs+GWJFSEhbFhtkhwDq9jQ9W/0DjsNBt5vBNEk7PY6JcdwsGJRjYOVZJtriMbZy0TTpTcYeNfX+DfYvz4s5q5n3ouYFN3Zwh2V/KMci9s+K2WzQLrYIEiic36fkf9oVy2OCsGxzgNnllwF/W3zGUr0wDBdtMYW/kcAFXLQrZ6ZoRnngeyjf1fIC7axZJ1D2CzppIl57/ESbsrLPkYBF97+PCsb3fCDctotm19LIRXS9hOfAjPyczYriwAJ6Rp7OBQgisNBXYIkMOQ7zA7ZOXjPqMAdlQ4CVqZjezkeAvXauSwU+sciBy5z865rqjz7TF2VshxYdkqdimKQJGLK0ttHME88QnPs0nEpMUVPK+oAecdm8tu/ZdwhuZVXnhqLba5bWP3qSm4ubmQ3Z1KMGv+GC9+liIY1E3ykgtRYD76gpco3UFZqc1L85rR+Pgd9tzshYZeMvYs9Je9kr5kWVARdm7WZlmOFF3k8xnuirDB7jTjrmS86K3NwvMpuN/qN6av03Hl5tVM/cEYcKmOOaQXPkxXMP9sCam0nZefISyzUeMVSgEiVSG80k4Tkz9/xSt7ZmPpzfu8WjkEXVuc2evQN58+Eslr94hwWesrXtvvjoHqDuwzlg7m1Sa8zoSg7ImEN/SWQsXgX+yfWYJ7LeI5YMmn/+1R48Dk9yCOvsiBL2VonWbIQfY2kLq0mTe1S0FsPZuDT+XIml1deEv0FPCN+Yq3Wtrifq9LHJp2BMTb33K4QRzGSgo5YkYPVO55wzubJtDzugFHRoxj8IAFR5mkgO7JcY7ql4OyqZSjbYagemAbR++eCZEDDhzjthG/CrrO8dsicHtVDMd/bMSSNm9OsC5CzaPzOaGlAQ9ExvM+n51oXfWED0un40yDxXw43hv7IyWcaPQI/E5rcOK8pVAcsI6TXk5HG197/iFhCKIkjzh9jRNsqc/g9OAOeHD4IcvzX6C6XwhnZY9B+4p3/wd23wgF
+
+
+ eJwNl3k81tsTxxWVSvbHkp1IukU/S2nPzJwvQqE92rfbjRZ1tS9uIiq77CFpLxGF8Dy2ni/q2rIlVKikUihdLb/nr/frdV7ndWbOfObMmYFcVk4P+bOQe8qf2xXyAXKjapjMmIeQmziV05zwGPLUX7MguyHI06xh0xgHeTrRVGB/G/JOybIR8yslvEoXWs0hL/E5SxYwyBvWYedsnCBf3ZRSPOUgX9eHgtrnQn6UE5XapUF+bBOF+Y6ER40iqjReBgWJ9RR+k0GBWJGOTtSFQqNGCnjuCoURWXTWIBgKY29RgEYYFF7qpweWD6GwNZA+xP+AoolnqDhtEIpizttfeBEIRXlibnqyIwiV3ejcX2UgVFekIJ8PINT4xlm8XwRC7ZHU3NYOwknDFOlcB0Kzo2xa2VUQTv1KwU94EFr8pLj6wyC0JBK6bwehtReVvi4A4ay9TGbzJxDOVmd2N7eBcH4JZeZ5gNBOTIn57iBkP6hjnxYINznTnppuEO4NoBLL1SA8FsNmGV0CYWQ9DadXgzDqB2X3dIIweil1vrQF4cWtLGxPNghjlTivIVkQxgU7DjScAWGCA6c7Wg+EiWpMg1eUMJP99UwdhEl/U4tMvYSd9M/s6SBMcaO3DpL1lCy6smsAhMIK8rk/CMIn7pT0nz8Ia4vo/KqJIGwrpNQ9D0HY8Y3S7z0FYVc2ZRl8AeFbC9p42lrCF5R7OQyE7zXp9nJzEH60YfKRhSDsu0zRHZJ7fDlLqWt7QNh/np4v9AXhwBWKBWUQDi6kT593gfBrM1UeIRAOL2eqiyX8McQUJfZFUrLUvsQeRCNtKJc7AyKZELrWdQBEslPoovxeEI1NY+MP/w2iccNsbtU0EI1vIa+QahDJraLdbfdAJK9JwmV9IFKMoCQ6ByLBC3qy9ASINE+yyXanQDTxq8OtH/Ig0jaiIs00EOmeZHaSuIr0u5muuQyIJs2n4zfcQGQ8SBW3HUE0eSqlZD4A0cYNdKJhMoiOtHBTumJAdPySg/GGcSCK7aC0vRkgip/IVS0eAFHCdfqnSmIvUZv8qR1EzxfZl96JB9FPAZV9jwPR7xHcnIuRUKy1337E3zJQrH+WudQvhOK1MaxS3Q6K1z2gtxeroPi4IhfwUwGK41Ppjm4CFJc7UI/jGyj+rMPku1OhRKeYElNsoeToTWZYrAglxy7R4MpOKIm7SmmGZlCStovz2jQfSn4cYXoVe6B0Uj4VxAGUNqrRviYJ//OjI7n7ocxzmCK8eChLPEHxj4ygLCnT3mW6E5S1vedib2yCcj0NdkDFGcrjjnPsjTQ81hpNA/va4LGdEVs6OBIeH79OCSYmINbqsS84eBjE5ubciYQbIPabTKee/Qnis01sook6iMMzKOv+WhBHvKacOQ0gji6j9uUnQBwXTBkGc0GcsJnb/7EQxMmxFHMwF8SpTygmfRDEaYPkZ+AP4vQdbJehM4iv1lPz52Ugvo2U8fsSiO+UsAnnFEB8N5NaxsiBOFOage8REGdbMF25ABA/GMe2HlABce5IinuyCsR5kRTmJgJxfju1lawDccEuenPQBsRF26ksNgHEwqX0UPsniEVCCu+3BnHxIyo3ewTiUjEzPHQGxI/d6JLCChCLw+jGz/Mg5kMpvU0A4srFdP0RgLjmBNW9vAfiuhiKSl0C4oYMujFd4m+TN0VetgNx63aKm3Zdwo+0IzALxO13KcR+Nohf1tOr16Egfs1RcmspiN+U05nBUSD+0EWnHST3/xhKKQc8QTy8jZJnyAAvpUxRj+4AP+4KPW6fAfz407RlwRvgFayZstlb4FX6KG3mMPCqEn1rVYAXvKPLk74Br7aFsrYnAi+pczmykn3qdUxnejLwGqfoWsVO4DVHswn3l0noyuwnR0jYQG+GvICfeJZVntsDvJYr8/3fLgnvsLZXg8Bre3KB2WnA63xabPbkOfB6NlzYxloJRdyObxuB1w9iURWfJPzJIhdK/DBYxs7InpIwjV1sDwTeUI2Z1E2RsJdN2GwDvJENM73QAvyk9Wx8mQbwxhZMLbRIwjBKqxAA79pONyf0Ar/MjzJnZQO/ZhxdqVYG3mMKG79act6G77T/1yrgt+6iAHgF/LY86u65BfxOX3ooEwP8X/H06KkB8F6JtP/QBgl/kNeReOB3v6OYiljg984kP+sXwO+rooh9Er99iujHgQzgD7RQ+szTwPsuZhqfmoE/lEVD7zyAP/yGej0kOhzpoN9lm4E/epW+Bx4F/rgcZbEREqbT62FJfE46MaP9jcD7NVEuSeLiP5X5Ry4G/sw3tqX3AfBB09iJnC/An1tJXeo9wJ/fRT+yJLpcGGSaehJdQy9Q3tlu4MNElPNAokt4O3XANuAjA+lXkUSHqLcsbuIO4C8ak1+PJE4xlpRSHAZ87EamHBgFfNxH+mDjA3zCKDZpxjrgk5Y6fHswFfhLgWxJiSrwySZMftcE4FNuUs+uOcBfOc0W1/gCf4OnuAUSfzKu06mUicBn5tKAuy3w+YOUNNcYKuRXcPumFUGFehBFx22FCu0sihhzBSp0I+19A1ZDhd4TblVfA1SstaPAuv+gYl0rW9HlBxVHxjCNUhmoCLnJlOwdoCLaiGXqPICKuEL669VhqEiq42QE86AiWZ9+vS2HimJrEq6TgkopL7b1YBpUToykTN2/oFJvEQV7fYXK9U/pknEHVPqFkv+eJVAZnczWJ86FyhhTh9Gts6DyXQ9dK1sCVapmdGbMdKjSiODO9l+FKu0zVDHVHaqOOTnoTQuCqihN7pDsBaiK8acH9lJQ9TOXk736Cp4IfJn6gnx4opXGNh17DE+OCjljLS14cqyM7k2fBU8Sgpi84Dc8Xf6S0uUuwL/Jh7i6P17Cv3wgxR09CdU6U9kCawn1Gqgy9QZU679jt7IcoDp+OkvJtoPqJI6yygKguh3o1OEjUKMzl9vhBVCjf5l2ePdCjUG7fehOZ6iJWSOpB5VQk7DS/tPAH1CT6szRo6lQc82Fnij4Q01jFiXkboKa1lD7FddUoWZAim3zMIFa7WzOpGgR1Oom0tCCpVBrSHQ3IBNqPdrZ/0a6Q21YCvkXN0Jt+Ds2oikUal8V0CnfLVAXkcfZ1bpDXWStvchpNdQl6DJB8F9QrzqWrm8iqBcAt+JgK9Rr36ToDA7qI5NZ87pn8Cy+h/KkzaBB+zczy74NDbq3mMufC6BhvSr9u/keNER1stDlEdCQWM0SXtRCo1o6Hd7YAI1aG7lRIROgUfcvyvV9Do1rI9iaLZrQpDfXviZIEZoMC+j8/u/QZNRmP/GiLTQ5C+jGxmXQ5FtAL24QNF26xgWbnYemNCf2fMUGaNZHOuU0FpoN5jC/I7rQoi1FoqRJ0JLYSdkHl0DLt2XcVv/b8FzBkF03mwPPQw3ZDVlteB4jZlZbp0Krlogu7bOHVs+VFGT+GlpDFzAd6IYXhrJMcCoZXjwfxSwmv4IX395RbO5jaNPR4YyVLkKb0WfJe10AbZ7L2YXG1dCWeIlatzZDW0o3c+qZAe0Gczhc+RvaDb+zY1bZ0J6Sw+Y7a0B7aSIL1JeF9tZitvvPTGj/5EmPj9dBh/4yuuj9BTqM5nIaqgnQcbmSWbJM6GhbSNG3l0NH+3yWbqkAr6Knsxn2JvAq7h2lV5+F15fKKSW0CTrbyql5jxF0tscz5QFl6DJYTiHTS6Fr3QBdFW6Hbt0kZiX7L3Tr+1Jr12/o3ljI/vM7D91H/Sn89UroThmmITsteGM8n3XP1YE3TlWUO7gG3nhKUZ53IrzxDaOkK97wJv4jXZVKhjdXCqhQvQXeGniwkVpZ8O6rHX1c3wI9HuUU5T0V3ttPpJNdh+H9bXf7Ib4NenWVORkNT+g1mEKFnn9C77R87sO349C7biMTOPtA7x09ZvQyGD5symF7V7vCh9QB+r2vDz50+FH40dHwUa+VXioZwSddaTqxyh0+6atQqFUQfJp0jpltLYNPV9TprvFH6NNSo5Twcuj7KmaHtryGzwZpdCN5L3xOuUYhFT3wRduEMuRdJOykjZka8CXlG2XEzIYvVxMp/8FB+NJxgAVaqkK/fiLFJrRA/4Z8yn7WDv2bWimn7TP0n9DkYrY/h/4XxdwpdxPo/+3HRssbwoDuKNaUmAgDBjZsbrU/DKybyQSaS2Ag+RNVbr0Dg0Yb6KX3MhhcG0jPgubD4IaFFNu1AL6qzaWnq43hq94flGtnAl/100l0vxW+msSyg3QZhgxWET8vFoYuNVHegfvw3XkrRe56DcObbSjLIgWGUz7Q7cx78NM0mNr1++HXpj66d6cWfgWb0OPUavjVcYsC/arhd6sphS/WRSllJ8px+QelbL/SULQdSi1Zy2SUqlAq7Ayb6KmEUjdn0v0Wa5TKb6WL+e9wxG4P9niLNI7g1Znnsms40k2TydjW4cjdHLUf34UjQ/9ktgvn4cgaawoo0EFp822cNEmh9JL9bEvxcZR2m80piU6jtPdvCqvXRul9q5hTOI/Smels0db9KJ3VTQ1Td6DM3kIq/zgDZc4p03WdDpS5UEbnNAxQJvQ9dRrJoEzkVgq+cxZHRXynq+76ONoimWoLDHG0rRvFTczD0Utf0PmAeTjadR7Fd5vj6NQJTC1RBUf/2E5n2Qgco5DFTj1zxTFLXjM5bjGOcX3AYs4/xDHuuiT6LI1jQktoyKQUx4TLUkZOEo6JHM00+mbhmCw/trFSH2VfdZJ/3i8cq5zIRiz2wbHnuym1ywXH1m2m9CktOG6pFXUE/InjXO/TB71NOO78UzZB1wbHXVam5CFbHNfozG1sOYHjhm5J9OzH8er+zHJTOY7fd4m+R5fi+PB/KPf5Bxz/+Q82OSQG5ZQ8qFz/X5RTmUAhdzJQTrWG4uwOoJz3Byav+B/KhQbYX1+3BeUyUu2NPkWgXHYZXVjZi3LVYo5pC1Cu7y+m5q+KE2bYUk2VAsrvMaWC5iCUDxtJQbnvUL6uhpIbY1DBXZMaI+JRoc6ZjoSGoKKKFEXuN0TFkHQ2wq4MFTPUKLhMBxUHxrK4/meoZGVLaWkyqJRxl9v1bhQqVVeyIXcPVOprYdIuwagsH0jReZGo7O5M55UaUTkujZrnrEDlzAG60G2MynnVFFm+FJVrb1G9OofKz8qp+4weqjB5Onu2ClVcPBxMuqejymahw3iHy6hyaKJ9jEMyqlzw4nhnT1SJWEx3tpeiSuRCtsOvA1UuZ3Ej1HlUub+D7TBqR5XcyUx++ThUvXyRk5qQjaoPf7N1s3+g6tPV7JKeNap+/oeip09CATqy3SovUOAylgZna6PAdSwzMy1CgWc3u3snHAU7c+jFlOMo8A1ipq+voSC0gr09OR4FeUU0tK0LBdWDzKZoFgpqu5nyip0o6Fdm8tXNKPjPn2q+eKCaQJlOvn+Lagbv6MIf/qi2WpOZe99AtShv+uzSi2rZSyjxYQCq5cZwKjEGqPb0F0s9uh/Vnh1gCkkLUK1zJ33u24pq3w9S+uLVqC5Yw5Sdk1B9zxmm3eWN6nXFTE2zGTUsBRRQHIQa7nvpZqUWavhI5I9JQ42IlVTpuhw1Bu7TcB+h5h5GHf1C1PQzpKv3p6Bm6Cl683MCapn5UkDJUtTa4UQ3I7eh1rFbTH/9BdQK16Lv23tRK9WQnfEvR63iuRT8eDNqe3GSudsKte8X0L8dtqhd/4npK85D7f4UJpU+GbUHFUh0bR7qKAUyw8OnUcdlgCkEH0OdFRXM78QM1FknTSmWA6izxZmGoxxQ5+8vTNZXjDoXlenurkuo+6ckP13LUDcnm+5LBaBuUQDFj3mAusUPqXz7dtSt86MnrodQtzuQM0h4hbrDg5xSXxXqKTF26KEQ9Vzn0HXFA6i3/xd7oT8D9aLGsNnfNFDvkjeVrLyBercsKUq/H/X6bSjXXQ71hvopNeMg6rstpbQnyWig+JTO+SuhQYQvG2XfjAYX5emCx0U0qK+lcM16NGjUpoTNnWjQ/4DiIBoNTWLsh2yFaGg9i/w73qLhnB8OI28Oo6HrCvtwzg8Nt12xV5JyQMOjMtyiwaloGL6XPW7vQ8PIHRSRG4OGtRcoOMcQDZ8tpaA0SzRsCGI3BSpoJKhm6Ysr0UjdikKlj6NRrTFbNfwNJ1lvoBzl8Tgp3Jwp3tqJk+peU7zBZZw0KEfJS1ajsdt7ut/Do/EyO7qZUoXG5+PpgeM4NI6woU4VBTRxt2UG6w3QZPlptkR5IZps+Zcun8tEkygXynNVxMl3OinUYRJOzuI48xuLcHLdTtaabIuT+0+ygy+D0RTG0rnp59BUkid6nkFoelKVOuoL0TTQlIacZqJphByb/uI5TrE/TTFmujglMonaPQPQzNKH0tZb4VRBEt1TD8Gpbi1McPIa/rE8nHk++Y3TpBop5d5sNBdYsDh/NTS3/h9TOpeH5su96M5cIVosN6eP8ZFoERHNLOLd0SLahfLVjqFF0xEKV2L4P5XzLCZgGlq6xbNV1uvRcocMQ5kYtAx/Sl02CmjZFMN56HeglUYFu55vi1bhhWxoVzVaReYy/W95aJXZzOnYzkCr7DFsxr4XaFUnxSZ4l6K15ihmeloNrW2OkniSPtrU/majBg6iTb8NU7R6hDOtvenqpgCcpdxHJZ2DaPv3Qabj5om2kUCDbYvRNtuQbnKWaPtMiW6WWqNtUzhVlLmhbXMz2yDRw/a5K6swzEDb1q1snJUM2g7cofyqGJy98gRlrwrE2f4KTLtnFs6+wrFpPcdxdpkzNeSuwzlqlZT+uhPnrJ5N6QHrcU5/D/ck5RHOVR3LXTVLwrlWiuxR32acu0yfmYtNcJ5qKbshPoLzlo+mHwv/xXlZC+mlpwPOV+mkhL4vuCC8jK5L/reFAlcqrJqDC22O07feQly47D0LfZqGC/9+SRlWQbgwypktr43BRaodLPLjPVyk4UFpCdK4yGqQ7RmpiouWT2JyfcW4KK6SG++6Ehe1/GIxjaZoZyaZoxV4tFvoTolX4tFueSpjmi4IjUImq9qCuPIEk570GmndfG4Uy0GKOckUun4jJW1nC8ASSaRFFWNvI5u6n40tHIHcMzETjPyMjkbH6U1pBTpamLMZmxg6zjNid+klOjpKs2avZei4opgx6wvouDmXKfy9B53G7WDWL0egk7obs1QxQ6fEZC4+pxadXnSy+kOm6Gz1gJJsMtC5KIfKs6TQxS2IAvOnoku0G5ttnIlLVrgzA9csXHIggY3+zeOS+qPUuF0LXdf2cUsX3EPXBEdGV1rQdTCRUsavRrfPy+jOti/o9msiXfPZj+7N3+hu0Xlc0fCeajTFuDKjg4258gPXfiikJP3p6BH9iHMxskaPrB8UmQrocX83xRl5oEeOuX3uil3o8SCFviWEoEfDIvsbw47oMaBKWQ8lHPS2H3Vdsv/rGvtx7Bh6Cv7h9lpFoKfaPu6fyDXoaX2Edf0TiZ42iUxWsAM9lx9kJnbp6Hkxhe5Ofo6e9wVshHIqetabsVlG0bhupSkl/L0M12W3M2mrr7ih9SHnYp2PGyXzXqKbF25cpUC8pH5v/OpBeXwIbn7jTzHPNuGWVU5sQnwAbgv4Shf/eovbE24zw3Jt3BFrQfd2JuKO4V4qihuDfw5/pAJFBfQyUmXzLO6jl2kfKwRCL7NAdjLUGr2mnmBrXLPRyzyOKZgNoNeMaBrEePSyfUhRFvnobXubHTR1Qe/VXVS59w165+bQ9Tn16KOZzwlrV6OP/gdqNSlEH9unXOp1F/RZ3cO5rA1BH484uqf0AX0OdbO+42HoEzvIuNhV6JMbSA1m99D3tIhyIi3wsOM+FtsyDw87XaXL+T/xaPyQpP9XwqOVz+iXpSMe0ylhg5UCPOb5m42cWYDHm13oxq6bePzHMSoKU8ETeTyl/peMp+SamKaWB/olNlFtei/63ZD01+/r0e92B7VrT8bTOoWUvHcbnlm3hI2SMsQz3l7MZEUTnvGZRam3P2HAZ1u6OE4Hg26EUKTUVTy3x4NtZ9/x3N05zMigFENVCpiC0yoM3WtAORsDMWyRDJ3VeY1hoUFMc/IzDMuIo5Yd3zDCXIUrWPMFI5aYc47/lWLEbicWUXEPo1UeMHPfYIxW/cQ0X0nhxVkzKFLSPyfKF1Bysy8mVo6lzN0z8ZL5K0p48R4vxUj+/3cCTOkLp9uBCzBVfQ3TXPMPpmrKMoV31zFVq4iSxHMxdVIj9a69j2k+qRQ7MxavLPpFMes08bq6MjvRIos3g49QiKgT77rtpztMCu++S6Uot3rMWJlOd4yu4j33i3Sr+ipmlYygeGMHzElBunKoBx/6vqOsGFt8eFiO7vc2YG4EkXC7IuaLXzG1BML8uttU8LoaC5Km0C272Vjw72N6XBSDBbUCpm9hgkW8DFXeDkFh/TJKXLITi/0+0VuPHiw+vZPa1ihjcWA4E+z9jsXPJXXgnBMWtzky5eduWDL9I91T/YIl9zOY3od8LMmdRcI5NljygdGDz2VY8vl/1LQ9HEv+02DTen9gyS8/5hcSiaVSnsylNxFLZe5wi1sMsXT0em63kRyWjv/OzhSMw9IJqWyx359YquTI9lhPwVJ1VWY8dg+WunVR1DpvLFtsSqXjPbBs70TKV3DG8nvVTF5FHcuzTlFtUjQ+tthBtz5cQ37OFPaxwQ35V0YUJ1yJ/GsHOjvhKfLv20i8+ypW7PSjhERNrCiXpU+NGVjBN1JXqvH/ASPfckk=
+
+
+ 882.847961425781
+ eJwNlWdcCGofhhMlFWlqqSilgYpo9/yf5y6hUNmjsjlGJPuEtKS0I9ppaGhpqHQo4TVOZZ5kZBwhZY8Q3vPp/np9uH7XLfaabmKh87PFvnXn2fP9siJIupCWFeiKA9H72I8zLiJYcSePK/MW4WlFbNlpM3HI6AA9X3tAROoGstIBPSIyxpn1UK2IU5Hm0C4XcdFhzOvhKhE/Josl/3lBxEe0ssBMLuLfqJLeqoUiMSKPLTMtE0dk1zIv13Bx5EIPG6bfJpK/K7BmaWuRHrqJhViqiQy11VQ2+IPI2CVL4y0DRKZ6MQ0wUBS5MjLsYqORyM3wZs7BJPIU84jP1BJ5OTfILnKtyJeSpyvaEPlRkiRlsEecHG9No0a8EwWKzbSnY7Mo3D+ClWbYiFOqFpTeFiVKBm+n7JKXonT/JZaiqCbKlT6T1HpvcXr3//jQsd6isjyZlZgtEFX5iezwpkRR/WA1ZdWqiVr12exTzHFRG/WDFKaaiTqdldQQ7Snqyjz5RJ12UZ91mTXdUhBnlxezyOLxoiGpnrX9vioavv3JJJa4ir+OybGrBgrivMxqJuGnJBrj7EjOyFQ0GRbSk9Re0ZRxhjt23hUX5GRppU6yuBBnL1inhmh2OMBSorvFReUyVhXRJi4eDGIm5u/E5VpGqXgm/tcwmoaOHy6u/O5hCaeixNXjg/iYSU7imkYTaVeHiGvhmtx4Xba49mETH9/vIFoL5Mk+ZJdoy9tJ854FiBtK1iwmbq24pdXFR8RXiFupSqRYJiPuWiezTJN+cbdUht2cYijaJbuoJjVW3At+wCOPjRYdjp5kUNUuHmmrc3u7g+LR6XgKe3BWdBZkkrp5kuhKV2OB1n+JF1Zd/GLnfPGixJCSjg0SryiAuZhKi26DKFrHH4vu9KcssHy26CnKobpR8qL330fsnuZX8VauggVe3Szeu20ml+Ud4sPRSRT62kF8SnEjk7qD4rN2MU/Z4iA+p1mSg7Ke+CLly7Rl34kvD30prFBD9FmOJ9/3ReJ7TAfxE9fFD9sW4tGKov/aSjLlFuJX5nHWL9UpfteNZQkJTyBhf5I1/SjCAE8f5nVpBAYcYjQhORIDHt9hN2KTIBnRS/onzCH58iNbo+yAQapepPzxHQa5ypLylkMYdHg0XTAzgJRPJvN6/xZSHzn98l8JaZ0Gyi59A+m5Xfxwxm5IH3YjJ8dTGDzfgO1eWI3BdxfSOqW/IBOqzb0aRkPmYS/pSn/EkLYi9llPArKDfMhw3kjIuhuSxqsOyCbc581WhpC93ksHf82FnLojWzbCAHI/NRlfaQZ5t4V8zpBfGCr/Nx94JQBDPe9TpbExFNS8SPKACRQ8BXXuNINCmikzmWgOhdY7tHi0AYbnzmblUh8x/NZK1rUgGYoa35nysEYoBgXxyunWUCzYScb7FkPx5jRKjpSCkuYM2q/TBKXAVlqUeQ7K8cZ8a/5KqJyuoOOHlKHqPpc6/h0LNY1i9qTAFmpL85hW4kCo3c6l8jJXjPiHKHiKFNQl21iTZRrUrapZqsEmaIz4ycvSGDQ8iBtdbIWmswUzX5YMzQIncvwmAa3YzSyq3g3aaovJRmk/tA//zZ73/42Rvip88PXJ0PFIJcPOO9DpWEi2WTegqyrH3UqOQ3fqW25idhu6kXfpftoP6LFXtOLhEOhFdHPuowK9jh2k4bcVoyJfkNfTcoxqVaFByzdg9Oq7FGL6DaPPRHGrrxehP8eR1PuOQ//wdbbp/G8Y+OdRXKMTDP4u5ec65DFG3ZhLRc7BmFBllnX1HxjKBtLOI80wDKjhqjtrYZitQzaXfWCk0EPt517DqG866W3owFgHCWr7ao+xLc48dXs3jFWvce2h7TCGEw29PRrGJy/SiuGjYOJbyyWjB8Ik5RptLzkCkwdD6db6Zpga7WMbbGJhOt+StBP+gJlKKguxqYVZToVYklYNs29LuGalC8aNdqRPMxowbpEzj3cfhXEZ0+jD68sY95VYoP0/GD/zMe3e3IvxkaO4kspjmKs8Ztayi2HeuYPLVKyDheI65hdyFRZUxBLChsMivpHv+6MLFg/GUNzFSbCceIzezXgEy6gRfFCXByx7LrOoxKmYqDmDlXqZYGK9Cj206cTEjwpsaZkdJqUUkdXTCljJu9BTcofV95Us3K4Vk70a2U0lfUw+28ebn/zClHF6fNtqV0xZUstj+60xpSOdbn3Kh7X+C5a5XQrWFbrk5bQENoqdJHvWFzafiXeo7YetngY/fKUfti5JrFynBrZHI1jc+1rY/jTnfwUFwS5lgZCqHAC7Jxd4idZx2HvnsieF4+GgdI+m7TgEB4fzTEL5FRznTmSdFdpwfOPAPvSqwWl2Ha83WA6nknLm/OwUmOpWVlrqAAoYxEp9l4Nul1GEbAv4kFbqLt4JnpbN8qr7IXQ+k9qjERAeJ9i1Wdvx31GQ7HMTiJfdFNciB+gP5x5yO+Gc2cAkSqPgfGskqT//DZfdy8nj4Ri4PLvAolK1MVX7Du2/PBZTo6yYX1gWXA26mF/VPbj6GPP5C5TgmjKVP52eAtdOBY6bgZg27ChdcGvBtJlKlHK1AdOOh1NXhCOmawlm4h+A6c2/+RL7PEz/eJTHzMzHjJFnmVG1JtzkUpjJxla4+Sqw60YT4Nbuhk2alXC3DHV20FgK9z9qRYm1MtzzpbhhYiTc70yka5taMTPThTp+Z2LWumyXMz0xmJXxFJN1jDHr6Qg+41siZg8r4dvOm2C2yxZu5FaD2beGcpO0MnjoBpLyRS94uFVxFdc18Aj6yRu8V8LjxjZxva4AnlrTeMMUd3i+9+Pqc9fCa8p7qs9bCa9kV26jsBpejeXccfwlzAmr5To7FmPOvaNUmzUBczd2876JVzE3dS+36d2HeWbvuE71Iszb8JosmCUW6HKekJOKBUtvQ/GMOxaExvKcf+9hQe0pZmr5HQtPabKPX15hUYCrgPQbLCr4h2ePeo7FmSdIbthrLD12h2WKSHjHZrHeha/h/WEQrSu4C5+xJ5hR3Fv4HBxFEfZT4VO1mY4bjoPPy4EsxLsKK4ZJ8AtrW7BivhV37yOsyMznpTnA6ph6srW+jNUP1pLef3xrChP4N8/LWPPclwbvV8PasF4aLsGwtrKTD0n0w7reAMo6XIg/8k+x6hU1+OOZE9uiJ4ONmhuFYboiNvqU8upffdiYPo1CN7vA7/412n+9EFusTlLF6BBsWbGZlX9JxpZEX9o9NBb+CsEsIeMN/Jf7sMAzw7D1aTDNGdKDAINkMi35FwF+jTStohABzyOYi+FJbLO6QjM+y2Dbmn8oJVce2zIm8ZAUW2x7sJ+Cwgdhu4Yd+52hjh2bUtmM0y3YcSyEnXn4GDvuvOeLxgE7ly+kiK17sUt5CtPVl8EusYSmS23HrrgbXD9LE7vavrHKVxOwe54zyakfRuBdJ7LeFo29fcosdPVD7NNtJekqSex7rEwV0zIQdKqbyxyyRdDb4RReEo4D+mspyegmDvhG0KJPvThwMYwFnr+KYM8Q9srCCcExv0h/Vy+Ce3bypu1NCNE8wAfGpiHEqpycVuUiZH0YL6xcj5DojfQ7UBuhQw6x9ofNCPW/TC1PTiA0/ix7zCUQetqPz9AxQWhPGM3VC0DYRHM60ZaIMK8/KUbDHGEb/+uaexfCotNEWmMrwioMuPekVwi7/oMWv92DcNkSCstZgoPpKlx+VgsO1oylGuelOHi/izkXJODQonou800Ph9qU+ff5hTj0eTTZ/KmISFVTSiiZh8iWT1RflYbIbhf2oigVUYrfSU7JAlEL7pC73zQcHjeSdL/Y4PBcSXpiSIj2kCSj4RaIXl/KHp2SQczdNtJYvwMxH17S1l8diN0syfQ8TyG24RLZn/FE7F1Gdj4/EbdlAseiGsRVptKTTk3EtSdyvZ1diPswlvvf1EO8oiXLK/RFvOEW5pztg/j2PhZi7YGE4el8yLWHSHD9wuXjGRKCrrB+yTVIePteSGt2I1H+Nh+htAaJO7axhKR+JMaAOd/+gaSDx+jEWEMk5chzky5NJNW1knyNEY6k9LHv/pI4UupKVl67cXRYE3lLh+NowAH2pm0Mkg0+M+fubiTvSCXP74uR/O49LBwm4Jiqi9irH4JjE/ZyrUAtHI+K5EecOI4XTaW/pSJx/GcldZ1/jBSNTyR/IR8pM76TYoYkUi2y2WNlLaTO38Cq57chdacLXZo8EKkfsv7z1xJpE6aKGUa+SHPbwkV+CNJ859IDf3+k81gal9iCdL/1PHiTBtJjVHik5i2kfyuiYbPtkJGziwYkJSPTP5wCiw8iszGCNe3fg6yum6TY9wPZQ9ez3ro9yLY9S0/22yF7Th4T5puRvWkVazaejex4b/YjLxzZp8xI7YQ9sl/coobr9sgZpsUjcn8jZ3YfP5Ljhhy/XK4zcyVyouu49KL/tnAOSRhOR65nJ5f44YLcrW+5VO5Y5EaMoor7LcituEQeX74jz2keX1FdhbzFikLq0Ankba3n0oP3Ii/6Dh0wGYN8L3dSszVDvn8SX+EbjZNfesnxqSoKwqq4xElrFBS+pUePd6Cg5QSFNr5G4eSbTOuJNwrrpWjlVlMUjZvC27WDUMS6WbuqPIquX+LmC26i6EM9mSp5oHjMYYrob0fxrPlc5aUtirc78phX21Ace46e6q5A8Vs7qikOxqnhtqR0pQQl2zezk3OcURKfLkzSlqKkbCoPbm9E6dY4lhX1FmX5Q2jwunMoOwemtI2j7LYki1q7BhUVaWzZvSOouFLDuH8tTqs9obxVf+L0r2iqeqSCqu1O5P5uOaqZHQU31qN67lF6ntuI6qRwkmPWqJmTzQIUElCTFUSa4QtQUydHwe06qHnoSnMONaDmvRYlUTnOJPTTsx5VnDndzO6ZctTG21PiwgbUlk4m3dx+1N4YTEo2T1Hb85G0DWeh7lwNJWRcQ11fJWvXm4v614F8yaJCnJU/QPO0dXF2kiq7+vITzjZvZRKuJTj7SVuo/zUHDYr3uVXJdzTYzyCJVaNwzryKNdXI4vyiWKY9qwLnv35mn0etRuPsQNI/mYzm0hcsofYrLn7+SNZ7NuDSuDHMxLoLlz6spt2KP3H5rSpJDkrE/0aMpKbxp/E/y6F0NyQUV2elcOOPa3A9LoEqLW7ies0YWjXu3/8DrcPzLQ==
+
+
+
+ 1921
+ 10191
+ 13306
+ 18933
+ 22172
+ 25947
+ 29042
+ 38308
+ 42036
+ 46110
+ 50049
+ 52906
+ 56010
+ 65016
+ 67927
+ 71250
+ 75804
+ 79136
+ 82202
+ 90776
+ 93593
+ 97558
+ 101451
+ 104054
+ 106797
+ 115518
+ 117804
+ 120302
+ 121704
+ 124850
+ 128446
+ 136979
+ 139622
+ 143624
+ 145060
+ 148483
+ 150923
+ 159740
+ 162812
+ 166718
+ 169293
+ 172146
+ 176123
+ 184199
+ 186923
+ 189198
+ 192349
+ 195338
+ 198620
+ 207494
+ 210056
+ 213093
+ 215604
+ 218631
+ 220366
+ 228578
+ 231523
+ 234863
+ 237742
+ 241145
+ 243755
+ 252286
+ 255428
+ 258454
+ 260391
+ 268590
+ 271542
+ 274650
+ 277145
+ 278785
+ 281258
+ 289570
+ 292830
+ 294350
+ 297749
+ 306645
+ 310293
+ 312985
+ 315490
+ 318667
+ 320499
+ 328996
+ 332578
+ 336664
+ 339069
+ 342246
+ 345825
+ 354777
+ 357822
+ 360651
+ 363719
+ 373645
+ 377074
+ 379954
+ 383576
+ 393069
+ 396012
+ 399796
+ 402922
+ 412219
+
+ 418204
+ 487a1a25f84f7a19cc4c12be64dca8305e1c11c0
+
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/bsa.fasta
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/bsa.fasta Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,12 @@
+>bsa sp|P02769|ALBU_BOVIN Serum albumin OS=Bos taurus OX=9913 GN=ALB PE=1 SV=4
+MKWVTFISLLLLFSSAYSRGVFRRDTHKSEIAHRFKDLGEEHFKGLVLIAFSQYLQQCPF
+DEHVKLVNELTEFAKTCVADESHAGCEKSLHTLFGDELCKVASLRETYGDMADCCEKQEP
+ERNECFLSHKDDSPDLPKLKPDPNTLCDEFKADEKKFWGKYLYEIARRHPYFYAPELLYY
+ANKYNGVFQECCQAEDKGACLLPKIETMREKVLASSARQRLRCASIQKFGERALKAWSVA
+RLSQKFPKAEFVEVTKLVTDLTKVHKECCHGDLLECADDRADLAKYICDNQDTISSKLKE
+CCDKPLLEKSHCIAEVEKDAIPENLPPLTADFAEDKDVCKNYQEAKDAFLGSFLYEYSRR
+HPEYAVSVLLRLAKEYEATLEECCAKDDPHACYSTVFDKLKHLVDEPQNLIKQNCDQFEK
+LGEYGFQNALIVRYTRKVPQVSTPTLVEVSRSLGKVGTRCCTKPESERMPCTEDYLSLIL
+NRLCVLHEKTPVSEKVTKCCTESLVNRRPCFSALTPDETYVPKAFDEKLFTFHADICTLP
+DTEKQIKKQTALVELLKHKPKATEEQLKTVMENFVAFVDKCCAADDKEACFAVEGPKLVV
+STQTALA
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/exp_design_test.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/exp_design_test.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,3 @@
+Name Fraction Experiment PTM
+QEplus021874 3 1
+QEplus021876 4 2
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/allPeptides.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/allPeptides.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,166 @@
+Raw file Type Charge m/z Mass Uncalibrated m/z Resolution Number of data points Number of scans Number of isotopic peaks PIF Mass fractional part Mass deficit Mass precision [ppm] Max intensity m/z 0 Retention time Retention length Retention length (FWHM) Min scan number Max scan number Identified MS/MS IDs Sequence Length Modifications Modified sequence Proteins Score Intensity Intensities Isotope pattern MS/MS Count MSMS Scan Numbers MSMS Isotope Indices
+BSA_min_23 MULTI 3 710.69967 2129.0772 710.69967 NaN 5 3 2 0.077192 0.0578164096173168 1.180035 711.033930698172 0.037 8.255 0 1 25 -1 0 NaN 27555 0;16823.720703125;10726.12109375;6644.5966796875;0 7737.3974609375;9086.3232421875 0
+BSA_min_23 MULTI 3 1567.4354 4699.2845 1567.4354 NaN 5 3 2 0.284514 0.0828426326752378 7.986968 1568.10387245715 0.067 8.255 0 1 25 -1 0 NaN 137580 0;23479.5932617188;59085.9194335938;20990.259765625;0 0;0;53540.3203125;7305.36279296875 0
+BSA_min_23 MULTI 2 466.26817 930.5218 466.26817 NaN 6 4 2 0.521797 0.0537564853223103 1.477127 466.26850803291 0.107 10.33 0 1 31 -1 0 NaN 33499 0;16896.8359375;13251.4482421875;29638.681640625;21903.5859375;0 22962.34375;6676.337890625 0
+BSA_min_23 MULTI 2 835.80692 1669.5993 835.80692 NaN 7 4 2 0.599289 -0.208726257088529 1.196939 835.807035746435 0.107 10.33 0 1 31 -1 0 NaN 35250 0;14611.8764648438;18125.6357421875;25099.0166015625;15365.583984375;0 16483.943359375;8615.0732421875 0
+BSA_min_23 MULTI 2 889.42648 1776.8384 889.42648 NaN 6 3 2 0.838398 -0.0189472723534436 2.943901 889.927320499287 0.107 8.255 0 1 25 -1 0 NaN 24592 0;9125.99072265625;13286.1201171875;16742.716796875;0 7208.8173828125;9533.8994140625 0
+BSA_min_23 MULTI 2 378.70717 755.39978 378.70717 NaN 4 2 2 0.399783 0.0122990350871532 2.895866 378.7066995797 0.119 6.221 0 13 31 -1 0 NaN 17113 0;15764.96875;12169.2568359375;0 9865.826171875;5910.52587890625 0
+BSA_min_23 MULTI 6 456.58136 2733.4445 456.58136 NaN 6 5 2 0.444504 0.14711979940148 1.365307 456.748107866223 0.139 12.618 0 7 43 -1 0 NaN 36582 0;9077.5439453125;13902.0874023438;19992.689453125;13010.4306640625;0;0 0;13844.125;6148.564453125 1 8 1
+BSA_min_23 MULTI 2 701.87367 1401.7328 701.87367 NaN 4 2 2 0.732779 0.0479819779827722 2.085359 701.87287295525 0.139 6.221 0 13 31 -1 0 NaN 19640 0;11736.2470703125;14934.2939453125;0 8433.541015625;6500.7529296875 0
+BSA_min_23 MULTI 2 903.84665 1805.6788 903.84665 NaN 14 5 3 0.67875 -0.191861895242255 0.587413 903.846381489202 0.128 12.505 0 1 37 -1 0 NaN 89876 0;22660.5712890625;48080.4096679688;66770.5043945313;78759.361328125;39740.7744140625;0 39216.41796875;30181.7421875;16944.533203125 1 27 0
+BSA_min_23 MULTI 3 487.53462 1459.582 487.53462 NaN 16 8 3 0.582041 -0.129367074224319 0.655422 487.53461224021 0.133 19.043 0 1 55 -1 0 NaN 84731 0;7211.73095703125;32638.8959960938;79787.74609375;74581.1875;40743.359375;31912.87890625;10748.6064453125;5496.4296875;0 40288.40234375;32200.93359375;13735.64453125 1 33 1
+BSA_min_23 MULTI 3 583.22015 1746.6386 583.22015 NaN 7 4 2 0.638625 -0.204828530265331 2.286815 583.220239813966 0.176 10.457 0 7 37 -1 0 NaN 42292 0;4036.83081054688;17411.11328125;19834.8046875;29221.802734375;0 17431.560546875;11790.2421875 0
+BSA_min_23 MULTI 3 635.60251 1903.7857 635.60251 NaN 11 5 3 0.785698 -0.130043202729439 1.119621 635.602244079812 0.167 12.618 0 7 43 -1 0 NaN 45493 0;8725.0478515625;17613.3891601563;33308.2824707031;39386.6171875;0;0 17209.375;13758.326171875;9491.1767578125 0
+BSA_min_23 MULTI 2 730.79903 1459.5835 730.79903 NaN 10 6 2 0.583509 -0.127899156014337 0.609982 730.799136547346 0.151 14.666 0 1 43 -1 0 NaN 77496 0;5839.765625;27434.9599609375;42471.279296875;58278.560546875;32345.4384765625;15650.7568359375;0 39553.00390625;19513.171875 1 29 0
+BSA_min_23 MULTI 2 996.94429 1991.874 996.94429 NaN 15 13 2 0.874033 -0.0822288372489766 0.911071 997.446155697545 0.123 28.656 0 7 87 -1 0 NaN 44879 0;20391.6489257813;28769.4560546875;39230.09765625;19622.400390625;13010.86328125;12843.5712890625;12676.279296875;15763.220703125;13381.2666015625;18258.947265625;16122.5546875;0;0;0 20617.05859375;21871.28515625 0
+BSA_min_23 MULTI 1 553.54774 552.54046 553.54774 NaN 5 4 2 0.540459 0.246290167421193 1.417869 553.548098212165 0.187 10.558 0 13 43 -1 0 NaN 28661 0;7194.10693359375;13920.0515136719;27294.748046875;9278.2734375;0 20645.99609375;9278.2734375 0
+BSA_min_23 MULTI 3 587.56748 1759.6806 587.56748 NaN 16 10 3 0.680607 -0.1688458310025 2.658571 587.569121985401 0.212 22.334 0 19 81 -1 0 NaN 57560 0;13109.6430664063;29217.251953125;50790.830078125;21790.4321289063;20568.8234863281;10979.0302734375;9119.8173828125;8416.8525390625;11413.40234375;0;0 24772.69140625;14722.291015625;11295.84765625 0
+BSA_min_23 MULTI 3 590.55881 1768.6546 590.55881 NaN 44 18 3 0.654589 -0.198991658837258 0.411116 590.558889154599 0.216 36.791 0 1 99 -1 0 NaN 1187800 0;6216.87548828125;36925.4790039063;184930.421875;385803.203125;733406.8125;1048139.10742188;905412.859375;792319.85546875;549991.755859375;589044.734375;506728.80859375;400140.365234375;396169.784179688;195725.788085938;105788.993164063;82565.4755859375;42732.5029296875;42157.044921875;0 871911.75;160150.890625;29449.3046875 0
+BSA_min_23 MULTI 3 590.58179 1768.7235 590.58179 NaN 9 5 3 0.723529 -0.130083827993076 4.805278 591.247820427107 0.227 12.954 0 25 61 -1 0 NaN 32803 0;9242.7578125;31178.3193359375;28945.6411132813;8860.56640625;9516.63671875;0 8819.9521484375;11911.1708984375;15289.587890625 0
+BSA_min_23 MULTI 3 591.22358 1770.6489 591.22358 NaN 11 6 3 0.648921 -0.205577517300526 3.134973 591.223392793869 0.181 14.934 0 13 55 -1 0 NaN 91403 0;19490.4609375;30658.0615234375;80654.2841796875;37342.1201171875;24294.84765625;19072.224609375;0 38292.2890625;32139.36328125;11321.0419921875 0
+BSA_min_23 MULTI 6 587.87625 3521.2138 587.87625 NaN 4 2 2 0.213834 -0.445924567463408 2.804544 588.210180411215 0.196 6.411 0 25 43 -1 0 NaN 34349 0;13874.8486328125;17290.8774414063;0 0;8027.1103515625;10157.0458984375 0
+BSA_min_23 MULTI 6 590.40822 3536.4057 590.40822 NaN 4 2 2 0.405687 -0.261060095588618 3.917432 590.57477054294 0.212 6.411 0 25 43 -1 0 NaN 56199 0;16573.9814453125;28139.0107421875;0 0;19273.1171875;8865.8935546875 0
+BSA_min_23 MULTI 1 589.20341 588.19613 589.20341 NaN 10 7 2 0.196134 -0.114435800485126 4.426744 589.201051822874 0.212 17.1 0 13 61 -1 0 NaN 68164 0;14854.7666015625;37177.287109375;46327.6962890625;64286.15625;26063.041015625;23368.17578125;17158.552734375;0 41388.5234375;22897.6328125 1 10 0
+BSA_min_23 MULTI 7 590.66192 4127.5825 590.66192 NaN 4 2 2 0.582521 -0.356166474299243 4.67407 590.947686227246 0.212 6.411 0 25 43 -1 0 NaN 44692 0;18000.388671875;19312.4345703125;0 0;8137.1513671875;11175.283203125 0
+BSA_min_23 MULTI 3 1567.3197 4698.9374 1567.3197 NaN 9 7 2 0.937419 -0.264092711297053 3.412485 1568.32398965869 0.199 17.1 0 13 61 -1 0 NaN 89862 0;18336.91015625;24437.509765625;21274.6474609375;38593.7509765625;24568.837890625;22314.265625;0;0 0;0;14312.962890625;26823.41015625 0
+BSA_min_23 MULTI 2 441.71645 881.41834 441.71645 NaN 16 10 2 0.41834 -0.0271124766325102 0.367629 441.716375382017 0.139 23.006 0 1 65 -1 0 NaN 114490 0;5712.41015625;26837.841796875;55472.7392578125;102380.125;83058.240234375;69780.052734375;41715.6982421875;19781.36328125;16646.99609375;7474.2314453125;0 69811.8125;32568.3125 1 24 0
+BSA_min_23 MULTI 4 589.26254 2353.0211 589.26254 NaN 10 7 2 0.021052 -0.101337473261083 2.163457 589.513471781483 0.248 16.795 0 19 65 -1 0 NaN 86626 0;13832.5556640625;20902.3041992188;29452.2314453125;49581.69921875;13312.3544921875;13739.1064453125;12947.478515625;0 20231.46484375;29350.234375 0
+BSA_min_23 MULTI 3 589.2688 1764.7846 589.2688 NaN 10 7 2 0.784571 -0.0672303921774073 2.394204 589.269187431499 0.248 16.795 0 19 65 -1 0 NaN 96565 0;18051.07421875;23263.3901367188;38484.591796875;37740.23046875;17053.97265625;12810.2265625;17373.419921875;0 37740.23046875;28981.341796875 0
+BSA_min_23 MULTI 6 680.96393 4079.7399 680.96393 NaN 16 8 3 0.73991 -0.176770254570329 0.763825 681.298098346713 0.169 19.043 0 1 55 -1 0 NaN 69972 0;7875.16064453125;13812.1008300781;46568.4580078125;38948.9130859375;50431.388671875;44762.7075195313;26269.5;0;0 0;19749.041015625;25162.62109375;18991.82421875 0
+BSA_min_23 MULTI 3 694.975 2081.9032 694.975 NaN 4 2 2 0.903176 -0.0944992764948438 1.98739 695.308482832509 0.229 6.519 0 31 49 -1 0 NaN 43441 0;27048.9365234375;23994.908203125;0 12837.9169921875;14675.716796875 0
+BSA_min_23 MULTI 2 428.70867 855.40279 428.70867 NaN 11 7 2 0.40279 -0.030695093111035 1.073214 428.708371254103 0.285 16.376 0 31 75 -1 0 NaN 72480 0;10360.298828125;22505.4140625;65483.0126953125;49747.6396484375;35665.490234375;22419.4526367188;10354.0390625;0 49312.55078125;16170.4619140625 0
+BSA_min_23 MULTI 2 430.21365 858.41275 430.21365 NaN 56 18 4 0.412751 -0.0221191473186764 0.28045 430.213569645561 0.209 36.791 0 1 99 -1 0 NaN 4623200 0;34295.154296875;247447.940429688;1035511.25878906;2505087.02734375;4312550.0546875;4609390.8671875;3267685.98828125;1936857.54882813;987995.364257813;518202.7734375;378482.723632813;225659.90234375;148931.6015625;90459.423828125;74133.505859375;59664.51953125;42756.328125;48168.0751953125;0 2924319.75;1336448.875;317050.875;47937.1484375 0
+BSA_min_23 MULTI 3 432.22869 1293.6642 432.22869 NaN 9 7 2 0.664245 0.0291590861361328 2.055825 432.229065505774 0.285 16.598 0 25 71 -1 0 NaN 55443 0;19237.4482421875;25296.216796875;29169.5;23524.728515625;19180.0048828125;14835.28125;0;0 23524.728515625;21770.6953125 0
+BSA_min_23 MULTI 1 460.25434 459.24706 460.25434 NaN 28 16 3 0.247062 -0.00419145888525918 0.359504 460.254226120215 0.248 32.682 0 13 99 -1 0 NaN 386290 0;18950.966796875;57632.0576171875;158822.998046875;305416.00390625;384578.478515625;360408.093261719;205314.599609375;127072.083984375;69260.1640625;49188.4482421875;33121.2827148438;12829.283203125;7028.54736328125;11180.828125;6266.0771484375;7068.74951171875;0 314043.3125;61547.9765625;8987.189453125 1 62 0
+BSA_min_23 MULTI 3 591.30445 1770.8915 591.30445 NaN 6 4 2 0.891506 0.0368961847357241 4.017689 591.303334815147 0.268 10.879 0 31 61 -1 0 NaN 24534 0;6805.34619140625;17013.9306640625;16952.1157226563;7297.40283203125;0 10457.189453125;8804.8056640625 0
+BSA_min_23 MULTI 1 636.24185 635.23457 636.24185 NaN 14 10 2 0.234574 -0.097633573559051 1.262368 636.241538174231 0.212 22.334 0 19 81 -1 0 NaN 39209 0;20621.6401367188;27859.341796875;36664.375;22582.1071777344;21407.59375;17827.244140625;10265.005859375;13880.87890625;20598.76953125;13299.2958984375;0 24925.7734375;11738.6015625 0
+BSA_min_23 MULTI 2 647.8399 1293.6653 647.8399 NaN 9 6 2 0.665251 0.0301650765775321 1.206688 647.839872936317 0.274 14.751 0 25 65 -1 0 NaN 41897 0;4950.98583984375;25782.7021484375;31775.087890625;34228.533203125;13141.09375;10427.9638671875;0 27702.662109375;10557.603515625 0
+BSA_min_23 MULTI 3 648.60271 1942.7863 648.60271 NaN 81 18 6 0.786297 -0.147384742754411 0.198619 648.937253989719 0.583 36.791 0 1 99 -1 0 NaN 1563500 0;28065.0712890625;144251.646484375;389656.83203125;736920.159179688;1094641.56054688;1292480.34912109;1036547.359375;727666.177246094;372076.64453125;191775.291992188;122221.28125;109954.0703125;135743.643554688;353673.58984375;632287.634765625;990694.857421875;1311200.26757813;1541312.05859375;0 508366;535231.6875;299580.0625;148481.140625;49653.16796875;15299.09375 1 16 0
+BSA_min_23 MULTI 3 686.59653 2056.7677 686.59653 NaN 36 14 4 0.767747 -0.218366349177359 0.461926 686.931051686353 0.223 29.803 0 13 95 -1 0 NaN 123510 0;26569.39453125;43388.482421875;82031.52734375;116862.93359375;85939.5791015625;79684.021484375;88727.9345703125;58203.310546875;65348.49609375;38263.107421875;29457.708984375;11792.2431640625;9849.99194335938;0;0 42148.32421875;47932.00390625;24425.791015625;16167.17578125 3 45;40;68 0;1;1
+BSA_min_23 MULTI 2 895.31237 1788.6102 895.31237 NaN 10 8 2 0.610186 -0.252574695746944 0.982614 895.311913529083 0.233 18.642 0 19 71 -1 0 NaN 47062 0;11361.0126953125;28555.4921875;31371.5551757813;32040.1845703125;10788.408203125;10082.818359375;9289.83984375;0;0 18817.9765625;14035.2080078125 0
+BSA_min_23 MULTI 2 972.40141 1942.7883 972.40141 NaN 59 18 5 0.788268 -0.145414989355231 0.274528 972.40177460238 0.329 36.791 0 1 99 -1 0 NaN 262800 0;4246.1767578125;40125.2734375;77208.6850585938;182910.365234375;242426.985351563;287777.103515625;252841.328125;176875.372558594;94570.7978515625;50701.9379882813;38260.4731445313;35132.99609375;34651.349609375;74085.322265625;137379.70703125;198600.7109375;179856.0546875;0;0 112759.3515625;101588.5859375;56878.29296875;19207.091796875;17738.21875 2 26;84 0;2
+BSA_min_23 MULTI 2 1054.9589 2107.9032 1054.9589 NaN 8 8 2 0.903178 -0.106457494352071 1.87249 1054.95831933837 0.248 19.043 0 1 55 -1 0 NaN 47001 0;5775.53662109375;5430.14599609375;6930.13110351563;8430.1162109375;14657.7099609375;17964.1782226563;7995.19384765625;6607.6357421875;0 21270.646484375;7995.19384765625 0
+BSA_min_23 MULTI 4 589.59562 2354.3534 589.59562 NaN 8 5 2 0.353382 0.230379921541953 1.530345 589.595656530174 0.248 12.954 0 25 61 -1 0 NaN 64579 0;10925.0244140625;14820.3544921875;36963.216796875;16641.0244140625;16239.8159179688;0 20175.87109375;16787.345703125 0
+BSA_min_23 MULTI 5 800.1518 3995.7226 800.1518 NaN 14 10 2 0.722628 -0.155404568714857 1.56124 800.552919826053 0.247 23.006 0 1 65 -1 0 NaN 73479 0;7012.5498046875;17109.7705078125;17021.0578613281;16932.3452148438;23082.3002929688;32776.265625;30806.3974609375;16545.03515625;0;0;0 0;11061.5537109375;22995.376953125 0
+BSA_min_23 MULTI 5 844.16903 4215.8088 844.16903 NaN 7 6 2 0.808778 -0.170493596866436 1.166755 844.570172636809 0.298 14.997 0 19 61 -1 0 NaN 65701 0;6662.13818359375;15565.4140625;15275.6889648438;14985.9638671875;28904.6640625;11368.2294921875;0 0;0;18802.0625;11368.2294921875 1 50 2
+BSA_min_23 MULTI 3 1177.4423 3529.3049 1177.4423 NaN 31 8 5 0.304927 -0.358553529394612 0.554566 1178.11094415404 0.226 18.642 0 19 71 -1 0 NaN 160080 0;25418.8247070313;84027.6923828125;147076.34765625;95005.095703125;99895.0546875;54558.0444335938;22814.7470703125;9474.4794921875;0 22083.86328125;29197.080078125;38720.5078125;38302.7109375;20034.43359375 1 54 2
+BSA_min_23 MULTI 3 429.59098 1285.7511 429.59098 NaN 9 6 2 0.751124 0.119678009973768 0.795953 429.591100408506 0.299 14.751 0 25 65 -1 0 NaN 25960 0;9942.990234375;12223.828125;22023.7788085938;21208.0751953125;19558.7470703125;7473.99072265625;0 15311.27734375;9648.9921875 0
+BSA_min_23 MULTI 3 558.88808 1673.6424 558.88808 NaN 33 10 4 0.642405 -0.16747048189427 0.374903 558.887989238826 0.283 22.598 0 13 75 -1 0 NaN 150180 0;18954.7646484375;31117.8129882813;66254.8271484375;104159.986328125;143830.784179688;136875.25390625;145330.196289063;92728.7651367188;56655.2822265625;30203.2490234375;0 62266.4921875;54142.33203125;24202.330078125;12673.5869140625 1 42 0
+BSA_min_23 MULTI 3 583.22091 1746.6409 583.22091 NaN 7 5 2 0.640893 -0.202562289989373 2.657576 583.221826764718 0.37 12.04 0 43 75 -1 0 NaN 48316 0;7266.328125;24042.4111328125;21761.0380859375;17102.5625;8603.3798828125;0 17102.5625;14185.3974609375 0
+BSA_min_23 MULTI 3 589.24553 1764.7148 589.24553 NaN 20 7 4 0.71476 -0.1370085531521 3.321376 589.579177355132 0.375 16.038 0 43 87 -1 0 NaN 180380 0;120746.40625;71609.04296875;105408.171875;56063.1953125;109808.34765625;60442.056640625;4558.28564453125;0 45153.94921875;59415.44921875;39429.60546875;12798.376953125 0
+BSA_min_23 MULTI 1 589.20529 588.19801 589.20529 NaN 12 8 3 0.198011 -0.112559939114476 4.062914 589.207617474111 0.357 17.062 0 49 95 -1 0 NaN 73018 0;53960.787109375;72389.8291015625;40800.3193359375;44698.54296875;20254.080078125;12971.00390625;11112.0151367188;0;0 49007.08203125;10904.8369140625;12477.91015625 0
+BSA_min_23 MULTI 1 651.3082 650.30092 651.3082 NaN 6 5 2 0.300919 -0.0382193743422476 4.345627 651.306472473807 0.344 12.677 0 31 65 -1 0 NaN 20074 0;8384.5419921875;7275.85791015625;6167.173828125;13858.3330078125;6251.76123046875;0 12519.9287109375;6966.7021484375 0
+BSA_min_23 MULTI 2 747.85609 1493.6976 747.85609 NaN 11 7 2 0.697633 -0.0294677741956093 0.691649 747.856213318885 0.299 16.041 0 37 81 -1 0 NaN 59701 0;28644.3671875;44153.337890625;35112.1796875;35337.53125;18053.107421875;8359.4873046875;14446.8232421875;0 27482.5703125;17998.302734375 1 53 0
+BSA_min_23 MULTI 2 837.82914 1673.6437 837.82914 NaN 18 8 3 0.643732 -0.166143809373125 0.889933 837.829569807565 0.278 18.642 0 19 71 -1 0 NaN 45616 0;6693.94580078125;31269.3012695313;30541.4719238281;40796.029296875;44514.17578125;36172.994140625;25499.6586914063;0;0 23606.51953125;13825.3603515625;13984.6650390625 0
+BSA_min_23 MULTI 1 859.42116 858.41388 859.42116 NaN 29 12 3 0.41388 -0.0209899612918889 0.465312 859.420851660869 0.212 26.498 0 7 81 -1 0 NaN 557710 0;13290.1416015625;100594.213378906;266763.046875;435235.05078125;547257.05078125;345990.283203125;205504.112304688;104794.486083984;52481.205078125;40870.79296875;20906.578125;8576.1142578125;0 370233.71875;140401.5625;36621.76953125 0
+BSA_min_23 MULTI 2 491.77345 981.53235 491.77345 NaN 11 8 2 0.532354 0.0408495872873118 0.527154 491.773380944561 0.321 18.216 0 31 81 -1 0 NaN 104360 0;7303.05908203125;16159.2209472656;40807.0859375;91648.3046875;54694.38671875;47368.5234375;10526.0244140625;0;0 66131.3984375;25516.90625 1 57 0
+BSA_min_23 MULTI 3 592.55974 1774.6574 592.55974 NaN 48 14 4 0.657399 -0.198943483430185 1.383794 592.557537743774 0.212 29.803 0 13 95 -1 0 NaN 149790 0;33910.7260742188;73662.5844726563;106855.57421875;144205.1171875;127660.017578125;113099.659179688;93423.3173828125;92180.3530273438;88326.3466796875;62982.400390625;51552.6787109375;34595.330078125;10545.2788085938;8610.5205078125;0 51832.45703125;50291.87890625;28175.7578125;13905.0234375 1 41 0
+BSA_min_23 MULTI 4 622.78441 2487.1085 622.78441 NaN 8 6 2 0.10854 -0.0755302702068548 0.752493 623.035146207179 0.374 14.523 0 31 71 -1 0 NaN 58074 0;14045.986328125;10214.845703125;8615.2275390625;7945.20458984375;24766.828125;32086.125;0 0;26683.396484375;9956.7880859375 0
+BSA_min_23 MULTI 2 629.35657 1256.6986 629.35657 NaN 33 14 3 0.698585 0.0805035920807313 0.437259 629.356557471474 0.352 28.535 0 25 99 -1 0 NaN 84871 0;26214.005859375;39450.3032226563;73265.43359375;83140.2016601563;77743.1044921875;40797.9233398438;57422.8359375;42278.9248046875;34750.2763671875;50503.193359375;38396.876953125;40255.9130859375;33574.0908203125;25437.541015625;0 47581.3515625;28788.931640625;14806.8837890625 2 52;82 0;1
+BSA_min_23 MULTI 2 639.79864 1277.5827 639.79864 NaN 22 10 3 0.582733 -0.0449549559814386 0.453043 639.798354752547 0.285 22.449 0 25 87 -1 0 NaN 202210 0;21600.9716796875;56057.6875;166454.69140625;192240.62890625;156445.912109375;99187.6984863281;53563.9375;39280.8115234375;15744.3818359375;8112.8779296875;0 89415.890625;77012.4609375;25812.27734375 0
+BSA_min_23 MULTI 6 703.14052 4212.7995 703.14052 NaN 30 15 3 0.799472 -0.178415391231283 0.446242 703.641797424229 0.232 32.468 0 1 91 -1 0 NaN 124220 0;4114.4375;6742.03955078125;44575.62890625;22601.6904296875;25303.7998046875;78536.439453125;85620.849609375;56643.9921875;51514.5390625;65689.0830078125;50273.03125;22991.4169921875;11016.083984375;8830.76708984375;0;0 0;20171.275390625;30924.18359375;38276.57421875 2 38;46 3;3
+BSA_min_23 MULTI 2 883.33306 1764.6516 883.33306 NaN 107 18 7 0.651567 -0.200172994590503 0.40735 883.333804513352 0.221 36.791 0 1 99 -1 0 NaN 7791700 0;63657.4609375;417828.625488281;1563921.73925781;4984059.33300781;7615291.18847656;7787687.57324219;7739859.88183594;7045976.23242188;5556411.3984375;4645030.30273438;4986375.23046875;3504478.94238281;2470150.67773438;2064311.35058594;882280.721679688;421294.862304688;306400.518554688;238636.072265625;0 2940086.75;2482749.75;1540868.375;622527.5;214791.90625;47866.33203125;15473.23046875 1 14 0
+BSA_min_23 MULTI 1 553.27749 552.27021 553.27749 NaN 17 12 2 0.270214 -0.0238298753067738 0.419815 553.277311678574 0.381 24.286 0 37 99 -1 0 NaN 97228 0;20312.01171875;57889.08203125;68388.345703125;76141.0166015625;92593.984375;64140.8876953125;32069.373046875;21096.072265625;22598.16796875;10602.947265625;9876.5322265625;7587.9228515625;0 69193.0859375;23400.8984375 0
+BSA_min_23 MULTI 3 586.58021 1756.7188 586.58021 NaN 19 12 2 0.718794 -0.129296646628973 1.727613 586.581526045349 0.235 26.596 0 13 87 -1 0 NaN 57990 0;8277.3671875;12366.5791015625;38181.6318359375;41469.95703125;40067.9775390625;31940.892578125;30886.6953125;32483.7431640625;29524.6865234375;19519.904296875;9948.9228515625;8517.7197265625;0 27155.314453125;15094.3203125 0
+BSA_min_23 MULTI 3 603.56731 1807.6801 603.56731 NaN 41 18 4 0.680103 -0.191430144872356 0.687192 603.567778225039 0.401 36.791 0 1 99 -1 0 NaN 192200 0;17239.70703125;38398.140625;68209.7578125;44680.146484375;36875.982421875;17964.818359375;23854.7690429688;29744.7197265625;74021.4399414063;150967.462158203;184519.19140625;163861.6015625;134130.147460938;71457.2280273438;42130.4716796875;27869.7397460938;11256.84375;0;0 121882.3984375;41811.76171875;29758.44140625;9925.435546875 0
+BSA_min_23 MULTI 3 716.61937 2146.8363 716.61937 NaN 16 11 2 0.836268 -0.191276456705054 0.724685 716.619541654578 0.205 24.493 0 19 87 -1 0 NaN 48311 0;12849.6088867188;29496.421875;24679.8012695313;20412.23046875;20214.001953125;17518.896484375;15178.76953125;7751.4482421875;7232.26953125;0;0;0 18274.05078125;12429.9521484375 0
+BSA_min_23 MULTI 2 889.45894 1776.9033 889.45894 NaN 18 10 2 0.903322 0.0459469528414047 2.232712 889.456361948479 0.212 22.334 0 19 81 -1 0 NaN 41697 0;15064.0639648438;22494.416015625;28388.18359375;25469.2763671875;23399.1943359375;16294.8203125;17724.4072265625;15767.923828125;12930.5112304688;0;0 14872.3779296875;13515.8056640625 0
+BSA_min_23 MULTI 4 1010.44 4037.731 1010.44 NaN 18 14 2 0.731019 -0.166337457265854 1.035594 1010.94162100229 0.436 30.704 0 1 87 -1 0 NaN 112280 0;10156.712890625;7766.62036132813;5376.52783203125;6872.99877929688;17473.41015625;25195.6303710938;28296.6430664063;29709.97265625;33089.5224609375;17869.90625;26438.134765625;15265.9873046875;0;0;0 0;0;26905.4921875;21646.40625 1 73 2
+BSA_min_23 MULTI 2 687.86548 1373.7164 687.86548 NaN 11 7 2 0.716404 0.0444939738997618 0.960545 687.865353952537 0.37 15.619 0 49 91 -1 0 NaN 33144 0;18385.0322265625;27934.1484375;25495.43359375;26159.4575195313;12532.0517578125;15928.9736328125;8517.1220703125;0 17509.4921875;14851.484375 0
+BSA_min_23 MULTI 1 756.32462 755.31735 756.32462 NaN 31 14 3 0.317345 -0.0701008216196897 0.327551 756.324380191374 0.364 28.535 0 25 99 -1 0 NaN 378430 0;7204.44580078125;47255.345703125;94307.564453125;199828.15625;309160.737304688;373160.3984375;383085.8203125;296717.079589844;255018.177734375;110075.21875;66738.6669921875;45039.916015625;36704.9519042969;21860.240234375;0 274205.625;101792.2734375;17816.484375 0
+BSA_min_23 MULTI 1 818.46323 817.45595 818.46323 NaN 51 15 4 0.455952 0.039922490754293 0.2572 818.463044517742 0.285 30.579 0 19 99 -1 0 NaN 3540200 0;53608.748046875;307344.940429688;1101364.30078125;2413991.0859375;3530726.27148438;3342216.4921875;2629555.02734375;1868843.86523438;999259.843261719;683486.513183594;365709.935546875;231673.184570313;185454.544921875;139522.327148438;106922.21875;0 2380896.25;915269.6875;204690.5;35263.4921875 0
+BSA_min_23 MULTI 2 903.84679 1805.679 903.84679 NaN 34 11 4 0.679035 -0.191577353619095 0.48854 903.847098691041 0.38 22.125 0 43 99 -1 0 NaN 257580 0;29697.7915039063;100644.701171875;163376.744140625;247293.284179688;185513.967773438;127613.503417969;94954.935546875;42225.22265625;38496.125;12596.8403320313;5977.19482421875;0 118280.4140625;73372.453125;46765.7578125;13157.82421875 0
+BSA_min_23 MULTI 2 931.3282 1860.6419 931.3282 NaN 36 15 3 0.641851 -0.254043941709597 0.456838 931.829732563865 0.234 31.25 0 13 99 -1 0 NaN 125990 0;8562.439453125;70787.5283203125;100848.892578125;120559.4921875;109631.466796875;105017.98046875;50258.771484375;77050.14453125;74874.2705078125;50473.3837890625;51247.396484375;25470.8732910156;5476.83740234375;5522.0751953125;5731.56689453125;0 52031.57421875;58461.62109375;26591.400390625 2 34;28 0;1
+BSA_min_23 MULTI 2 1173.0764 2344.1383 1173.0764 NaN 19 8 3 0.13827 0.0199663555176812 0.825604 1174.0796454798 0.413 17.802 0 43 91 -1 0 NaN 87851 0;10028.392578125;28740.2319335938;59576.18359375;55903.1953125;70638.875;56200.3173828125;15527.8002929688;5090.19873046875;0 24950.53125;23081.546875;25835.8671875 2 69;80 0;1
+BSA_min_23 MULTI 2 618.78778 1235.561 618.78778 NaN 7 4 2 0.561004 -0.0473540196164777 1.240728 618.787640334343 0.429 9.462 0 65 91 -1 0 NaN 27796 0;22946.2563476563;26823.1875;19044.109375;10336.0966796875;0 17339.525390625;14209.6103515625 0
+BSA_min_23 MULTI 3 664.96461 1991.872 664.96461 NaN 31 14 3 0.871989 -0.0842722382756165 0.360972 664.96435959133 0.156 30.704 0 1 87 -1 0 NaN 150530 0;19021.6748046875;57591.6669921875;128168.81640625;119438.103515625;69031.9580078125;56302.2685546875;36752.7612304688;44651.83984375;48432.5732421875;76716.802734375;54665.783203125;46903.35546875;45491.83984375;0;0 58531.14453125;50156.61328125;26759.197265625 3 23;60;78 0;1;2
+BSA_min_23 MULTI 6 674.46385 4040.7395 674.46385 NaN 11 9 2 0.739469 -0.159271653350061 0.978682 674.798182396693 0.404 19.963 0 37 91 -1 0 NaN 114520 0;12331.5234375;10114.7980957031;7898.07275390625;17520.98046875;43937.791015625;50499.82421875;23191.53125;11671.2548828125;0;0 0;0;31120.861328125;20215.091796875 0
+BSA_min_23 MULTI 2 691.87196 1381.7294 691.87196 NaN 16 10 2 0.729372 0.0537767762689327 1.082013 691.872427270586 0.406 22.138 0 31 91 -1 0 NaN 33870 0;7598.06591796875;23095.935546875;15574.3466796875;17945.990234375;18301.7958984375;25754.3076171875;23125.53515625;15916.8828125;14170.3232421875;7741.6513671875;0 16710.921875;11356.798828125 0
+BSA_min_23 MULTI 2 1177.5828 2353.151 1177.5828 NaN 11 6 2 0.150986 0.0285370454794247 2.161462 1178.08585963192 0.37 13.855 0 49 87 -1 0 NaN 46538 0;11669.9208984375;28614.43359375;25744.4228515625;24130.341796875;25307.376953125;20945.0229492188;0 0;17243.728515625;13207.12109375 1 70 2
+BSA_min_23 MULTI 6 384.98771 2303.8826 384.98771 NaN 5 3 2 0.882605 -0.217181403296308 1.822911 385.154726220853 0.514 7.205 0 75 95 -1 0 NaN 26457 0;11753.0673828125;10523.4365234375;8568.8720703125;0 6245.81005859375;8568.8720703125 0
+BSA_min_23 MULTI 1 389.21213 388.20485 389.21213 NaN 19 13 2 0.204849 -0.0137255252419095 1.430209 389.212506114309 0.24 27.7 0 19 95 -1 0 NaN 67551 0;21162.751953125;18024.279296875;53808.48828125;52440.08203125;51071.67578125;29074.216796875;50962.8720703125;44968.1010742188;39503.4462890625;33521.2041015625;19159.7685546875;14809.7846679688;0;0 53808.48828125;8534.9951171875 0
+BSA_min_23 MULTI 1 403.23669 402.22941 403.23669 NaN 35 13 4 0.229413 0.00438707227596069 0.392234 403.236836789169 0.584 26.461 0 31 99 -1 0 NaN 2321700 0;6030.353515625;17721.548828125;69610.875;168147.896484375;317808.334960938;611832.715332031;819965.202148438;1075143.73242188;1810279.78125;1615521.4765625;2122466.39355469;2181724.74121094;2321029.74902344;0 2029285.375;262174.15625;33813.23828125;5109.6533203125 0
+BSA_min_23 MULTI 7 402.96053 2813.6728 402.96053 NaN 10 6 3 0.672779 0.338489517760081 4.729299 403.248404538997 0.579 11.938 0 71 99 -1 0 NaN 39118 0;7214.4462890625;9392.7978515625;10297.53515625;9759.826171875;27383.8520507813;28946.8076171875;0 7563.5849609375;10866.2548828125;13296.76953125 0
+BSA_min_23 MULTI 4 401.17846 1600.6847 401.17846 NaN 10 5 3 0.68475 -0.0915651416978562 3.492418 401.430576715845 0.577 10.085 0 75 99 -1 0 NaN 30330 0;8036.89013671875;15778.0046386719;17976.7177734375;22688.4072265625;12592.4780273438;0 12885.599609375;14685.2685546875;5445.791015625 0
+BSA_min_23 MULTI 4 402.89628 1607.556 402.89628 NaN 8 3 3 0.556 -0.223475525245249 3.961575 403.396190466784 0.562 6.087 0 87 99 -1 0 NaN 22550 0;12301.5610351563;20280.4633789063;19713.1943359375;0 7709.76416015625;7176.4248046875;8681.5791015625 0
+BSA_min_23 MULTI 7 400.92339 2799.4128 400.92339 NaN 6 4 2 0.412765 0.0850350364034966 1.744244 401.066228643864 0.508 8.652 0 75 99 -1 0 NaN 19772 0;10774.8549804688;10669.7880859375;10592.1079101563;0;0 0;6560.57080078125;5920.392578125 0
+BSA_min_23 MULTI 7 401.06242 2800.386 401.06242 NaN 7 4 2 0.385985 0.0578073576552924 5.106556 401.34933841669 0.554 8.245 0 81 99 -1 0 NaN 28917 0;9052.44580078125;11980.0087890625;15758.5649414063;5636.154296875;0 0;5726.7060546875;10177.55078125 0
+BSA_min_23 MULTI 7 401.32993 2802.2586 401.32993 NaN 5 3 2 0.258602 -0.070436588821849 5.683721 401.473666101688 0.538 6.813 0 81 99 -1 0 NaN 24919 0;4266.560546875;13580.1821289063;9680.0693359375;0 0;8870.892578125;4709.28955078125 0
+BSA_min_23 MULTI 7 402.11888 2807.7812 402.11888 NaN 7 6 2 0.781209 0.449629854355862 2.742903 402.26226660643 0.546 11.938 0 71 99 -1 0 NaN 92907 0;7378.68115234375;9870.67456054688;12362.66796875;27580.494140625;28377.28515625;9354.7265625;0 12009.3203125;27580.494140625 0
+BSA_min_23 MULTI 7 402.92085 2813.395 402.92085 NaN 8 5 2 0.395034 0.0608722040187786 4.864246 403.207267635865 0.552 10.085 0 75 99 -1 0 NaN 31005 0;11911.7338867188;8329.57202148438;12590.5791015625;7692.32763671875;7590.80615234375;0 0;5942.84423828125;7692.32763671875 0
+BSA_min_23 MULTI 7 403.11915 2814.7831 403.11915 NaN 9 6 2 0.783081 0.448280991787215 2.233329 403.405890636412 0.538 11.938 0 71 99 -1 0 NaN 33772 0;5547.240234375;13491.7041015625;14026.5288085938;18404.4853515625;6740.32470703125;7501.52880859375;0 0;8876.486328125;9527.9990234375 0
+BSA_min_23 MULTI 6 401.24975 2401.4549 401.24975 NaN 8 5 2 0.454851 0.310181714510691 4.084511 401.416485569515 0.538 10.085 0 75 99 -1 0 NaN 32017 0;12730.2265625;12856.6352539063;18059.9614257813;9549.6162109375;10115.1318359375;0 5608.20263671875;12451.7587890625 0
+BSA_min_23 MULTI 5 402.00076 2004.9674 402.00076 NaN 9 6 2 0.967394 0.00510852941874873 2.987724 402.202105085556 0.549 11.938 0 71 99 -1 0 NaN 30920 0;8339.640625;8783.228515625;16091.4462890625;17413.1408691406;13300.8940429688;7423.05322265625;0 8102.93994140625;10317.5537109375 0
+BSA_min_23 MULTI 5 402.92094 2009.5683 402.92094 NaN 7 6 2 0.568307 -0.396094388064967 3.449899 403.122250481396 0.563 11.938 0 71 99 -1 0 NaN 43028 0;5841.408203125;6185.37866210938;6529.34912109375;18659.19140625;27583.0185546875;0;0 13594.1640625;13988.8544921875 0
+BSA_min_23 MULTI 5 403.02698 2010.0985 403.02698 NaN 12 8 2 0.098504 0.133858443363806 2.976463 403.228060270544 0.547 15.582 0 61 99 -1 0 NaN 36273 0;4848.15478515625;6479.13916015625;12284.7661132813;15645.5927734375;11646.07421875;23252.4360351563;8735.7490234375;5928.67236328125;0 8735.7490234375;15964.4345703125 0
+BSA_min_23 MULTI 3 402.86177 1205.5635 402.86177 NaN 6 4 2 0.563492 -0.0310669300276913 5.569457 402.861988028917 0.562 8.245 0 81 99 -1 0 NaN 20777 0;5665.96142578125;17412.5073242188;14166.2313232422;9378.1455078125;0 9776.4140625;9378.1455078125 0
+BSA_min_23 MULTI 2 402.19107 802.36759 402.19107 NaN 6 4 2 0.367593 -0.041496332196175 7.16159 402.192753188786 0.547 8.245 0 81 99 -1 0 NaN 18440 0;9011.4365234375;16771.8413085938;13178.0732421875;5401.3017578125;0 12396.9423828125;6625.8662109375 0
+BSA_min_23 MULTI 2 403.1609 804.30724 403.1609 NaN 7 6 2 0.307242 -0.10273887485755 4.842592 403.159823769958 0.557 11.938 0 71 99 -1 0 NaN 17595 0;3488.80078125;5058.57861328125;5149.92407226563;9366.63623046875;16003.2814941406;0;0 12698.837890625;4125.36669921875 0
+BSA_min_23 MULTI 1 401.4224 400.41513 401.4224 NaN 5 4 2 0.415128 0.190936921834407 13.525909 401.426492729968 0.48 8.652 0 75 99 -1 0 NaN 12501 0;12131.3984375;10847.1962890625;5505.88012695313;0;0 7007.498046875;5123.900390625 0
+BSA_min_23 MULTI 1 402.22123 401.21395 402.22123 NaN 12 8 2 0.213954 -0.0106045150496925 2.722259 402.221328891168 0.485 15.582 0 61 99 -1 0 NaN 85877 0;7818.44189453125;50336.5234375;18964.7890625;83337.447265625;46349.7744140625;70621.8837890625;75382.7255859375;69995.28125;0 74508.875;12651.0361328125 0
+BSA_min_23 MULTI 2 671.30281 1340.5911 671.30281 NaN 23 11 3 0.591063 -0.0656088245955289 0.312101 671.302827415245 0.477 22.125 0 43 99 -1 0 NaN 185360 0;6208.3349609375;13889.2817382813;26824.0576171875;63842.6630859375;119772.876953125;142543.64453125;171336.408203125;95073.1813964844;71431.78125;64261.19921875;15928.3857421875;0 114559.140625;46502.0234375;14565.6328125 0
+BSA_min_23 MULTI 3 681.99931 2042.9761 681.99931 NaN 19 10 3 0.976111 -0.00365819893545449 1.308422 682.33372034698 0.438 20.692 0 43 99 -1 0 NaN 46604 0;14329.3818359375;19031.8405761719;22111.3134765625;18194.498046875;29480.18359375;32937.4267578125;32460.1762695313;14736.0590820313;9588.93505859375;0;0 16454.376953125;18360.568359375;6774.29443359375 1 85 1
+BSA_min_23 MULTI 1 719.38446 718.37718 719.38446 NaN 24 10 3 0.377179 0.00672520916282338 0.435138 719.384208640922 0.443 19.942 0 49 99 -1 0 NaN 306150 0;20136.6884765625;44243.2080078125;107682.56640625;195943.474609375;302500.345703125;262942.01171875;216538.180175781;143034.7890625;103981.69140625;78078.486328125;0 223915.78125;60341.2421875;18243.322265625 0
+BSA_min_23 MULTI 4 746.0815 2980.2969 746.0815 NaN 10 7 2 0.296901 -0.114035098797558 1.518547 746.332059822568 0.514 14.149 0 61 99 -1 0 NaN 76833 0;12502.8056640625;23172.9736328125;18913.9929199219;23919.0571289063;26965.5673828125;21866.44921875;0;0 0;21866.44921875;15830.384765625 0
+BSA_min_23 MULTI 3 780.07483 2337.2026 780.07483 NaN 5 3 2 0.202649 0.0875359043247954 0.975896 780.074479197676 0.509 7.205 0 75 95 -1 0 NaN 50909 0;21881.0830078125;12373.2978515625;12771.9775390625;0 12771.9775390625;12525.220703125 0
+BSA_min_23 MULTI 2 782.86823 1563.7219 782.86823 NaN 20 10 3 0.721914 -0.0373977738220219 0.691904 782.868353034362 0.459 19.942 0 49 99 -1 0 NaN 49668 0;6963.86669921875;6319.74853515625;25598.048828125;30333.59375;57430.474609375;44892.6865234375;35689.693359375;33875.2578125;21107.6284179688;8709.212890625;0 25024.1171875;20124.87109375;12553.91015625 1 79 0
+BSA_min_23 MULTI 4 385.92208 1539.6592 385.92208 NaN 5 4 2 0.659221 -0.0890221179247419 4.819989 385.922431777943 0.562 8.245 0 81 99 -1 0 NaN 16679 0;9756.16552734375;12167.0639648438;5856.87719726563;0;0 7023.37158203125;6570.06201171875 0
+BSA_min_23 MULTI 2 542.31314 1082.6117 542.31314 NaN 7 5 2 0.611725 0.0737234033317691 0.695486 542.312962746134 0.556 10.085 0 75 99 -1 0 NaN 55111 0;13280.7685546875;28290.2578125;19233.314453125;29634.5625;9788.0546875;0 29634.5625;12601.22265625 0
+BSA_min_23 MULTI 3 585.91889 1754.7349 585.91889 NaN 27 14 2 0.734851 -0.112326726837182 1.772765 585.9203897338 0.212 29.803 0 13 95 -1 0 NaN 151700 0;25634;52852.154296875;83165.453125;104819.77734375;94229.328125;85360.95703125;67605.142578125;74073.81640625;70187.9453125;54396.115234375;44267.357421875;24930.5283203125;16429.5017089844;5700.82763671875;0 57372.453125;47447.32421875 2 30;74 0;1
+BSA_min_23 MULTI 5 597.06614 2980.2943 597.06614 NaN 37 11 4 0.294342 -0.116593226468922 0.472983 597.467119541279 0.428 22.125 0 43 99 -1 0 NaN 102270 0;15203.76953125;39045.6840820313;34831.037109375;47712.4794921875;89038.7504882813;103514.08984375;85300.8828125;70284.630859375;67820.3115234375;46476.4638671875;48678.4375;0 23603.001953125;33373.6171875;34293.359375;21910.3046875 2 89;77 0;1
+BSA_min_23 MULTI 2 768.85448 1535.6944 768.85448 NaN 10 6 2 0.694416 -0.0520035153112985 1.156306 768.854136881374 0.505 11.938 0 71 99 -1 0 NaN 35211 0;14192.8012695313;25684.873046875;13888.736328125;26069.779296875;10745.3515625;7933.5927734375;0 15515.0625;11985.1630859375 0
+BSA_min_23 MULTI 1 385.20738 384.20011 385.20738 NaN 37 15 3 0.200106 -0.0166256802388034 0.277499 385.207329724777 0.586 30.579 0 19 99 -1 0 NaN 9575900 0;11657.19921875;15900.880859375;28245.1328125;107153.426757813;302409.859375;779346.665039063;1693412.05078125;2696784.4296875;4119086.625;5272920.84375;7145315.5546875;7046838.5390625;8586651.765625;9072971.5234375;9544540.65625;0 8022851;1417089.75;107593.8984375 1 88 0
+BSA_min_23 MULTI 7 385.75384 2693.2259 385.75384 NaN 5 4 2 0.225935 -0.0529487858329958 3.269312 386.039959009918 0.527 8.652 0 75 99 -1 0 NaN 26231 0;7071.59814453125;6099.89965820313;13429.775390625;9196.80078125;0 0;7071.59814453125;9196.80078125 0
+BSA_min_23 MULTI 4 384.21683 1532.8382 384.21683 NaN 9 8 2 0.838227 0.0931213672590729 3.650752 384.217540427167 0.538 15.582 0 61 99 -1 0 NaN 16955 0;4160.2138671875;4054.28234863281;3948.35083007813;5620.66296386719;11245.1120605469;12367.75390625;3952.4072265625;0;0 8085.4716796875;4282.2822265625 0
+BSA_min_23 MULTI 4 385.97594 1539.8746 385.97594 NaN 6 5 2 0.87465 0.126307612300252 1.636571 385.976417803187 0.538 10.085 0 75 99 -1 0 NaN 22326 0;6725.22265625;8226.90576171875;16286.0625;13258.5166015625;0;0 9728.5888671875;6557.4736328125 0
+BSA_min_23 MULTI 1 383.45736 382.45008 383.45736 NaN 12 9 2 0.450084 0.234156748824319 4.38201 383.459126094026 0.587 17.748 0 55 99 -1 0 NaN 58905 0;7922.33447265625;13891.3251953125;21659.68359375;25552.9453125;35771.8671875;41927.4106445313;48927.3310546875;51429.4038085938;44704.2890625;0 44704.2890625;12458.849609375 0
+BSA_min_23 MULTI 1 385.23203 384.22475 385.23203 NaN 7 4 2 0.224753 0.00800936926827944 6.731498 385.233696134612 0.546 8.245 0 81 99 -1 0 NaN 30190 0;13759.9116210938;29297.6162109375;23439.3759765625;15093.2724609375;0 22477.578125;11049.3857421875 0
+BSA_min_23 MULTI 3 385.24173 1152.7034 385.24173 NaN 4 2 2 0.703375 0.133131265167549 6.602817 385.243392638674 0.563 4.654 0 87 99 -1 0 NaN 12273 0;9589.8193359375;10410.1459960938;0 5654.27490234375;4755.87109375 0
+BSA_min_23 MULTI 2 388.71207 775.40958 388.71207 NaN 7 5 2 0.409585 0.012896161074309 7.840472 388.710022572438 0.529 10.085 0 75 99 -1 0 NaN 31411 0;10747.0166015625;11899.037109375;28569.4326171875;16597.3823242188;5571.826171875;0 18849.771484375;11899.037109375 0
+BSA_min_23 MULTI 3 447.53645 1339.5875 447.53645 NaN 22 9 3 0.587521 -0.0686896803804302 0.403533 447.870732206838 0.433 17.748 0 55 99 -1 0 NaN 114780 0;11778.837890625;23139.6025390625;68825.0380859375;106095.923828125;80380.0849609375;63801.41015625;49980.5732421875;27040.2021484375;23807.8686523438;0 44272.734375;47092.73046875;18533.521484375 1 76 0
+BSA_min_23 MULTI 2 457.74565 913.47674 457.74565 NaN 18 12 2 0.476739 0.0165401212738061 1.3063 457.745456355006 0.455 24.286 0 37 99 5 TLGPWGQR 8 Unmodified _TLGPWGQR_ CON__ENSEMBL:ENSBTAP00000018574 0 61894 0;16990.962890625;11575.6730957031;6160.38330078125;14041.025390625;32656.8212890625;44786.1005859375;54716.6572265625;55345.2353515625;39040.4921875;30755.6171875;35660.9853515625;0;0 43414.70703125;14701.8232421875 1 72 0
+BSA_min_23 MULTI 3 462.60021 1384.7788 462.60021 NaN 18 8 3 0.778798 0.101799265189584 0.724287 462.600287415821 0.502 15.582 0 61 99 -1 0 NaN 51167 0;6723.0703125;14707.15234375;44316.7954101563;47067.97265625;31669.6943359375;37648.8586425781;18663.072265625;11027.34765625;0 28348.189453125;13768.9619140625;8396.4033203125 0
+BSA_min_23 MULTI 2 563.26189 1124.5092 563.26189 NaN 8 6 2 0.509219 -0.048055714837119 1.040289 563.2619173678 0.578 11.938 0 71 99 -1 0 NaN 94315 0;6031.1220703125;5922.5673828125;10690.8017578125;26746.5986328125;36209.8569335938;50716.08203125;0 50716.08203125;11821.5556640625 0
+BSA_min_23 MULTI 2 579.81291 1157.6113 579.81291 NaN 15 10 2 0.611276 0.0387743236285587 0.863667 579.813073677107 0.487 19.942 0 49 99 -1 0 NaN 32344 0;9380.30078125;13280.5703125;23935.1513671875;30521.7163085938;32431.77734375;29503.3984375;27435.1259765625;27750.8271484375;9707.3671875;0;0 21680.880859375;13781.01171875 0
+BSA_min_23 MULTI 2 652.34009 1302.6656 652.34009 NaN 9 6 2 0.665623 0.0263969594609534 2.578009 652.340079597454 0.581 11.938 0 71 99 -1 0 NaN 44381 0;10470.1201171875;11684.9853515625;15042.0661621094;13498.8081054688;13972.59375;21285.896484375;0 21285.896484375;7438.31591796875 0
+BSA_min_23 MULTI 3 717.29132 2148.8521 717.29132 NaN 37 10 4 0.852144 -0.17632784156649 0.491805 717.626027067929 0.408 19.942 0 49 99 -1 0 NaN 124890 0;22026.4995117188;58904.9892578125;117250.48828125;111492.02734375;105174.046875;101062.998046875;66927.7299804688;66607.2495117188;57809.5278320313;33717.2485351563;0 41750.08203125;50854.88671875;28232.26953125;14484.546875 0
+BSA_min_23 MULTI 6 386.12901 2310.7304 386.12901 NaN 4 2 2 0.730426 -0.372510238455106 4.169587 386.296780260594 0.587 4.323 0 91 99 -1 0 NaN 19777 0;10667.537109375;11550.3544921875;0 5064.693359375;6485.6611328125 0
+BSA_min_23 MULTI 1 386.96864 385.96136 386.96864 NaN 14 9 2 0.961364 -0.256178016890544 3.283629 386.967525717104 0.583 17.748 0 55 99 -1 0 NaN 51347 0;9129.955078125;11279.533203125;17809.572265625;24097.126953125;38355.6108398438;37379.2407226563;44880.3442382813;50983.2099609375;49828.7939453125;0 43493.59375;7938.8740234375 0
+BSA_min_23 MULTI 1 400.36713 399.35985 400.36713 NaN 16 10 2 0.359851 0.13614547589458 4.106837 400.36842042818 0.545 19.942 0 49 99 -1 0 NaN 78981 0;6156.287109375;12610.8056640625;16443.66796875;23166.564453125;37680.8334960938;69988.2421875;53991.6904296875;70495.287109375;76645.5185546875;74495.6787109375;0 65472.671875;17471.0625 0
+BSA_min_23 MULTI 7 401.15621 2801.0425 401.15621 NaN 11 7 2 0.042523 -0.285956722831543 2.568664 401.299140344645 0.578 13.784 0 65 99 -1 0 NaN 36821 0;7213.38037109375;6924.47998046875;17339.3579101563;16671.8857421875;19927.1689453125;23406.5014648438;4953.66796875;0 0;15112.5751953125;8411.234375 0
+BSA_min_23 MULTI 1 404.11303 403.10576 404.11303 NaN 16 9 2 0.105755 -0.119673584350551 3.455235 404.112031977039 0.583 17.748 0 55 99 -1 0 NaN 73469 0;13006.03125;21763.5092773438;30782.12109375;35696.5864257813;59794.9663085938;50389.5703125;69722.490234375;68714.9921875;61997.74609375;0 61997.74609375;9892.08203125 0
+BSA_min_23 MULTI 4 404.71106 1614.8151 404.71106 NaN 9 6 3 0.815121 0.0323063764612925 3.112679 404.961654054633 0.563 11.938 0 71 99 -1 0 NaN 25241 0;4944.00830078125;6799.6796875;5417;4034.3203125;22700.7153320313;8152.65185546875;0 6979.7197265625;10225.2548828125;5495.74072265625 0
+BSA_min_23 MULTI 1 407.18875 406.18148 407.18875 NaN 20 11 2 0.181478 -0.0453659359286576 0.331152 407.188715543559 0.584 22.125 0 43 99 -1 0 NaN 642000 0;17962.044921875;35146.93359375;84014.6728515625;164382.13671875;213186.013671875;281743.64453125;460699.13671875;382160.26171875;582140.4375;598221.859375;623018.8046875;0 552387.5;82688.296875 0
+BSA_min_23 MULTI 1 409.16481 408.15753 409.16481 NaN 15 9 2 0.157529 -0.070223412814812 0.447556 409.16476678495 0.587 17.748 0 55 99 -1 0 NaN 75670 0;9252.28515625;15363.6455078125;23755.17578125;37450.3813476563;43413.0048828125;48971.9326171875;67545.9711914063;69471.3178710938;73432.4873046875;0 63752.5546875;9679.9326171875 0
+BSA_min_23 MULTI 2 419.2215 836.42844 419.2215 NaN 11 4 3 0.428439 0.0036820444810246 0.399474 419.22139467134 0.587 8.245 0 81 99 0 DSFDIIK 7 Unmodified _DSFDIIK_ CON__ENSEMBL:ENSBTAP00000016046 0 768320 0;91299.93359375;241800.627929688;525219.90234375;753920.94140625;0 491425.375;219808.3125;42687.25390625 1 96 0
+BSA_min_23 MULTI 3 419.9065 1256.6977 419.9065 NaN 25 14 2 0.697683 0.0796025383165215 0.568655 419.9067499241 0.328 28.535 0 25 99 -1 0 NaN 57554 0;14390.53125;23922.302734375;24165.12890625;45028.5078125;31505.6552734375;47511.521484375;47811.853515625;28987.4296875;45375.6123046875;36277.5;25384.6372070313;30183.11328125;34972.8203125;22686.951171875;0 34948.3046875;22547.62890625 0
+BSA_min_23 MULTI 1 423.16235 422.15508 423.16235 NaN 28 11 3 0.155077 -0.0791138776144749 1.132056 423.162659610462 0.485 22.125 0 43 99 -1 0 NaN 525600 0;16769.75390625;35723.69140625;86788.763671875;151599.174804688;197071.871582031;238849.682617188;523878.314453125;329544.247070313;437148.26953125;456630.658203125;478603.056640625;0 439978.71875;62870.30859375;27823.416015625 0
+BSA_min_23 MULTI 1 423.15399 422.14671 423.15399 NaN 12 8 2 0.14671 -0.0874772228673919 0.244261 423.15400484274 0.578 15.582 0 61 99 -1 0 NaN 56980 0;10974.43359375;11466.44140625;17695.392578125;29738.080078125;42405.1352539063;49777.7587890625;52918.2924804688;55294.6079101563;0 49874.32421875;6935.59619140625 0
+BSA_min_23 MULTI 1 438.12074 437.11346 438.12074 NaN 14 7 2 0.113465 -0.127607350821677 4.801833 438.11835276147 0.563 13.784 0 65 99 -1 0 NaN 49183 0;12628.0346679688;18828.69140625;25120.1083984375;28692.1123046875;39040.9453125;47403.76953125;43417.169921875;0 25243.626953125;22160.142578125 0
+BSA_min_23 MULTI 2 472.23519 942.45582 472.23519 NaN 13 7 2 0.455821 -0.01770892971183 0.709379 472.235066999616 0.489 13.784 0 65 99 -1 0 NaN 56353 0;15947.7456054688;22278.6396484375;49859.734375;37677.9208984375;41839.669921875;29963.1635742188;33816.36328125;0 37885.62109375;14462.3369140625 0
+BSA_min_23 MULTI 3 512.90492 1535.6929 512.90492 NaN 12 6 2 0.692933 -0.0534854118236581 0.809488 512.90495520209 0.486 11.938 0 71 99 -1 0 NaN 39916 0;22260.3510742188;17784.23046875;29117.2568359375;23510.40234375;23676.2021484375;16407.2314453125;0 22463.94140625;14630.0244140625 0
+BSA_min_23 MULTI 2 536.75864 1071.5027 536.75864 NaN 7 4 2 0.502733 -0.0301585950960543 2.417234 537.260567742501 0.538 8.245 0 81 99 -1 0 NaN 20734 0;10059.73046875;17937.884765625;15345.3635253906;6743.6416015625;0 8550.685546875;9387.19921875 0
+BSA_min_23 MULTI 1 540.2454 539.23812 540.2454 NaN 13 7 2 0.238123 -0.0499263233698457 0.563837 540.24532444786 0.534 13.784 0 65 99 -1 0 NaN 54847 0;19292.154296875;33630.6376953125;45071.564453125;42212.9580078125;52232.3701171875;38198.8251953125;16618.658203125;0 42008.1484375;10444.9345703125 0
+BSA_min_23 MULTI 3 554.21555 1659.6248 554.21555 NaN 5 3 2 0.624827 -0.178600502911195 2.438908 554.215830630924 0.563 6.087 0 87 99 -1 0 NaN 29237 0;5868.830078125;20817.412109375;14182.5805664063;0 13458.6064453125;7358.8056640625 0
+BSA_min_23 MULTI 1 555.36421 554.35693 555.36421 NaN 11 6 2 0.356931 0.0619270308284285 0.459428 555.364097382042 0.545 11.938 0 71 99 -1 0 NaN 91371 0;11953.4111328125;56464.546875;61339.1220703125;87016.013671875;81907.529296875;69299.189453125;0 66361.0859375;22625.541015625 0
+BSA_min_23 MULTI 2 557.78935 1113.5641 557.78935 NaN 6 4 2 0.564147 0.0119075165016511 2.421348 557.790434802409 0.587 8.245 0 81 99 -1 0 NaN 16272 0;5989.40087890625;6732.34521484375;11646.4931640625;13934.3364257813;0 7986.845703125;5947.49072265625 0
+BSA_min_23 MULTI 2 559.76878 1117.523 559.76878 NaN 23 12 2 0.523015 -0.0310453934680481 0.427681 559.768803208661 0.515 24.286 0 37 99 -1 0 NaN 67211 0;30329.0063476563;50724.841796875;38037.4775390625;23608.0405273438;19378.5034179688;16818.5107421875;26791.890625;53347.1015625;57557.26953125;40855.7099609375;44248.58984375;6340.10107421875;0 37219.31640625;20337.953125 1 83 0
+BSA_min_23 MULTI 2 582.76086 1163.5072 582.76086 NaN 8 4 2 0.507164 -0.0680497736839243 0.460671 582.760715553871 0.587 8.245 0 81 99 -1 0 NaN 108980 0;29966.9487304688;59326.3994140625;83047.06640625;92434.69921875;0 60649.01953125;31785.6796875 1 92 0
+BSA_min_23 MULTI 2 602.33276 1202.651 602.33276 NaN 7 6 2 0.650966 0.0577468625917845 1.790633 602.333558802656 0.548 11.938 0 71 99 -1 0 NaN 19364 0;5811.33935546875;6557.4794921875;7303.61962890625;9868.7724609375;15106.3935546875;5047.06591796875;0 9868.7724609375;6315.080078125 0
+BSA_min_23 MULTI 2 609.30165 1216.5887 609.30165 NaN 5 3 2 0.588746 -0.010884807340517 3.455607 609.801905531048 0.578 6.087 0 87 99 -1 0 NaN 18519 0;6848.39208984375;14504.1098632813;15519.5483398438;0 5654.28662109375;10022.16015625 0
+BSA_min_23 MULTI 2 626.82568 1251.6368 626.82568 NaN 8 5 2 0.636813 0.0210605159502393 0.897662 627.327160354538 0.556 10.085 0 75 99 -1 0 NaN 20467 0;7513.7216796875;15837.8994140625;13457.0910644531;10665.5668945313;6652.02783203125;0 7548.9072265625;10244.0595703125 0
+BSA_min_23 MULTI 3 635.60201 1903.7842 635.60201 NaN 11 4 3 0.784211 -0.131529739430107 0.794887 635.601854227925 0.587 8.245 0 81 99 -1 0 NaN 109400 0;11539.9194335938;49907.1435546875;64455.1904296875;94715.8671875;0 41372.8828125;37360.796875;15982.1875 1 93 0
+BSA_min_23 MULTI 2 722.29286 1442.5712 722.29286 NaN 11 4 3 0.571176 -0.132406498940327 0.529807 722.794557009268 0.587 8.245 0 81 99 -1 0 NaN 88555 0;19382.1572265625;29263.3842773438;56304.751953125;72047.59765625;0 31798.40625;40249.19140625;9051.69140625 2 94;97 0;0
+BSA_min_23 MULTI 2 731.29826 1460.582 731.29826 NaN 9 5 2 0.581963 -0.129905034647663 1.015729 731.799523381077 0.526 10.085 0 75 99 -1 0 NaN 29169 0;10700.2763671875;21935.4814453125;17981.1000976563;13056.220703125;17802.30078125;0 11073.208984375;11301.125 1 90 0
+BSA_min_23 MULTI 2 772.32634 1542.6381 772.32634 NaN 16 12 3 0.638121 -0.111492432172099 0.832583 772.326445295162 0.587 24.286 0 37 99 -1 0 NaN 48065 0;8672.376953125;7721.82470703125;8208.14233398438;8694.4599609375;12981.9775390625;10428.1220703125;10370.2294921875;9308.8408203125;12825.458984375;17852.220703125;30189.3129882813;24380.708984375;0 19063.345703125;15360.51953125;9020.189453125 0
+BSA_min_23 MULTI 3 776.67069 2326.9902 776.67069 NaN 7 3 3 0.990245 -0.120170237694765 2.142655 777.004331643663 0.571 6.087 0 87 99 -1 0 NaN 37194 0;6977.5546875;29906.751953125;25277;0 9063.5791015625;14645.7783203125;12678.326171875 0
+BSA_min_23 MULTI 1 837.43637 836.42909 837.43637 NaN 7 4 2 0.429093 0.0043357496634826 1.321128 837.436103089852 0.587 8.245 0 81 99 -1 0 NaN 73009 0;8795.1123046875;28166.4892578125;33590.7690429688;65961.154296875;0 53311.69140625;12649.462890625 0
+BSA_min_23 MULTI 2 882.84611 1763.6777 882.84611 NaN 12 7 3 0.677665 -0.17362702288824 0.483171 882.846072087715 0.563 13.784 0 65 99 -1 0 NaN 1179300 0;10685.890625;57645.44140625;185231.5625;292455.5625;750275.78125;1040647.75;871335.640625;0 494015.65625;379948.71875;166683.375 1 100 0
+BSA_min_23 MULTI 2 886.81224 1771.6099 886.81224 NaN 8 5 2 0.609919 -0.245021216350096 1.522474 887.31412154531 0.576 10.085 0 75 99 -1 0 NaN 29012 0;5249.1533203125;6298.3564453125;13226.2900390625;17856.4375;20045.5546875;0 8890.65234375;11784.896484375 0
+BSA_min_23 MULTI 1 899.44874 898.44146 899.44874 NaN 10 6 2 0.441463 -0.0118196933137824 0.473138 899.44868329937 0.563 11.938 0 71 99 -1 0 NaN 93356 0;10259.021484375;11104.9755859375;38988.1611328125;51494.2109375;83477.83203125;72926.943359375;0 61125.3359375;22352.49609375 0
+BSA_min_23 MULTI 2 973.90466 1945.7948 973.90466 NaN 7 4 2 0.794757 -0.14030840214582 1.357784 973.904958275679 0.587 8.245 0 81 99 -1 0 NaN 67032 0;22343.408203125;30602.4375;39709.193359375;30783.283203125;0 30783.283203125;12774.3359375 0
+BSA_min_23 MULTI 1 1012.4647 1011.4574 1012.4647 NaN 10 6 2 0.457396 -0.0478741148867812 0.66179 1012.46465963589 0.58 11.938 0 71 99 -1 0 NaN 45315 0;6566.83447265625;5892.9794921875;22179.6865234375;26302.4379882813;35693.482421875;39795.4755859375;0 31461.541015625;12683.193359375 0
+BSA_min_23 MULTI 2 1044.9323 2087.8501 1044.9323 NaN 6 4 2 0.850137 -0.150273671131799 1.779455 1045.43259299012 0.587 8.245 0 81 99 -1 0 NaN 22292 0;6181.01806640625;6017.2158203125;11961.13671875;13880.3842773438;0 6740.865234375;7139.51904296875 0
+BSA_min_23 MULTI 2 1074.9485 2147.8825 1074.9485 NaN 7 5 2 0.882505 -0.145520540587768 1.74705 1074.94713499826 0.56 10.085 0 75 99 -1 0 NaN 47904 0;7807.28466796875;5717.341796875;13474.2958984375;16493.6396484375;19157.744140625;0 13474.2958984375;10645.7109375 0
+BSA_min_23 MULTI 1 1164.5167 1163.5094 1164.5167 NaN 6 4 2 0.50944 -0.065774688654983 0.883473 1164.51651446826 0.569 8.245 0 81 99 -1 0 NaN 30247 0;5882.703125;19118.6171875;25656.2758789063;16791.0786132813;0 19902.078125;6989.12060546875 0
+BSA_min_23 MULTI 1 1177.4707 1176.4634 1177.4707 NaN 18 7 3 0.463421 -0.117752640125445 0.401898 1177.47052434449 0.565 13.784 0 65 99 -1 0 NaN 191160 0;13462.1650390625;32176.0517578125;66198.634765625;127578.37890625;153005.427734375;176360.41015625;148912.65625;0 107823.8203125;52374.53515625;18917.345703125 1 64 0
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/evidence.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/evidence.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,7 @@
+Sequence Length Modifications Modified sequence Oxidation (M) Probabilities Oxidation (M) Score Diffs Oxidation (M) Missed cleavages Proteins Leading proteins Leading razor protein Type Raw file Experiment MS/MS m/z Charge m/z Mass Resolution Uncalibrated - Calibrated m/z [ppm] Uncalibrated - Calibrated m/z [Da] Mass error [ppm] Mass error [Da] Uncalibrated mass error [ppm] Uncalibrated mass error [Da] Max intensity m/z 0 Retention time Retention length Calibrated retention time Calibrated retention time start Calibrated retention time finish Retention time calibration Match time difference Match m/z difference Match q-value Match score Number of data points Number of scans Number of isotopic peaks PIF Fraction of total spectrum Base peak fraction PEP MS/MS count MS/MS scan number Score Delta score Combinatorics Intensity Reverse Potential contaminant id Protein group IDs Peptide ID Mod. peptide ID MS/MS IDs Best MS/MS AIF MS/MS IDs Oxidation (M) site IDs
+DSFDIIK 7 Unmodified _DSFDIIK_ 0 0 CON__ENSEMBL:ENSBTAP00000016046 CON__ENSEMBL:ENSBTAP00000016046 CON__ENSEMBL:ENSBTAP00000016046 MULTI-MSMS BSA_min_23 BSA_min_23.mzXML 419.221313476563 2 419.221268 836.427984 NaN 0 0 0.54276 0.00022754 0.54276 0.00022754 419.22139467134 0.58669 0.13742 0.58669 0.46121 0.59862 0 11 4 3 0 0 0 0.010549 1 96 0 0 1 768320 + 0 2 0 0 0 0
+LLESEECR 8 Unmodified _LLESEECR_ 0 0 CON__Q14CN4-1;CON__Q3SY84;CON__Q9R0H5 CON__Q14CN4-1 CON__Q14CN4-1 MSMS BSA_min_23 BSA_min_23.mzXML 518.238220214844 2 518.242406 1034.47026 NaN NaN NaN NaN NaN NaN NaN NaN 0.50957 1 0.50957 0.0095717 1.0096 0 0 0 0 0.0075205 1 86 1.6313 1.6313 1 + 1 5 1 1 1 1
+LVTDLTK 7 Unmodified _LVTDLTK_ 0 0 CON__P02769;bsa;CON__P02768-1 CON__P02769 CON__P02769 MSMS BSA_min_23 BSA_min_23.mzXML 395.239288330078 2 395.239461 788.46437 NaN NaN NaN NaN NaN NaN NaN NaN 0.010013 1 0.010013 -0.48999 0.51001 0 0 0 0 0.0046553 1 2 0 0 1 + 2 0 2 2 2 2
+QLELEKQLEK 10 Unmodified _QLELEKQLEK_ 0 1 CON__ENSEMBL:ENSBTAP00000001528 CON__ENSEMBL:ENSBTAP00000001528 CON__ENSEMBL:ENSBTAP00000001528 MULTI-SECPEP BSA_min_23 BSA_min_23.mzXML 419.221313476563 3 419.906482 1256.69762 NaN 0 0 0.052788 2.2166E-05 0.052788 2.2166E-05 419.9067499241 0.32847 0.47559 0.32847 0.12303 0.59862 0 25 14 2 0 0 0 0.011549 1 96 0 0 1 57554 + 3 1 3 3 3 3
+SLSAIRER 8 Unmodified _SLSAIRER_ 0 1 CON__Q03247 CON__Q03247 CON__Q03247 MULTI-SECPEP BSA_min_23 BSA_min_23.mzXML 465.766693115234 2 466.269616 930.524678 NaN 0 0 -3.0904 -0.0014409 -3.0904 -0.0014409 466.26850803291 0.10674 0.17216 0.10674 -0.014552 0.15761 0 6 4 2 0 0 0 0.011549 1 17 0 0 1 33499 + 4 4 4 4 4 4
+TLGPWGQR 8 Unmodified _TLGPWGQR_ 0 0 CON__ENSEMBL:ENSBTAP00000018574 CON__ENSEMBL:ENSBTAP00000018574 CON__ENSEMBL:ENSBTAP00000018574 MULTI-MSMS BSA_min_23 BSA_min_23.mzXML 457.746032714844 2 457.745776 913.477 NaN 0 0 -0.28456 -0.00013026 -0.28456 -0.00013026 457.745456355006 0.4547 0.40477 0.4547 0.19386 0.59862 -5.5511E-17 18 12 2 0 0 0 0.01108 1 72 0 0 1 61894 + 5 3 5 5 5 5
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/modificationSpecificPeptides.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/modificationSpecificPeptides.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,7 @@
+Sequence Modifications Mass Mass Fractional Part Protein Groups Proteins Unique (Groups) Unique (Proteins) Oxidation (M) Missed cleavages Experiment BSA_min_23.mzXML Retention time Calibrated retention time Charges PEP MS/MS scan number Raw file Score Delta score Intensity Intensity BSA_min_23.mzXML Reverse Potential contaminant id Protein group IDs Peptide ID Evidence IDs MS/MS IDs Best MS/MS Oxidation (M) site IDs MS/MS Count
+DSFDIIK Unmodified 836.42798 0.42798405 2 CON__ENSEMBL:ENSBTAP00000016046 yes yes 0 0 1 0.58669 0.58669 2 0.010549 96 BSA_min_23 0 0 768320 768320 + 0 2 0 0 0 0 1
+LLESEECR Unmodified 1034.4703 0.47025958 5 CON__Q14CN4-1;CON__Q3SY84;CON__Q9R0H5 yes no 0 0 1 0.50957 0.50957 2 0.0075205 86 BSA_min_23 1.6313 1.6313 0 0 + 1 5 1 1 1 1 1
+LVTDLTK Unmodified 788.46437 0.46436956 0 CON__P02769;bsa;CON__P02768-1 yes no 0 0 1 0.010013 0.010013 2 0.0046553 2 BSA_min_23 0 0 0 0 + 2 0 2 2 2 2 1
+QLELEKQLEK Unmodified 1256.6976 0.69761697 1 CON__ENSEMBL:ENSBTAP00000001528 yes yes 0 1 1 0.32847 0.32847 3 0.011549 96 BSA_min_23 0 0 57554 57554 + 3 1 3 3 3 3 0
+SLSAIRER Unmodified 930.52468 0.52467841 4 CON__Q03247 yes yes 0 1 1 0.10674 0.10674 2 0.011549 17 BSA_min_23 0 0 33499 33499 + 4 4 4 4 4 4 0
+TLGPWGQR Unmodified 913.477 0.47699993 3 CON__ENSEMBL:ENSBTAP00000018574 yes yes 0 0 1 0.4547 0.4547 2 0.01108 72 BSA_min_23 0 0 61894 61894 + 5 3 5 5 5 5 1
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/msms.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/msms.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,7 @@
+Raw file Scan number Scan index Sequence Length Missed cleavages Modifications Modified sequence Oxidation (M) Probabilities Oxidation (M) Score Diffs Oxidation (M) Proteins Charge Fragmentation Mass analyzer Type Scan event number Isotope index m/z Mass Mass error [ppm] Mass error [Da] Simple mass error [ppm] Retention time PEP Score Delta score Score diff Localization prob Combinatorics PIF Fraction of total spectrum Base peak fraction Precursor Full ScanNumber Precursor Intensity Precursor Apex Fraction Precursor Apex Offset Precursor Apex Offset Time Matches Intensities Mass Deviations [Da] Mass Deviations [ppm] Masses Number of Matches Intensity coverage Peak coverage Neutral loss level ETD identification type Reverse All scores All sequences All modified sequences id Protein group IDs Peptide ID Mod. peptide ID Evidence ID Oxidation (M) site IDs
+BSA_min_23 96 77 DSFDIIK 7 0 Unmodified _DSFDIIK_ 0 CON__ENSEMBL:ENSBTAP00000016046 2 CID FTMS MULTI-MSMS 1 0 419.22127 836.42798 0.54276 0.00022754 NaN 0.57043 0.010549 0 0 NaN NaN 1 0 0 0 95 346270.625 0.704625040984097 -1 0.0243583333333334 0 0 0 None Unknown 0 DSFDIIK _DSFDIIK_ 0 2 0 0 0
+BSA_min_23 86 70 LLESEECR 8 0 Unmodified _LLESEECR_ 0 CON__Q14CN4-1;CON__Q3SY84;CON__Q9R0H5 2 CID FTMS MSMS 5 518.24241 1034.4703 NaN NaN NaN 0.50957 0.0075205 1.6313 1.6313 NaN NaN 1 0 0 0 81 10271.2001953125 1 0 0 y6 11.7 0.0135096433999706 16.6930827476743 809.2958984375 1 0.00309955136349784 0.00847457627118644 None Unknown 1.63126590808724;0;0 LLESEECR;LGSDMEDLR;QLNQEMEK _LLESEECR_;_LGSDMEDLR_;_QLNQEM(ox)EK_ 1 5 1 1 1
+BSA_min_23 2 0 LVTDLTK 7 0 Unmodified _LVTDLTK_ 0 CON__P02769;bsa;CON__P02768-1 2 CID FTMS MSMS 1 395.23946 788.46437 NaN NaN NaN 0.010013 0.0046553 0 0 NaN NaN 1 0 0 0 -1 NaN NaN 0 NaN 0 0 0 None Unknown 0;0 LVTDLTK;DSLLTLK _LVTDLTK_;_DSLLTLK_ 2 0 2 2 2
+BSA_min_23 96 77 QLELEKQLEK 10 1 Unmodified _QLELEKQLEK_ 0 CON__ENSEMBL:ENSBTAP00000001528 3 CID FTMS MULTI-SECPEP 1 -2 419.90648 1256.6976 0.052788 2.2166E-05 NaN 0.57043 0.011549 0 0 NaN NaN 1 0 0 0 95 346270.625 0.704625040984097 -1 0.0243583333333334 0 0 0 None Unknown 0 QLELEKQLEK _QLELEKQLEK_ 3 1 3 3 3
+BSA_min_23 17 13 SLSAIRER 8 1 Unmodified _SLSAIRER_ 0 CON__Q03247 2 CID FTMS MULTI-SECPEP 4 -1 466.26962 930.52468 -3.0904 -0.0014409 NaN 0.096553 0.011549 0 0 NaN NaN 1 0 0 0 -1 NaN NaN 0 NaN 0 0 0 None Unknown 0 SLSAIRER _SLSAIRER_ 4 4 4 4 4
+BSA_min_23 72 58 TLGPWGQR 8 0 Unmodified _TLGPWGQR_ 0 CON__ENSEMBL:ENSBTAP00000018574 2 CID FTMS MULTI-MSMS 1 0 457.74578 913.477 -0.28456 -0.00013026 NaN 0.42593 0.01108 0 0 NaN NaN 1 0 0 0 71 32936.3203125 0.758644306612328 -2 0.0615566666666666 0 0 0 None Unknown 0;0 TLGPWGQR;IHVFNER _TLGPWGQR_;_IHVFNER_ 5 3 5 5 5
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/msmsScans.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/msmsScans.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,82 @@
+Raw file Scan number Retention time Ion injection time Total ion current Collision energy Summations Base peak intensity Elapsed time Identified MS/MS IDs Sequence Length Filtered peaks m/z Mass Charge Type Fragmentation Mass analyzer Parent intensity fraction Fraction of total spectrum Base peak fraction Precursor full scan number Precursor intensity Precursor apex fraction Precursor apex offset Precursor apex offset time Scan event number Modifications Modified sequence Proteins Score Experiment Intens Comp Factor CTCD Comp RawOvFtT AGC Fill Scan index MS scan index MS scan number
+BSA_min_23 2 0.010013 -1 35863 35 0 0 -1 + 2 LVTDLTK 7 103 395.239288330078 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 1 Unmodified _LVTDLTK_ bsa;CON__P02768-1;CON__P02769 0 BSA_min_23.mzXML NaN NaN NaN 0 0 0 1
+BSA_min_23 3 0.01458 -1 30585 35 0 0 -1 - -1 0 164 552.918823242188 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 1 0 1
+BSA_min_23 4 0.020265 -1 11886 35 0 0 -1 - -1 0 126 676.387463660038 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 2 0 1
+BSA_min_23 5 0.025633 -1 12813 35 0 0 -1 - -1 0 146 751.810668945313 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 3 0 1
+BSA_min_23 6 0.031253 -1 10791 35 0 0 -1 - -1 0 124 670.800842285156 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 4 0 1
+BSA_min_23 8 0.044372 -1 7950.3 35 0 0 -1 - -1 0 111 456.581360511828 2733.44450427137 6 MULTI CID FTMS 0 0 0 -1 NaN NaN 0 NaN 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 5 1 7
+BSA_min_23 9 0.049315 -1 13730 35 0 0 -1 - -1 0 120 562.257629394531 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 6 1 7
+BSA_min_23 10 0.05446 -1 8774.7 35 0 0 -1 - -1 0 121 589.203410887949 588.196134421349 1 MULTI CID FTMS 0 0 0 -1 NaN NaN 0 NaN 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 7 1 7
+BSA_min_23 11 0.06018 -1 4436.2 35 0 0 -1 - -1 0 115 828.876770019531 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 8 1 7
+BSA_min_23 12 0.065908 -1 3625.8 35 0 0 -1 - -1 0 112 639.798400878906 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 9 1 7
+BSA_min_23 14 0.078957 -1 13236 35 0 0 -1 - -1 0 137 883.333059829652 1764.6515667261 2 MULTI CID FTMS 0 0 0 13 171569.53125 0.0583552615411773 -4 NaN 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 10 2 13
+BSA_min_23 15 0.084805 -1 6304.6 35 0 0 -1 - -1 0 120 602.8994140625 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 11 2 13
+BSA_min_23 16 0.090573 -1 12119 35 0 0 -1 - -1 0 135 648.602708784548 1942.78629695384 3 MULTI CID FTMS 0 0 0 13 52074.7734375 0.102435594507697 -16 NaN 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 12 2 13
+BSA_min_23 17 0.096553 -1 5932.3 35 0 0 -1 - -1 0 110 465.766693115234 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 13 2 13
+BSA_min_23 18 0.10154 -1 4161.5 35 0 0 -1 - -1 0 108 605.758117675781 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 14 2 13
+BSA_min_23 20 0.11439 -1 65173 35 0 0 -1 - -1 0 102 387.700285234344 NaN 0 PEAK CID FTMS 0 0 0 19 5176.81640625 0.231645826498235 -7 NaN 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 15 3 19
+BSA_min_23 21 0.11842 -1 33705 35 0 0 -1 - -1 0 123 430.226482307928 NaN 0 PEAK CID FTMS 0 0 0 19 7040.359375 0.343536017509867 -2 0.0701033333333334 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 16 3 19
+BSA_min_23 22 0.1234 -1 9502.6 35 0 0 -1 - -1 0 111 455.744353147131 NaN 0 PEAK CID FTMS 0 0 0 19 112493.5 0.827447086298523 -1 0.0355433333333333 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 17 3 19
+BSA_min_23 23 0.12833 -1 2553.5 35 0 0 -1 - -1 0 105 664.964606092136 1991.87198887661 3 MULTI CID FTMS 0 0 0 19 58531.14453125 1 0 0 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 18 3 19
+BSA_min_23 24 0.13435 -1 5665.1 35 0 0 -1 - -1 0 93 441.716446446474 881.418339959749 2 MULTI CID FTMS 0 0 0 19 40583.5390625 0.581327680935085 -1 0.0355433333333333 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 19 3 19
+BSA_min_23 26 0.14696 -1 4965.5 35 0 0 -1 - -1 0 111 972.401410273474 1942.78826761375 2 MULTI CID FTMS 0 0 0 25 65218.546875 0.578387033725099 -12 NaN 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 20 4 25
+BSA_min_23 27 0.15284 -1 3538.8 35 0 0 -1 - -1 0 124 903.846651631555 1805.67875032991 2 MULTI CID FTMS 0 0 0 25 39216.41796875 1 0 0 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 21 4 25
+BSA_min_23 28 0.15869 -1 612.01 35 0 0 -1 - -1 0 40 931.328202121547 1860.64185130989 2 MULTI CID FTMS 0 0 0 25 32505.169921875 0.556008699617638 -3 0.102683333333333 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 22 4 25
+BSA_min_23 29 0.16448 -1 3712.5 35 0 0 -1 - -1 0 134 730.799031095722 1459.58350925824 2 MULTI CID FTMS 0 0 0 25 39553.00390625 1 0 0 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 23 4 25
+BSA_min_23 30 0.17003 -1 5047.2 35 0 0 -1 - -1 0 108 585.918893568188 1754.73485130476 3 MULTI CID FTMS 0 0 0 25 27986.6171875 0.487805831250134 -2 0.0681233333333334 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 24 4 25
+BSA_min_23 32 0.18323 -1 3672.2 35 0 0 -1 - -1 0 95 597.209739443197 NaN 0 PEAK CID FTMS 0 0 0 31 45858.6953125 0.706827549584025 -2 0.0691516666666667 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 25 5 31
+BSA_min_23 33 0.18901 -1 10554 35 0 0 -1 - -1 0 112 487.53462335476 1459.58204066448 3 MULTI CID FTMS 0 0 0 31 17205.21875 0.534308072152896 2 -0.07205 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 26 5 31
+BSA_min_23 34 0.19399 -1 794.02 35 0 0 -1 - -1 0 53 931.328202121547 1860.64185130989 2 MULTI CID FTMS 0 0 0 31 40352.77734375 0.775544041279623 -1 0.0365716666666666 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 27 5 31
+BSA_min_23 35 0.19977 -1 6966.5 35 0 0 -1 - -1 0 119 622.281005859375 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 28 5 31
+BSA_min_23 36 0.20575 -1 2000.1 35 0 0 -1 - -1 0 122 843.968139648438 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 29 5 31
+BSA_min_23 38 0.21916 -1 3920.8 35 0 0 -1 - -1 0 120 703.140521860943 4212.79947236606 6 MULTI CID FTMS 0 0 0 37 38276.57421875 1 0 0 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 30 6 37
+BSA_min_23 39 0.22523 -1 7753.4 35 0 0 -1 - -1 0 121 542.752915907862 NaN 0 PEAK CID FTMS 0 0 0 37 7960.71728515625 0.810623529138009 -1 0.0359233333333333 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 31 6 37
+BSA_min_23 40 0.23041 -1 2121.2 35 0 0 -1 - -1 0 108 686.596525404719 2056.76774681436 3 MULTI CID FTMS 0 0 0 37 47932.00390625 1 0 0 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 32 6 37
+BSA_min_23 41 0.23643 -1 2589.1 35 0 0 -1 - -1 0 110 592.559742773291 1774.65739892007 3 MULTI CID FTMS 0 0 0 37 51832.45703125 1 0 0 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 33 6 37
+BSA_min_23 42 0.24218 -1 6786.4 35 0 0 -1 - -1 0 114 558.888078141406 1673.64240502442 3 MULTI CID FTMS 0 0 0 37 50127.9140625 0.805054408903464 -3 0.105075 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 34 6 37
+BSA_min_23 44 0.25533 -1 3829.3 35 0 0 -1 - -1 0 126 808.753845214844 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 35 7 43
+BSA_min_23 45 0.26131 -1 2056.8 35 0 0 -1 - -1 0 95 686.596525404719 2056.76774681436 3 MULTI CID FTMS 0 0 0 43 42148.32421875 1 0 0 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 36 7 43
+BSA_min_23 46 0.26732 -1 4217.2 35 0 0 -1 - -1 0 115 703.140521860943 4212.79947236606 6 MULTI CID FTMS 0 0 0 43 34525.390625 0.901997927706068 1 -0.0366366666666667 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 37 7 43
+BSA_min_23 47 0.27336 -1 4417.5 35 0 0 -1 - -1 0 112 674.296931013294 NaN 0 PEAK CID FTMS 0 0 0 43 36233.25 0.312245808501738 -5 0.176745 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 38 7 43
+BSA_min_23 48 0.27939 -1 4893.8 35 0 0 -1 - -1 0 114 525.286926269531 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 39 7 43
+BSA_min_23 50 0.29214 -1 2694.3 35 0 0 -1 - -1 0 118 844.169032154843 4215.80877844122 5 MULTI CID FTMS 0 0 0 49 18802.0625 1 0 0 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 40 8 49
+BSA_min_23 51 0.29815 -1 4123.5 35 0 0 -1 - -1 0 123 674.296931013294 NaN 0 PEAK CID FTMS 0 0 0 49 37438.125 0.322629010906119 -4 0.145258333333333 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 41 8 49
+BSA_min_23 52 0.30417 -1 2801.3 35 0 0 -1 - -1 0 103 629.356568937177 1256.69858494115 2 MULTI CID FTMS 0 0 0 49 47581.3515625 1 0 0 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 42 8 49
+BSA_min_23 53 0.30942 -1 3120.2 35 0 0 -1 - -1 0 121 747.856093035124 1493.69763313705 2 MULTI CID FTMS 0 0 0 49 27482.5703125 1 0 0 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 43 8 49
+BSA_min_23 54 0.31497 -1 1089.3 35 0 0 -1 - -1 0 87 1177.44225204557 3529.3049267369 3 MULTI CID FTMS 0 0 0 49 22208.09765625 0.573548719035153 2 -0.0722016666666667 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 44 8 49
+BSA_min_23 56 0.32853 -1 4609.2 35 0 0 -1 - -1 0 134 808.5537109375 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 45 9 55
+BSA_min_23 57 0.33454 -1 4781 35 0 0 -1 - -1 0 114 491.773453701772 981.532354470344 2 MULTI CID FTMS 0 0 0 55 66131.3984375 1 0 0 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 46 9 55
+BSA_min_23 58 0.33958 -1 3940 35 0 0 -1 - -1 0 120 674.296931013294 NaN 0 PEAK CID FTMS 0 0 0 55 46957.76171875 0.404665998035039 -3 0.10925 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 47 9 55
+BSA_min_23 59 0.34561 -1 5227 35 0 0 -1 - -1 0 94 517.743469238281 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 48 9 55
+BSA_min_23 60 0.35072 -1 3062.2 35 0 0 -1 - -1 0 101 664.964606092136 1991.87198887661 3 MULTI CID FTMS 0 0 0 55 33396.828125 0.665850940487736 5 -0.158593333333333 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 49 9 55
+BSA_min_23 62 0.36446 -1 6953.5 35 0 0 -1 - -1 0 98 460.254338656322 459.247062189722 1 MULTI CID FTMS 0 0 0 61 110063.5625 0.350472556233784 3 -0.0859683333333334 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 50 10 61
+BSA_min_23 63 0.36944 -1 3605.8 35 0 0 -1 - -1 0 128 700.332580566406 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 51 10 61
+BSA_min_23 64 0.37486 -1 1611.8 35 0 0 -1 - -1 0 101 1177.47069699992 1176.46342053332 1 MULTI CID FTMS 0 0 0 -1 NaN NaN 0 NaN 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 52 10 61
+BSA_min_23 66 0.3885 -1 5670 35 0 0 -1 - -1 0 100 622.5341796875 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 53 11 65
+BSA_min_23 67 0.39452 -1 3085.9 35 0 0 -1 - -1 0 115 594.556274414063 NaN 0 PEAK CID FTMS 0 0 0 -1 NaN NaN 0 NaN 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 54 11 65
+BSA_min_23 68 0.40026 -1 1992.2 35 0 0 -1 - -1 0 96 686.596525404719 2056.76774681436 3 MULTI CID FTMS 0 0 0 65 21625.0703125 0.451161406787757 5 -0.157466666666667 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 55 11 65
+BSA_min_23 69 0.40626 -1 1117.7 35 0 0 -1 - -1 0 76 1173.07641144645 2344.1382699597 2 MULTI CID FTMS 0 0 0 65 24950.53125 1 0 0 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 56 11 65
+BSA_min_23 70 0.41227 -1 2287.8 35 0 0 -1 - -1 0 138 1177.58276971623 2353.15098649927 2 MULTI CID FTMS 0 0 0 65 8500.6943359375 0.643644763729794 1 -0.0373533333333333 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 57 11 65
+BSA_min_23 72 0.42593 -1 5725.3 35 0 0 -1 + 5 TLGPWGQR 8 96 457.745646177304 913.476739421408 2 MULTI CID FTMS 0 0 0 71 32936.3203125 0.758644306612328 -2 0.0615566666666666 1 Unmodified _TLGPWGQR_ CON__ENSEMBL:ENSBTAP00000018574 0 BSA_min_23.mzXML NaN NaN NaN 0 58 12 71
+BSA_min_23 73 0.43088 -1 1163.3 35 0 0 -1 - -1 0 65 1010.44003116945 4037.73101881139 4 MULTI CID FTMS 0 0 0 71 15265.9873046875 0.567392976805677 -2 0.0615566666666666 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 59 12 71
+BSA_min_23 74 0.43685 -1 4314.7 35 0 0 -1 - -1 0 113 585.918893568188 1754.73485130476 3 MULTI CID FTMS 0 0 0 71 21487.865234375 0.45287833588482 6 -0.168346666666667 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 60 12 71
+BSA_min_23 76 0.45047 -1 8334.6 35 0 0 -1 - -1 0 119 447.536449992962 1339.58752057909 3 MULTI CID FTMS 0 0 0 75 40469.671875 0.9140992180924 1 -0.0369099999999999 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 61 13 75
+BSA_min_23 77 0.45584 -1 4436.9 35 0 0 -1 - -1 0 95 597.066144900786 2980.29434217093 5 MULTI CID FTMS 0 0 0 75 33103.19921875 0.991897253233573 1 -0.0369099999999999 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 62 13 75
+BSA_min_23 78 0.46188 -1 2747.5 35 0 0 -1 - -1 0 106 664.964606092136 1991.87198887661 3 MULTI CID FTMS 0 0 0 75 18094.236328125 0.676187560804335 3 -0.0957016666666666 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 63 13 75
+BSA_min_23 79 0.46792 -1 3792.1 35 0 0 -1 - -1 0 127 782.86823361998 1563.72191430676 2 MULTI CID FTMS 0 0 0 75 24751.693359375 0.989113548898297 -1 0.0244116666666667 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 64 13 75
+BSA_min_23 80 0.4736 -1 1227.2 35 0 0 -1 - -1 0 96 1173.07641144645 2344.1382699597 2 MULTI CID FTMS 0 0 0 75 23081.546875 1 0 0 5 NaN BSA_min_23.mzXML NaN NaN NaN 0 65 13 75
+BSA_min_23 82 0.48722 -1 6556.1 35 0 0 -1 - -1 0 116 629.356568937177 1256.69858494115 2 MULTI CID FTMS 0 0 0 81 28788.931640625 1 0 0 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 66 14 81
+BSA_min_23 83 0.4925 -1 6615.3 35 0 0 -1 - -1 0 116 559.768784063361 1117.52301519352 2 MULTI CID FTMS 0 0 0 81 35334.84765625 0.949368528711517 -1 0.0369099999999999 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 67 14 81
+BSA_min_23 84 0.49762 -1 6183.7 35 0 0 -1 - -1 0 125 972.401410273474 1942.78826761375 2 MULTI CID FTMS 0 0 0 81 19756.91796875 0.347354270628424 7 NaN 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 68 14 81
+BSA_min_23 85 0.50353 -1 3559.8 35 0 0 -1 - -1 0 116 681.999313403946 2042.97611081204 3 MULTI CID FTMS 0 0 0 81 11550.4775390625 0.629091502669348 2 -0.0587916666666667 4 NaN BSA_min_23.mzXML NaN NaN NaN 0 69 14 81
+BSA_min_23 86 0.50957 -1 5114.2 35 0 0 -1 + 1 LLESEECR 8 118 518.240989833781 NaN 0 PEAK CID FTMS 0 0 0 81 10271.2001953125 1 0 0 5 Unmodified _LLESEECR_ CON__Q14CN4-1;CON__Q3SY84;CON__Q9R0H5 1.63126590808724 BSA_min_23.mzXML NaN NaN NaN 0 70 14 81
+BSA_min_23 88 0.52259 -1 44411 35 0 0 -1 - -1 0 134 385.207382835291 384.200106368691 1 MULTI CID FTMS 0 0 0 87 5929296.5 0.739051055541228 -3 0.0963616666666667 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 71 15 87
+BSA_min_23 89 0.52681 -1 3749.8 35 0 0 -1 - -1 0 100 597.066144900786 2980.29434217093 5 MULTI CID FTMS 0 0 0 87 19359.11328125 0.820197080002651 2 -0.04811 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 72 15 87
+BSA_min_23 90 0.53279 -1 3364.5 35 0 0 -1 - -1 0 128 731.29825780069 1460.58196266818 2 MULTI CID FTMS 0 0 0 87 10634.3564453125 0.960368079417471 -1 0.0350400000000001 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 73 15 87
+BSA_min_23 92 0.54611 -1 4680.5 35 0 0 -1 - -1 0 116 582.760858227368 1163.50716352154 2 MULTI CID FTMS 0 0 0 91 46220.83984375 0.762103661377976 -2 0.0587916666666667 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 74 16 91
+BSA_min_23 93 0.55132 -1 3773.2 35 0 0 -1 - -1 0 106 635.60201346581 1903.78421099763 3 MULTI CID FTMS 0 0 0 91 24284.580078125 0.586968526901584 -2 0.0587916666666667 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 75 16 91
+BSA_min_23 94 0.55721 -1 4670.5 35 0 0 -1 - -1 0 143 722.292864587666 1442.57117624213 2 MULTI CID FTMS 0 0 0 91 14970.0166015625 0.470778833500893 -2 0.0587916666666667 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 76 16 91
+BSA_min_23 96 0.57043 -1 15235 35 0 0 -1 + 0 DSFDIIK 7 110 419.22149602984 836.428439126479 2 MULTI CID FTMS 0 0 0 95 346270.625 0.704625040984097 -1 0.0243583333333334 1 Unmodified _DSFDIIK_ CON__ENSEMBL:ENSBTAP00000016046 0 BSA_min_23.mzXML NaN NaN NaN 0 77 17 95
+BSA_min_23 97 0.57533 -1 4806.4 35 0 0 -1 - -1 0 129 722.292864587666 1442.57117624213 2 MULTI CID FTMS 0 0 0 95 26752.708984375 0.841322322069994 -1 0.0243583333333334 2 NaN BSA_min_23.mzXML NaN NaN NaN 0 78 17 95
+BSA_min_23 98 0.58084 -1 3667 35 0 0 -1 - -1 0 113 595.224647156549 NaN 0 PEAK CID FTMS 0 0 0 95 6964.16259765625 0.341923515563021 -1 0.0243583333333334 3 NaN BSA_min_23.mzXML NaN NaN NaN 0 79 17 95
+BSA_min_23 100 0.59414 -1 44171 35 0 0 -1 - -1 0 176 882.846108818038 1763.67766470288 2 MULTI CID FTMS 0 0 0 99 379571.375 0.768338756470332 1 NaN 1 NaN BSA_min_23.mzXML NaN NaN NaN 0 80 18 99
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/mzRange.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/mzRange.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,1881 @@
+Raw file m/z Peaks / Da Single peaks / Da Isotope patterns / Da Single isotope patterns / Da SILAC pairs / Da Identified SILAC pairs / Da SILAC identification rate [%] MS/MS / Da Identified MS/MS / Da Identification rate [%]
+BSA_min_23 111.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 112.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 113.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 114.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 115.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 116.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 117.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 118.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 119.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 120.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 121.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 122.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 123.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 124.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 125.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 126.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 127.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 128.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 129.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 130.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 131.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 132.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 133.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 134.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 135.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 136.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 137.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 138.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 139.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 140.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 141.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 142.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 143.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 144.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 145.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 146.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 147.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 148.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 149.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 150.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 151.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 152.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 153.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 154.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 155.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 156.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 157.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 158.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 159.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 160.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 161.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 162.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 163.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 164.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 165.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 166.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 167.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 168.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 169.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 170.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 171.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 172.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 173.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 174.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 175.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 176.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 177.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 178.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 179.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 180.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 181.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 182.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 183.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 184.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 185.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 186.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 187.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 188.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 189.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 190.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 191.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 192.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 193.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 194.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 195.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 196.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 197.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 198.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 199.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 200.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 201.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 202.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 203.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 204.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 205.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 206.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 207.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 208.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 209.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 210.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 211.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 212.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 213.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 214.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 215.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 216.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 217.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 218.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 219.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 220.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 221.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 222.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 223.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 224.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 225.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 226.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 227.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 228.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 229.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 230.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 231.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 232.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 233.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 234.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 235.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 236.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 237.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 238.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 239.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 240.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 241.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 242.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 243.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 244.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 245.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 246.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 247.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 248.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 249.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 250.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 251.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 252.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 253.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 254.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 255.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 256.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 257.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 258.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 259.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 260.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 261.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 262.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 263.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 264.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 265.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 266.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 267.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 268.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 269.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 270.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 271.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 272.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 273.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 274.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 275.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 276.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 277.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 278.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 279.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 280.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 281.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 282.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 283.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 284.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 285.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 286.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 287.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 288.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 289.199897766113 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 290.199897766113 0.0357 0.001642 0.001428 0 7.139E-05 0 0 0 0
+BSA_min_23 291.199897766113 0.2143 0.009856 0.008571 0 0.0004285 0 0 0 0
+BSA_min_23 292.199897766113 0.3928 0.01807 0.01571 0 0.0007857 0 0 0 0
+BSA_min_23 293.199897766113 0.5714 0.02628 0.02286 0 0.001143 0 0 0 0
+BSA_min_23 294.199897766113 0.75 0.0345 0.03 0 0.0015 0 0 0 0
+BSA_min_23 295.199897766113 0.9286 0.04271 0.03714 0 0.001857 0 0 0 0
+BSA_min_23 296.199897766113 1.107 0.05093 0.04428 0 0.002214 0 0 0 0
+BSA_min_23 297.199897766113 1.286 0.05914 0.05143 0 0.002571 0 0 0 0
+BSA_min_23 298.199897766113 1.464 0.06736 0.05857 0 0.002929 0 0 0 0
+BSA_min_23 299.199897766113 1.643 0.07557 0.06571 0 0.003286 0 0 0 0
+BSA_min_23 300.199897766113 1.821 0.08378 0.07286 0 0.003643 0 0 0 0
+BSA_min_23 301.199897766113 2 0.092 0.08 0 0.004 0 0 0 0
+BSA_min_23 302.199897766113 2.179 0.1002 0.08714 0 0.004357 0 0 0 0
+BSA_min_23 303.199897766113 2.357 0.1084 0.09428 0 0.004714 0 0 0 0
+BSA_min_23 304.199897766113 2.536 0.1166 0.1014 0 0.005071 0 0 0 0
+BSA_min_23 305.199897766113 2.714 0.1249 0.1086 0 0.005429 0 0 0 0
+BSA_min_23 306.199897766113 2.893 0.1331 0.1157 0 0.005786 0 0 0 0
+BSA_min_23 307.199897766113 3.071 0.1413 0.1229 0 0.006143 0 0 0 0
+BSA_min_23 308.199897766113 3.25 0.1495 0.13 0 0.0065 0 0 0 0
+BSA_min_23 309.199897766113 3.429 0.1577 0.1371 0 0.006857 0 0 0 0
+BSA_min_23 310.199897766113 3.724 0.17 0.1614 0 0.008071 0 0 0.0002142 7.139E-05 33.33
+BSA_min_23 311.199897766113 4.488 0.1986 0.2543 0 0.01271 0 0 0.001286 0.0004285 33.33
+BSA_min_23 312.199897766113 5.253 0.2271 0.3471 0 0.01736 0 0 0.002357 0.0007857 33.33
+BSA_min_23 313.199897766113 6.017 0.2557 0.44 0 0.022 0 0 0.003428 0.001143 33.33
+BSA_min_23 314.199897766113 6.781 0.2843 0.5328 0 0.02664 0 0 0.0045 0.0015 33.33
+BSA_min_23 315.199897766113 7.546 0.3129 0.6257 0 0.03129 0 0 0.005571 0.001857 33.33
+BSA_min_23 316.199897766113 8.31 0.3414 0.7186 0 0.03593 0 0 0.006643 0.002214 33.33
+BSA_min_23 317.199897766113 9.074 0.37 0.8114 0 0.04057 0 0 0.007714 0.002571 33.33
+BSA_min_23 318.199897766113 9.838 0.3986 0.9043 0 0.04521 0 0 0.008786 0.002929 33.33
+BSA_min_23 319.199897766113 10.6 0.4271 0.9971 0 0.04986 0 0 0.009857 0.003286 33.33
+BSA_min_23 320.199897766113 11.37 0.4557 1.09 0 0.0545 0 0 0.01093 0.003643 33.33
+BSA_min_23 321.199897766113 12.13 0.4843 1.183 0 0.05914 0 0 0.012 0.004 33.33
+BSA_min_23 322.199897766113 12.9 0.5129 1.276 0 0.06379 0 0 0.01307 0.004357 33.33
+BSA_min_23 323.199897766113 13.66 0.5414 1.369 0 0.06843 0 0 0.01414 0.004714 33.33
+BSA_min_23 324.199897766113 14.42 0.57 1.461 0 0.07307 0 0 0.01521 0.005071 33.33
+BSA_min_23 325.199897766113 15.19 0.5986 1.554 0 0.07771 0 0 0.01629 0.005429 33.33
+BSA_min_23 326.199897766113 15.95 0.6271 1.647 0 0.08236 0 0 0.01736 0.005786 33.33
+BSA_min_23 327.199897766113 16.72 0.6557 1.74 0 0.087 0 0 0.01843 0.006143 33.33
+BSA_min_23 328.199897766113 17.48 0.6843 1.833 0 0.09164 0 0 0.0195 0.0065 33.33
+BSA_min_23 329.199897766113 18.25 0.7129 1.926 0 0.09629 0 0 0.02057 0.006857 33.33
+BSA_min_23 330.199897766113 19.06 0.7415 2.039 0 0.1019 0.0001428 0.1401 0.0215 0.007214 33.55
+BSA_min_23 331.199897766113 20.06 0.7704 2.231 0 0.1116 0.0008571 0.7682 0.02186 0.007571 34.64
+BSA_min_23 332.199897766113 21.06 0.7994 2.424 0 0.1212 0.001571 1.296 0.02221 0.007929 35.69
+BSA_min_23 333.199897766113 22.06 0.8283 2.617 0 0.1309 0.002286 1.747 0.02257 0.008286 36.71
+BSA_min_23 334.199897766113 23.06 0.8572 2.81 0 0.1405 0.003 2.135 0.02293 0.008643 37.69
+BSA_min_23 335.199897766113 24.06 0.8861 3.003 0 0.1501 0.003714 2.474 0.02329 0.009 38.65
+BSA_min_23 336.199897766113 25.06 0.9151 3.196 0 0.1598 0.004428 2.772 0.02364 0.009357 39.58
+BSA_min_23 337.199897766113 26.06 0.944 3.389 0 0.1694 0.005143 3.035 0.024 0.009714 40.48
+BSA_min_23 338.199897766113 27.06 0.9729 3.581 0 0.1791 0.005857 3.271 0.02436 0.01007 41.35
+BSA_min_23 339.199897766113 28.06 1.002 3.774 0 0.1887 0.006571 3.482 0.02471 0.01043 42.2
+BSA_min_23 340.199897766113 29.06 1.031 3.967 0 0.1984 0.007286 3.673 0.02507 0.01079 43.02
+BSA_min_23 341.199897766113 30.06 1.06 4.16 0 0.208 0.008 3.846 0.02543 0.01114 43.82
+BSA_min_23 342.199897766113 31.06 1.089 4.353 0 0.2176 0.008714 4.004 0.02579 0.0115 44.6
+BSA_min_23 343.199897766113 32.06 1.118 4.546 0 0.2273 0.009428 4.148 0.02614 0.01186 45.36
+BSA_min_23 344.199897766113 33.06 1.146 4.739 0 0.2369 0.01014 4.281 0.0265 0.01221 46.09
+BSA_min_23 345.199897766113 34.06 1.175 4.931 0 0.2466 0.01086 4.403 0.02686 0.01257 46.81
+BSA_min_23 346.199897766113 35.06 1.204 5.124 0 0.2562 0.01157 4.516 0.02721 0.01293 47.51
+BSA_min_23 347.199897766113 36.06 1.233 5.317 0 0.2659 0.01229 4.621 0.02757 0.01329 48.19
+BSA_min_23 348.199897766113 37.06 1.262 5.51 0 0.2755 0.013 4.719 0.02793 0.01364 48.85
+BSA_min_23 349.199897766113 38.06 1.291 5.703 0 0.2851 0.01371 4.81 0.02829 0.014 49.49
+BSA_min_23 350.199897766113 38.94 1.317 5.867 0 0.2934 0.01429 4.87 0.02864 0.01429 49.88
+BSA_min_23 351.199897766113 39.37 1.332 5.917 0 0.2959 0.01429 4.829 0.029 0.01429 49.26
+BSA_min_23 352.199897766113 39.8 1.346 5.967 0 0.2984 0.01429 4.788 0.02936 0.01429 48.66
+BSA_min_23 353.199897766113 40.23 1.361 6.017 0 0.3009 0.01429 4.748 0.02971 0.01429 48.08
+BSA_min_23 354.199897766113 40.66 1.376 6.067 0 0.3034 0.01429 4.709 0.03007 0.01429 47.51
+BSA_min_23 355.199897766113 41.09 1.39 6.117 0 0.3059 0.01429 4.671 0.03043 0.01429 46.95
+BSA_min_23 356.199897766113 41.51 1.405 6.167 0 0.3084 0.01429 4.633 0.03079 0.01429 46.4
+BSA_min_23 357.199897766113 41.94 1.42 6.217 0 0.3109 0.01429 4.596 0.03114 0.01429 45.87
+BSA_min_23 358.199897766113 42.37 1.434 6.267 0 0.3134 0.01429 4.559 0.0315 0.01429 45.35
+BSA_min_23 359.199897766113 42.8 1.449 6.317 0 0.3159 0.01429 4.523 0.03186 0.01429 44.84
+BSA_min_23 360.199897766113 43.23 1.464 6.367 0 0.3184 0.01429 4.487 0.03221 0.01429 44.35
+BSA_min_23 361.199897766113 43.66 1.478 6.417 0 0.3209 0.01429 4.452 0.03257 0.01429 43.86
+BSA_min_23 362.199897766113 44.09 1.493 6.467 0 0.3234 0.01429 4.418 0.03293 0.01429 43.38
+BSA_min_23 363.199897766113 44.51 1.508 6.517 0 0.3259 0.01429 4.384 0.03329 0.01429 42.92
+BSA_min_23 364.199897766113 44.94 1.522 6.567 0 0.3284 0.01429 4.351 0.03364 0.01429 42.46
+BSA_min_23 365.199897766113 45.37 1.537 6.617 0 0.3309 0.01429 4.318 0.034 0.01429 42.02
+BSA_min_23 366.199897766113 45.8 1.551 6.667 0 0.3334 0.01429 4.285 0.03436 0.01429 41.58
+BSA_min_23 367.199897766113 46.23 1.566 6.717 0 0.3359 0.01429 4.254 0.03471 0.01429 41.15
+BSA_min_23 368.199897766113 46.66 1.581 6.767 0 0.3384 0.01429 4.222 0.03507 0.01429 40.73
+BSA_min_23 369.199897766113 47.09 1.595 6.817 0 0.3409 0.01429 4.191 0.03543 0.01429 40.32
+BSA_min_23 370.199897766113 47.48 1.609 6.863 0 0.3431 0.01436 4.184 0.03607 0.01436 39.8
+BSA_min_23 371.199897766113 47.72 1.618 6.891 0 0.3446 0.01471 4.27 0.03786 0.01471 38.87
+BSA_min_23 372.199897766113 47.96 1.627 6.92 0 0.346 0.01507 4.356 0.03964 0.01507 38.02
+BSA_min_23 373.199897766113 48.21 1.636 6.949 0 0.3474 0.01543 4.441 0.04143 0.01543 37.24
+BSA_min_23 374.199897766113 48.45 1.645 6.977 0 0.3489 0.01579 4.525 0.04321 0.01579 36.53
+BSA_min_23 375.199897766113 48.69 1.654 7.006 0 0.3503 0.01614 4.608 0.045 0.01614 35.87
+BSA_min_23 376.199897766113 48.93 1.662 7.034 0 0.3517 0.0165 4.691 0.04679 0.0165 35.27
+BSA_min_23 377.199897766113 49.18 1.671 7.063 0 0.3531 0.01686 4.773 0.04857 0.01686 34.71
+BSA_min_23 378.199897766113 49.42 1.68 7.091 0 0.3546 0.01721 4.855 0.05036 0.01721 34.18
+BSA_min_23 379.199897766113 49.66 1.689 7.12 0 0.356 0.01757 4.936 0.05214 0.01757 33.7
+BSA_min_23 380.199897766113 49.91 1.698 7.149 0 0.3574 0.01793 5.016 0.05393 0.01793 33.25
+BSA_min_23 381.199897766113 50.15 1.707 7.177 0 0.3589 0.01829 5.096 0.05571 0.01829 32.82
+BSA_min_23 382.199897766113 50.39 1.716 7.206 0 0.3603 0.01864 5.174 0.0575 0.01864 32.42
+BSA_min_23 383.199897766113 50.63 1.725 7.234 0 0.3617 0.019 5.253 0.05929 0.019 32.05
+BSA_min_23 384.199897766113 50.88 1.734 7.263 0 0.3631 0.01936 5.33 0.06107 0.01936 31.7
+BSA_min_23 385.199897766113 51.12 1.743 7.291 0 0.3646 0.01971 5.408 0.06286 0.01971 31.36
+BSA_min_23 386.199897766113 51.36 1.752 7.32 0 0.366 0.02007 5.484 0.06464 0.02007 31.05
+BSA_min_23 387.199897766113 51.61 1.761 7.349 0 0.3674 0.02043 5.56 0.06643 0.02043 30.75
+BSA_min_23 388.199897766113 51.85 1.77 7.377 0 0.3689 0.02079 5.635 0.06821 0.02079 30.47
+BSA_min_23 389.199897766113 52.09 1.779 7.406 0 0.3703 0.02114 5.71 0.07 0.02114 30.2
+BSA_min_23 390.199897766113 52.33 1.787 7.434 0 0.3717 0.0215 5.784 0.07157 0.02143 29.94
+BSA_min_23 391.199897766113 52.58 1.796 7.463 0 0.3731 0.02186 5.858 0.07229 0.02143 29.64
+BSA_min_23 392.199897766113 52.82 1.805 7.491 0 0.3746 0.02221 5.931 0.073 0.02143 29.35
+BSA_min_23 393.199897766113 53.06 1.813 7.52 0 0.376 0.02257 6.003 0.07371 0.02143 29.07
+BSA_min_23 394.199897766113 53.31 1.822 7.549 0 0.3774 0.02293 6.075 0.07443 0.02143 28.79
+BSA_min_23 395.199897766113 53.55 1.83 7.577 0 0.3789 0.02329 6.146 0.07514 0.02143 28.52
+BSA_min_23 396.199897766113 53.79 1.839 7.606 0 0.3803 0.02364 6.217 0.07586 0.02143 28.25
+BSA_min_23 397.199897766113 54.03 1.847 7.634 0 0.3817 0.024 6.287 0.07657 0.02143 27.99
+BSA_min_23 398.199897766113 54.28 1.856 7.663 0 0.3831 0.02436 6.357 0.07729 0.02143 27.73
+BSA_min_23 399.199897766113 54.52 1.865 7.691 0 0.3846 0.02471 6.426 0.078 0.02143 27.47
+BSA_min_23 400.199897766113 54.76 1.873 7.72 0 0.386 0.02507 6.495 0.07871 0.02143 27.22
+BSA_min_23 401.199897766113 55.01 1.882 7.749 0 0.3874 0.02543 6.563 0.07943 0.02143 26.98
+BSA_min_23 402.199897766113 55.25 1.89 7.777 0 0.3889 0.02579 6.631 0.08014 0.02143 26.74
+BSA_min_23 403.199897766113 55.49 1.899 7.806 0 0.3903 0.02614 6.698 0.08086 0.02143 26.5
+BSA_min_23 404.199897766113 55.73 1.907 7.834 0 0.3917 0.0265 6.765 0.08157 0.02143 26.27
+BSA_min_23 405.199897766113 55.98 1.916 7.863 0 0.3931 0.02686 6.831 0.08229 0.02143 26.04
+BSA_min_23 406.199897766113 56.22 1.925 7.891 0 0.3946 0.02721 6.897 0.083 0.02143 25.82
+BSA_min_23 407.199897766113 56.46 1.933 7.92 0 0.396 0.02757 6.962 0.08371 0.02143 25.6
+BSA_min_23 408.199897766113 56.71 1.942 7.949 0 0.3974 0.02793 7.027 0.08443 0.02143 25.38
+BSA_min_23 409.199897766113 56.95 1.95 7.977 0 0.3989 0.02829 7.092 0.08514 0.02143 25.17
+BSA_min_23 410.199897766113 57.19 1.959 8.003 0 0.4001 0.02857 7.14 0.08586 0.02143 24.96
+BSA_min_23 411.199897766113 57.43 1.97 8.017 0 0.4009 0.02857 7.128 0.08657 0.02143 24.75
+BSA_min_23 412.199897766113 57.68 1.98 8.031 0 0.4016 0.02857 7.115 0.08729 0.02143 24.55
+BSA_min_23 413.199897766113 57.92 1.99 8.046 0 0.4023 0.02857 7.102 0.088 0.02143 24.35
+BSA_min_23 414.199897766113 58.16 2.001 8.06 0 0.403 0.02857 7.09 0.08871 0.02143 24.15
+BSA_min_23 415.199897766113 58.41 2.011 8.074 0 0.4037 0.02857 7.077 0.08943 0.02143 23.96
+BSA_min_23 416.199897766113 58.65 2.021 8.089 0 0.4044 0.02857 7.065 0.09014 0.02143 23.77
+BSA_min_23 417.199897766113 58.89 2.032 8.103 0 0.4051 0.02857 7.052 0.09086 0.02143 23.58
+BSA_min_23 418.199897766113 59.13 2.042 8.117 0 0.4059 0.02857 7.04 0.09157 0.02143 23.4
+BSA_min_23 419.199897766113 59.38 2.052 8.131 0 0.4066 0.02857 7.027 0.09229 0.02143 23.22
+BSA_min_23 420.199897766113 59.62 2.063 8.146 0 0.4073 0.02857 7.015 0.093 0.02143 23.04
+BSA_min_23 421.199897766113 59.86 2.073 8.16 0 0.408 0.02857 7.003 0.09371 0.02143 22.87
+BSA_min_23 422.199897766113 60.11 2.083 8.174 0 0.4087 0.02857 6.991 0.09443 0.02143 22.69
+BSA_min_23 423.199897766113 60.35 2.094 8.189 0 0.4094 0.02857 6.978 0.09514 0.02143 22.52
+BSA_min_23 424.199897766113 60.59 2.104 8.203 0 0.4101 0.02857 6.966 0.09586 0.02143 22.35
+BSA_min_23 425.199897766113 60.83 2.115 8.217 0 0.4109 0.02857 6.954 0.09657 0.02143 22.19
+BSA_min_23 426.199897766113 61.08 2.125 8.231 0 0.4116 0.02857 6.942 0.09729 0.02143 22.03
+BSA_min_23 427.199897766113 61.32 2.135 8.246 0 0.4123 0.02857 6.93 0.098 0.02143 21.87
+BSA_min_23 428.199897766113 61.56 2.146 8.26 0 0.413 0.02857 6.918 0.09871 0.02143 21.71
+BSA_min_23 429.199897766113 61.81 2.156 8.274 0 0.4137 0.02857 6.906 0.09943 0.02143 21.55
+BSA_min_23 430.199897766113 61.99 2.164 8.286 0 0.4143 0.02857 6.897 0.1001 0.0215 21.47
+BSA_min_23 431.199897766113 61.97 2.163 8.286 0 0.4143 0.02857 6.897 0.1009 0.02186 21.67
+BSA_min_23 432.199897766113 61.94 2.161 8.286 0 0.4143 0.02857 6.897 0.1016 0.02221 21.87
+BSA_min_23 433.199897766113 61.91 2.16 8.286 0 0.4143 0.02857 6.897 0.1023 0.02257 22.07
+BSA_min_23 434.199897766113 61.88 2.158 8.286 0 0.4143 0.02857 6.897 0.103 0.02293 22.26
+BSA_min_23 435.199897766113 61.85 2.157 8.286 0 0.4143 0.02857 6.897 0.1037 0.02329 22.45
+BSA_min_23 436.199897766113 61.82 2.155 8.286 0 0.4143 0.02857 6.897 0.1044 0.02364 22.64
+BSA_min_23 437.199897766113 61.79 2.154 8.286 0 0.4143 0.02857 6.897 0.1051 0.024 22.83
+BSA_min_23 438.199897766113 61.77 2.153 8.286 0 0.4143 0.02857 6.897 0.1059 0.02436 23.01
+BSA_min_23 439.199897766113 61.74 2.151 8.286 0 0.4143 0.02857 6.897 0.1066 0.02471 23.19
+BSA_min_23 440.199897766113 61.71 2.15 8.286 0 0.4143 0.02857 6.897 0.1073 0.02507 23.37
+BSA_min_23 441.199897766113 61.68 2.148 8.286 0 0.4143 0.02857 6.897 0.108 0.02543 23.54
+BSA_min_23 442.199897766113 61.65 2.147 8.286 0 0.4143 0.02857 6.897 0.1087 0.02579 23.72
+BSA_min_23 443.199897766113 61.62 2.145 8.286 0 0.4143 0.02857 6.897 0.1094 0.02614 23.89
+BSA_min_23 444.199897766113 61.59 2.144 8.286 0 0.4143 0.02857 6.897 0.1101 0.0265 24.06
+BSA_min_23 445.199897766113 61.57 2.143 8.286 0 0.4143 0.02857 6.897 0.1109 0.02686 24.23
+BSA_min_23 446.199897766113 61.54 2.141 8.286 0 0.4143 0.02857 6.897 0.1116 0.02721 24.39
+BSA_min_23 447.199897766113 61.51 2.14 8.286 0 0.4143 0.02857 6.897 0.1123 0.02757 24.55
+BSA_min_23 448.199897766113 61.48 2.138 8.286 0 0.4143 0.02857 6.897 0.113 0.02793 24.72
+BSA_min_23 449.199897766113 61.45 2.137 8.286 0 0.4143 0.02857 6.897 0.1137 0.02829 24.87
+BSA_min_23 450.199897766113 61.31 2.132 8.269 0 0.4134 0.02857 6.911 0.1141 0.0285 24.97
+BSA_min_23 451.199897766113 60.73 2.111 8.183 0 0.4091 0.02857 6.983 0.1134 0.02814 24.81
+BSA_min_23 452.199897766113 60.14 2.091 8.097 0 0.4049 0.02857 7.057 0.1127 0.02779 24.65
+BSA_min_23 453.199897766113 59.55 2.071 8.011 0 0.4006 0.02857 7.133 0.112 0.02743 24.49
+BSA_min_23 454.199897766113 58.97 2.05 7.926 0 0.3963 0.02857 7.21 0.1113 0.02707 24.33
+BSA_min_23 455.199897766113 58.38 2.03 7.84 0 0.392 0.02857 7.289 0.1106 0.02671 24.16
+BSA_min_23 456.199897766113 57.8 2.01 7.754 0 0.3877 0.02857 7.369 0.1099 0.02636 23.99
+BSA_min_23 457.199897766113 57.21 1.989 7.669 0 0.3834 0.02857 7.452 0.1091 0.026 23.82
+BSA_min_23 458.199897766113 56.63 1.969 7.583 0 0.3791 0.02857 7.536 0.1084 0.02564 23.65
+BSA_min_23 459.199897766113 56.04 1.948 7.497 0 0.3749 0.02857 7.622 0.1077 0.02529 23.47
+BSA_min_23 460.199897766113 55.45 1.928 7.411 0 0.3706 0.02857 7.71 0.107 0.02493 23.3
+BSA_min_23 461.199897766113 54.87 1.908 7.326 0 0.3663 0.02857 7.8 0.1063 0.02457 23.12
+BSA_min_23 462.199897766113 54.28 1.887 7.24 0 0.362 0.02857 7.893 0.1056 0.02421 22.94
+BSA_min_23 463.199897766113 53.7 1.867 7.154 0 0.3577 0.02857 7.987 0.1049 0.02386 22.75
+BSA_min_23 464.199897766113 53.11 1.847 7.069 0 0.3534 0.02857 8.084 0.1041 0.0235 22.57
+BSA_min_23 465.199897766113 52.53 1.826 6.983 0 0.3491 0.02857 8.183 0.1034 0.02314 22.38
+BSA_min_23 466.199897766113 51.94 1.806 6.897 0 0.3449 0.02857 8.285 0.1027 0.02279 22.18
+BSA_min_23 467.199897766113 51.35 1.786 6.811 0 0.3406 0.02857 8.389 0.102 0.02243 21.99
+BSA_min_23 468.199897766113 50.77 1.765 6.726 0 0.3363 0.02857 8.496 0.1013 0.02207 21.79
+BSA_min_23 469.199897766113 50.18 1.745 6.64 0 0.332 0.02857 8.606 0.1006 0.02171 21.59
+BSA_min_23 470.199897766113 49.57 1.724 6.546 0 0.3273 0.02843 8.686 0.1002 0.02136 21.31
+BSA_min_23 471.199897766113 48.87 1.704 6.417 0 0.3209 0.02771 8.638 0.1013 0.021 20.73
+BSA_min_23 472.199897766113 48.17 1.683 6.289 0 0.3144 0.027 8.587 0.1024 0.02064 20.17
+BSA_min_23 473.199897766113 47.47 1.662 6.16 0 0.308 0.02629 8.534 0.1034 0.02029 19.61
+BSA_min_23 474.199897766113 46.77 1.642 6.031 0 0.3016 0.02557 8.479 0.1045 0.01993 19.07
+BSA_min_23 475.199897766113 46.07 1.621 5.903 0 0.2951 0.02486 8.422 0.1056 0.01957 18.54
+BSA_min_23 476.199897766113 45.37 1.6 5.774 0 0.2887 0.02414 8.362 0.1066 0.01921 18.02
+BSA_min_23 477.199897766113 44.67 1.579 5.646 0 0.2823 0.02343 8.3 0.1077 0.01886 17.51
+BSA_min_23 478.199897766113 43.97 1.559 5.517 0 0.2759 0.02271 8.234 0.1088 0.0185 17.01
+BSA_min_23 479.199897766113 43.27 1.538 5.389 0 0.2694 0.022 8.165 0.1099 0.01814 16.52
+BSA_min_23 480.199897766113 42.57 1.517 5.26 0 0.263 0.02129 8.093 0.1109 0.01779 16.03
+BSA_min_23 481.199897766113 41.87 1.497 5.131 0 0.2566 0.02057 8.018 0.112 0.01743 15.56
+BSA_min_23 482.199897766113 41.17 1.476 5.003 0 0.2501 0.01986 7.938 0.1131 0.01707 15.1
+BSA_min_23 483.199897766113 40.47 1.455 4.874 0 0.2437 0.01914 7.855 0.1141 0.01671 14.64
+BSA_min_23 484.199897766113 39.77 1.434 4.746 0 0.2373 0.01843 7.766 0.1152 0.01636 14.2
+BSA_min_23 485.199897766113 39.07 1.414 4.617 0 0.2309 0.01771 7.673 0.1163 0.016 13.76
+BSA_min_23 486.199897766113 38.37 1.393 4.489 0 0.2244 0.017 7.575 0.1174 0.01564 13.33
+BSA_min_23 487.199897766113 37.67 1.372 4.36 0 0.218 0.01629 7.471 0.1184 0.01529 12.91
+BSA_min_23 488.199897766113 36.97 1.352 4.231 0 0.2116 0.01557 7.36 0.1195 0.01493 12.49
+BSA_min_23 489.199897766113 36.27 1.331 4.103 0 0.2051 0.01486 7.242 0.1206 0.01457 12.09
+BSA_min_23 490.199897766113 35.66 1.313 3.993 0 0.1996 0.01429 7.156 0.1214 0.01429 11.76
+BSA_min_23 491.199897766113 35.4 1.305 3.957 0 0.1979 0.01429 7.22 0.1214 0.01429 11.76
+BSA_min_23 492.199897766113 35.13 1.297 3.921 0 0.1961 0.01429 7.286 0.1214 0.01429 11.76
+BSA_min_23 493.199897766113 34.87 1.289 3.886 0 0.1943 0.01429 7.353 0.1214 0.01429 11.76
+BSA_min_23 494.199897766113 34.6 1.281 3.85 0 0.1925 0.01429 7.421 0.1214 0.01429 11.76
+BSA_min_23 495.199897766113 34.34 1.273 3.814 0 0.1907 0.01429 7.491 0.1214 0.01429 11.76
+BSA_min_23 496.199897766113 34.08 1.266 3.779 0 0.1889 0.01429 7.561 0.1214 0.01429 11.76
+BSA_min_23 497.199897766113 33.81 1.258 3.743 0 0.1871 0.01429 7.634 0.1214 0.01429 11.76
+BSA_min_23 498.199897766113 33.55 1.25 3.707 0 0.1854 0.01429 7.707 0.1214 0.01429 11.76
+BSA_min_23 499.199897766113 33.28 1.242 3.671 0 0.1836 0.01429 7.782 0.1214 0.01429 11.76
+BSA_min_23 500.199897766113 33.02 1.234 3.636 0 0.1818 0.01429 7.859 0.1214 0.01429 11.76
+BSA_min_23 501.199897766113 32.75 1.226 3.6 0 0.18 0.01429 7.936 0.1214 0.01429 11.76
+BSA_min_23 502.199897766113 32.49 1.218 3.564 0 0.1782 0.01429 8.016 0.1214 0.01429 11.76
+BSA_min_23 503.199897766113 32.23 1.211 3.529 0 0.1764 0.01429 8.097 0.1214 0.01429 11.76
+BSA_min_23 504.199897766113 31.96 1.203 3.493 0 0.1746 0.01429 8.18 0.1214 0.01429 11.76
+BSA_min_23 505.199897766113 31.7 1.195 3.457 0 0.1729 0.01429 8.264 0.1214 0.01429 11.76
+BSA_min_23 506.199897766113 31.43 1.187 3.421 0 0.1711 0.01429 8.351 0.1214 0.01429 11.76
+BSA_min_23 507.199897766113 31.17 1.179 3.386 0 0.1693 0.01429 8.439 0.1214 0.01429 11.76
+BSA_min_23 508.199897766113 30.9 1.171 3.35 0 0.1675 0.01429 8.529 0.1214 0.01429 11.76
+BSA_min_23 509.199897766113 30.64 1.163 3.314 0 0.1657 0.01429 8.621 0.1214 0.01429 11.76
+BSA_min_23 510.199897766113 30.58 1.162 3.31 0 0.1655 0.01421 8.589 0.1218 0.01421 11.67
+BSA_min_23 511.199897766113 31.36 1.185 3.431 0 0.1716 0.01386 8.077 0.1236 0.01386 11.21
+BSA_min_23 512.199897766113 32.14 1.207 3.553 0 0.1776 0.0135 7.6 0.1254 0.0135 10.77
+BSA_min_23 513.199897766113 32.92 1.23 3.674 0 0.1837 0.01314 7.154 0.1271 0.01314 10.34
+BSA_min_23 514.199897766113 33.7 1.253 3.796 0 0.1898 0.01279 6.737 0.1289 0.01279 9.917
+BSA_min_23 515.199897766113 34.48 1.276 3.917 0 0.1959 0.01243 6.346 0.1307 0.01243 9.508
+BSA_min_23 516.199897766113 35.26 1.299 4.039 0 0.2019 0.01207 5.978 0.1325 0.01207 9.111
+BSA_min_23 517.199897766113 36.03 1.322 4.16 0 0.208 0.01171 5.632 0.1343 0.01171 8.723
+BSA_min_23 518.199897766113 36.81 1.345 4.281 0 0.2141 0.01136 5.305 0.1361 0.01136 8.346
+BSA_min_23 519.199897766113 37.59 1.367 4.403 0 0.2201 0.011 4.997 0.1379 0.011 7.979
+BSA_min_23 520.199897766113 38.37 1.39 4.524 0 0.2262 0.01064 4.705 0.1396 0.01064 7.622
+BSA_min_23 521.199897766113 39.15 1.413 4.646 0 0.2323 0.01029 4.428 0.1414 0.01029 7.273
+BSA_min_23 522.199897766113 39.93 1.436 4.767 0 0.2384 0.009929 4.165 0.1432 0.009929 6.933
+BSA_min_23 523.199897766113 40.71 1.459 4.889 0 0.2444 0.009571 3.916 0.145 0.009571 6.601
+BSA_min_23 524.199897766113 41.48 1.482 5.01 0 0.2505 0.009214 3.678 0.1468 0.009214 6.277
+BSA_min_23 525.199897766113 42.26 1.505 5.131 0 0.2566 0.008857 3.452 0.1486 0.008857 5.962
+BSA_min_23 526.199897766113 43.04 1.527 5.253 0 0.2626 0.0085 3.236 0.1504 0.0085 5.653
+BSA_min_23 527.199897766113 43.82 1.55 5.374 0 0.2687 0.008143 3.03 0.1521 0.008143 5.352
+BSA_min_23 528.199897766113 44.6 1.573 5.496 0 0.2748 0.007786 2.833 0.1539 0.007786 5.058
+BSA_min_23 529.199897766113 45.38 1.596 5.617 0 0.2809 0.007429 2.645 0.1557 0.007429 4.771
+BSA_min_23 530.199897766113 45.99 1.614 5.714 0 0.2857 0.007071 2.475 0.1571 0.007143 4.545
+BSA_min_23 531.199897766113 45.92 1.61 5.714 0 0.2857 0.006714 2.35 0.1571 0.007143 4.545
+BSA_min_23 532.199897766113 45.86 1.607 5.714 0 0.2857 0.006357 2.225 0.1571 0.007143 4.545
+BSA_min_23 533.199897766113 45.79 1.604 5.714 0 0.2857 0.006 2.1 0.1571 0.007143 4.545
+BSA_min_23 534.199897766113 45.73 1.601 5.714 0 0.2857 0.005643 1.975 0.1571 0.007143 4.545
+BSA_min_23 535.199897766113 45.67 1.598 5.714 0 0.2857 0.005286 1.85 0.1571 0.007143 4.545
+BSA_min_23 536.199897766113 45.6 1.594 5.714 0 0.2857 0.004929 1.725 0.1571 0.007143 4.545
+BSA_min_23 537.199897766113 45.54 1.591 5.714 0 0.2857 0.004571 1.6 0.1571 0.007143 4.545
+BSA_min_23 538.199897766113 45.47 1.588 5.714 0 0.2857 0.004214 1.475 0.1571 0.007143 4.545
+BSA_min_23 539.199897766113 45.41 1.585 5.714 0 0.2857 0.003857 1.35 0.1571 0.007143 4.545
+BSA_min_23 540.199897766113 45.34 1.582 5.714 0 0.2857 0.0035 1.225 0.1571 0.007143 4.545
+BSA_min_23 541.199897766113 45.28 1.578 5.714 0 0.2857 0.003143 1.1 0.1571 0.007143 4.545
+BSA_min_23 542.199897766113 45.22 1.575 5.714 0 0.2857 0.002786 0.975 0.1571 0.007143 4.545
+BSA_min_23 543.199897766113 45.15 1.572 5.714 0 0.2857 0.002429 0.85 0.1571 0.007143 4.545
+BSA_min_23 544.199897766113 45.09 1.569 5.714 0 0.2857 0.002071 0.725 0.1571 0.007143 4.545
+BSA_min_23 545.199897766113 45.02 1.565 5.714 0 0.2857 0.001714 0.6 0.1571 0.007143 4.545
+BSA_min_23 546.199897766113 44.96 1.562 5.714 0 0.2857 0.001357 0.475 0.1571 0.007143 4.545
+BSA_min_23 547.199897766113 44.89 1.559 5.714 0 0.2857 0.001 0.35 0.1571 0.007143 4.545
+BSA_min_23 548.199897766113 44.83 1.556 5.714 0 0.2857 0.0006429 0.225 0.1571 0.007143 4.545
+BSA_min_23 549.199897766113 44.77 1.553 5.714 0 0.2857 0.0002858 0.1 0.1571 0.007143 4.545
+BSA_min_23 550.199897766113 44.72 1.549 5.721 0 0.2861 0 0 0.1574 0.007143 4.537
+BSA_min_23 551.199897766113 44.73 1.546 5.757 0 0.2879 0 0 0.1589 0.007143 4.496
+BSA_min_23 552.199897766113 44.75 1.543 5.793 0 0.2896 0 0 0.1603 0.007143 4.456
+BSA_min_23 553.199897766113 44.76 1.54 5.829 0 0.2914 0 0 0.1617 0.007143 4.417
+BSA_min_23 554.199897766113 44.77 1.537 5.864 0 0.2932 0 0 0.1631 0.007143 4.378
+BSA_min_23 555.199897766113 44.79 1.533 5.9 0 0.295 0 0 0.1646 0.007143 4.34
+BSA_min_23 556.199897766113 44.8 1.53 5.936 0 0.2968 0 0 0.166 0.007143 4.303
+BSA_min_23 557.199897766113 44.82 1.527 5.971 0 0.2986 0 0 0.1674 0.007143 4.266
+BSA_min_23 558.199897766113 44.83 1.524 6.007 0 0.3004 0 0 0.1689 0.007143 4.23
+BSA_min_23 559.199897766113 44.85 1.52 6.043 0 0.3021 0 0 0.1703 0.007143 4.195
+BSA_min_23 560.199897766113 44.86 1.517 6.079 0 0.3039 0 0 0.1717 0.007143 4.16
+BSA_min_23 561.199897766113 44.87 1.514 6.114 0 0.3057 0 0 0.1731 0.007143 4.125
+BSA_min_23 562.199897766113 44.89 1.511 6.15 0 0.3075 0 0 0.1746 0.007143 4.092
+BSA_min_23 563.199897766113 44.9 1.508 6.186 0 0.3093 0 0 0.176 0.007143 4.058
+BSA_min_23 564.199897766113 44.92 1.504 6.221 0 0.3111 0 0 0.1774 0.007143 4.026
+BSA_min_23 565.199897766113 44.93 1.501 6.257 0 0.3129 0 0 0.1789 0.007143 3.994
+BSA_min_23 566.199897766113 44.95 1.498 6.293 0 0.3146 0 0 0.1803 0.007143 3.962
+BSA_min_23 567.199897766113 44.96 1.495 6.329 0 0.3164 0 0 0.1817 0.007143 3.931
+BSA_min_23 568.199897766113 44.97 1.492 6.364 0 0.3182 0 0 0.1831 0.007143 3.9
+BSA_min_23 569.199897766113 44.99 1.488 6.4 0 0.32 0 0 0.1846 0.007143 3.87
+BSA_min_23 570.199897766113 45.01 1.485 6.433 0 0.3216 0 0 0.1856 0.007071 3.809
+BSA_min_23 571.199897766113 45.07 1.484 6.454 0 0.3227 0 0 0.1853 0.006714 3.624
+BSA_min_23 572.199897766113 45.13 1.483 6.476 0 0.3238 0 0 0.1849 0.006357 3.438
+BSA_min_23 573.199897766113 45.18 1.481 6.497 0 0.3249 0 0 0.1846 0.006 3.251
+BSA_min_23 574.199897766113 45.24 1.48 6.519 0 0.3259 0 0 0.1842 0.005643 3.063
+BSA_min_23 575.199897766113 45.3 1.478 6.54 0 0.327 0 0 0.1839 0.005286 2.875
+BSA_min_23 576.199897766113 45.35 1.477 6.561 0 0.3281 0 0 0.1835 0.004929 2.686
+BSA_min_23 577.199897766113 45.41 1.475 6.583 0 0.3291 0 0 0.1831 0.004571 2.496
+BSA_min_23 578.199897766113 45.47 1.474 6.604 0 0.3302 0 0 0.1828 0.004214 2.306
+BSA_min_23 579.199897766113 45.53 1.473 6.626 0 0.3313 0 0 0.1824 0.003857 2.114
+BSA_min_23 580.199897766113 45.58 1.471 6.647 0 0.3324 0 0 0.1821 0.0035 1.922
+BSA_min_23 581.199897766113 45.64 1.47 6.669 0 0.3334 0 0 0.1817 0.003143 1.73
+BSA_min_23 582.199897766113 45.7 1.468 6.69 0 0.3345 0 0 0.1814 0.002786 1.536
+BSA_min_23 583.199897766113 45.75 1.467 6.711 0 0.3356 0 0 0.181 0.002429 1.342
+BSA_min_23 584.199897766113 45.81 1.465 6.733 0 0.3366 0 0 0.1806 0.002071 1.147
+BSA_min_23 585.199897766113 45.87 1.464 6.754 0 0.3377 0 0 0.1803 0.001714 0.9509
+BSA_min_23 586.199897766113 45.93 1.463 6.776 0 0.3388 0 0 0.1799 0.001357 0.7543
+BSA_min_23 587.199897766113 45.98 1.461 6.797 0 0.3399 0 0 0.1796 0.001 0.5569
+BSA_min_23 588.199897766113 46.04 1.46 6.819 0 0.3409 0 0 0.1792 0.0006429 0.3587
+BSA_min_23 589.199897766113 46.1 1.458 6.84 0 0.342 0 0 0.1789 0.0002858 0.1598
+BSA_min_23 590.199897766113 46.15 1.457 6.86 0 0.343 0 0 0.1791 0 0
+BSA_min_23 591.199897766113 46.17 1.456 6.874 0 0.3437 0 0 0.1816 0 0
+BSA_min_23 592.199897766113 46.19 1.455 6.889 0 0.3444 0 0 0.1841 0 0
+BSA_min_23 593.199897766113 46.21 1.454 6.903 0 0.3451 0 0 0.1866 0 0
+BSA_min_23 594.199897766113 46.23 1.453 6.917 0 0.3459 0 0 0.1891 0 0
+BSA_min_23 595.199897766113 46.25 1.452 6.931 0 0.3466 0 0 0.1916 0 0
+BSA_min_23 596.199897766113 46.28 1.451 6.946 0 0.3473 0 0 0.1941 0 0
+BSA_min_23 597.199897766113 46.3 1.449 6.96 0 0.348 0 0 0.1966 0 0
+BSA_min_23 598.199897766113 46.32 1.448 6.974 0 0.3487 0 0 0.1991 0 0
+BSA_min_23 599.199897766113 46.34 1.447 6.989 0 0.3494 0 0 0.2016 0 0
+BSA_min_23 600.199897766113 46.36 1.446 7.003 0 0.3501 0 0 0.2041 0 0
+BSA_min_23 601.199897766113 46.38 1.445 7.017 0 0.3509 0 0 0.2066 0 0
+BSA_min_23 602.199897766113 46.4 1.444 7.031 0 0.3516 0 0 0.2091 0 0
+BSA_min_23 603.199897766113 46.43 1.443 7.046 0 0.3523 0 0 0.2116 0 0
+BSA_min_23 604.199897766113 46.45 1.442 7.06 0 0.353 0 0 0.2141 0 0
+BSA_min_23 605.199897766113 46.47 1.441 7.074 0 0.3537 0 0 0.2166 0 0
+BSA_min_23 606.199897766113 46.49 1.44 7.089 0 0.3544 0 0 0.2191 0 0
+BSA_min_23 607.199897766113 46.51 1.439 7.103 0 0.3551 0 0 0.2216 0 0
+BSA_min_23 608.199897766113 46.53 1.438 7.117 0 0.3559 0 0 0.2241 0 0
+BSA_min_23 609.199897766113 46.55 1.437 7.131 0 0.3566 0 0 0.2266 0 0
+BSA_min_23 610.199897766113 46.55 1.435 7.139 0 0.3569 0 0 0.2286 0 0
+BSA_min_23 611.199897766113 46.43 1.43 7.117 0 0.3559 0 0 0.2286 0 0
+BSA_min_23 612.199897766113 46.32 1.426 7.096 0 0.3548 0 0 0.2286 0 0
+BSA_min_23 613.199897766113 46.21 1.421 7.074 0 0.3537 0 0 0.2286 0 0
+BSA_min_23 614.199897766113 46.09 1.416 7.053 0 0.3526 0 0 0.2286 0 0
+BSA_min_23 615.199897766113 45.98 1.412 7.031 0 0.3516 0 0 0.2286 0 0
+BSA_min_23 616.199897766113 45.86 1.407 7.01 0 0.3505 0 0 0.2286 0 0
+BSA_min_23 617.199897766113 45.75 1.402 6.989 0 0.3494 0 0 0.2286 0 0
+BSA_min_23 618.199897766113 45.63 1.398 6.967 0 0.3484 0 0 0.2286 0 0
+BSA_min_23 619.199897766113 45.52 1.393 6.946 0 0.3473 0 0 0.2286 0 0
+BSA_min_23 620.199897766113 45.41 1.388 6.924 0 0.3462 0 0 0.2286 0 0
+BSA_min_23 621.199897766113 45.29 1.384 6.903 0 0.3451 0 0 0.2286 0 0
+BSA_min_23 622.199897766113 45.18 1.379 6.881 0 0.3441 0 0 0.2286 0 0
+BSA_min_23 623.199897766113 45.06 1.374 6.86 0 0.343 0 0 0.2286 0 0
+BSA_min_23 624.199897766113 44.95 1.37 6.839 0 0.3419 0 0 0.2286 0 0
+BSA_min_23 625.199897766113 44.83 1.365 6.817 0 0.3409 0 0 0.2286 0 0
+BSA_min_23 626.199897766113 44.72 1.361 6.796 0 0.3398 0 0 0.2286 0 0
+BSA_min_23 627.199897766113 44.61 1.356 6.774 0 0.3387 0 0 0.2286 0 0
+BSA_min_23 628.199897766113 44.49 1.351 6.753 0 0.3376 0 0 0.2286 0 0
+BSA_min_23 629.199897766113 44.38 1.347 6.731 0 0.3366 0 0 0.2286 0 0
+BSA_min_23 630.199897766113 44.3 1.343 6.72 0 0.336 0 0 0.2287 0 0
+BSA_min_23 631.199897766113 44.35 1.342 6.749 0 0.3374 0 0 0.2294 0 0
+BSA_min_23 632.199897766113 44.41 1.341 6.777 0 0.3389 0 0 0.2301 0 0
+BSA_min_23 633.199897766113 44.47 1.341 6.806 0 0.3403 0 0 0.2309 0 0
+BSA_min_23 634.199897766113 44.53 1.34 6.834 0 0.3417 0 0 0.2316 0 0
+BSA_min_23 635.199897766113 44.58 1.339 6.863 0 0.3431 0 0 0.2323 0 0
+BSA_min_23 636.199897766113 44.64 1.338 6.891 0 0.3446 0 0 0.233 0 0
+BSA_min_23 637.199897766113 44.7 1.338 6.92 0 0.346 0 0 0.2337 0 0
+BSA_min_23 638.199897766113 44.75 1.337 6.949 0 0.3474 0 0 0.2344 0 0
+BSA_min_23 639.199897766113 44.81 1.336 6.977 0 0.3489 0 0 0.2351 0 0
+BSA_min_23 640.199897766113 44.87 1.336 7.006 0 0.3503 0 0 0.2359 0 0
+BSA_min_23 641.199897766113 44.93 1.335 7.034 0 0.3517 0 0 0.2366 0 0
+BSA_min_23 642.199897766113 44.98 1.334 7.063 0 0.3531 0 0 0.2373 0 0
+BSA_min_23 643.199897766113 45.04 1.333 7.091 0 0.3546 0 0 0.238 0 0
+BSA_min_23 644.199897766113 45.1 1.333 7.12 0 0.356 0 0 0.2387 0 0
+BSA_min_23 645.199897766113 45.15 1.332 7.149 0 0.3574 0 0 0.2394 0 0
+BSA_min_23 646.199897766113 45.21 1.331 7.177 0 0.3589 0 0 0.2401 0 0
+BSA_min_23 647.199897766113 45.27 1.331 7.206 0 0.3603 0 0 0.2409 0 0
+BSA_min_23 648.199897766113 45.33 1.33 7.234 0 0.3617 0 0 0.2416 0 0
+BSA_min_23 649.199897766113 45.38 1.329 7.263 0 0.3631 0 0 0.2423 0 0
+BSA_min_23 650.199897766113 45.25 1.323 7.26 0 0.363 0 0 0.2424 0 0
+BSA_min_23 651.199897766113 44.37 1.295 7.131 0 0.3566 0 0 0.2403 0 0
+BSA_min_23 652.199897766113 43.5 1.267 7.003 0 0.3501 0 0 0.2381 0 0
+BSA_min_23 653.199897766113 42.62 1.239 6.874 0 0.3437 0 0 0.236 0 0
+BSA_min_23 654.199897766113 41.74 1.212 6.746 0 0.3373 0 0 0.2339 0 0
+BSA_min_23 655.199897766113 40.86 1.184 6.617 0 0.3309 0 0 0.2317 0 0
+BSA_min_23 656.199897766113 39.98 1.156 6.489 0 0.3244 0 0 0.2296 0 0
+BSA_min_23 657.199897766113 39.1 1.128 6.36 0 0.318 0 0 0.2274 0 0
+BSA_min_23 658.199897766113 38.22 1.1 6.231 0 0.3116 0 0 0.2253 0 0
+BSA_min_23 659.199897766113 37.35 1.072 6.103 0 0.3051 0 0 0.2231 0 0
+BSA_min_23 660.199897766113 36.47 1.044 5.974 0 0.2987 0 0 0.221 0 0
+BSA_min_23 661.199897766113 35.59 1.017 5.846 0 0.2923 0 0 0.2189 0 0
+BSA_min_23 662.199897766113 34.71 0.9887 5.717 0 0.2859 0 0 0.2167 0 0
+BSA_min_23 663.199897766113 33.83 0.9609 5.589 0 0.2794 0 0 0.2146 0 0
+BSA_min_23 664.199897766113 32.95 0.933 5.46 0 0.273 0 0 0.2124 0 0
+BSA_min_23 665.199897766113 32.07 0.9051 5.331 0 0.2666 0 0 0.2103 0 0
+BSA_min_23 666.199897766113 31.2 0.8773 5.203 0 0.2601 0 0 0.2081 0 0
+BSA_min_23 667.199897766113 30.32 0.8494 5.074 0 0.2537 0 0 0.206 0 0
+BSA_min_23 668.199897766113 29.44 0.8216 4.946 0 0.2473 0 0 0.2039 0 0
+BSA_min_23 669.199897766113 28.56 0.7937 4.817 0 0.2409 0 0 0.2017 0 0
+BSA_min_23 670.199897766113 27.86 0.7719 4.713 0 0.2356 0 0 0.2 0 0
+BSA_min_23 671.199897766113 27.88 0.774 4.706 0 0.2353 0 0 0.2 0 0
+BSA_min_23 672.199897766113 27.9 0.7761 4.699 0 0.2349 0 0 0.2 0 0
+BSA_min_23 673.199897766113 27.93 0.7783 4.691 0 0.2346 0 0 0.2 0 0
+BSA_min_23 674.199897766113 27.95 0.7804 4.684 0 0.2342 0 0 0.2 0 0
+BSA_min_23 675.199897766113 27.97 0.7826 4.677 0 0.2339 0 0 0.2 0 0
+BSA_min_23 676.199897766113 27.99 0.7847 4.67 0 0.2335 0 0 0.2 0 0
+BSA_min_23 677.199897766113 28.01 0.7869 4.663 0 0.2331 0 0 0.2 0 0
+BSA_min_23 678.199897766113 28.03 0.789 4.656 0 0.2328 0 0 0.2 0 0
+BSA_min_23 679.199897766113 28.05 0.7911 4.649 0 0.2324 0 0 0.2 0 0
+BSA_min_23 680.199897766113 28.08 0.7933 4.641 0 0.2321 0 0 0.2 0 0
+BSA_min_23 681.199897766113 28.1 0.7954 4.634 0 0.2317 0 0 0.2 0 0
+BSA_min_23 682.199897766113 28.12 0.7976 4.627 0 0.2314 0 0 0.2 0 0
+BSA_min_23 683.199897766113 28.14 0.7997 4.62 0 0.231 0 0 0.2 0 0
+BSA_min_23 684.199897766113 28.16 0.8019 4.613 0 0.2306 0 0 0.2 0 0
+BSA_min_23 685.199897766113 28.18 0.804 4.606 0 0.2303 0 0 0.2 0 0
+BSA_min_23 686.199897766113 28.2 0.8061 4.599 0 0.2299 0 0 0.2 0 0
+BSA_min_23 687.199897766113 28.23 0.8083 4.591 0 0.2296 0 0 0.2 0 0
+BSA_min_23 688.199897766113 28.25 0.8104 4.584 0 0.2292 0 0 0.2 0 0
+BSA_min_23 689.199897766113 28.27 0.8126 4.577 0 0.2289 0 0 0.2 0 0
+BSA_min_23 690.199897766113 28.26 0.8138 4.566 0 0.2283 0 0 0.1996 0 0
+BSA_min_23 691.199897766113 28.16 0.8113 4.537 0 0.2269 0 0 0.1974 0 0
+BSA_min_23 692.199897766113 28.05 0.8088 4.509 0 0.2254 0 0 0.1953 0 0
+BSA_min_23 693.199897766113 27.94 0.8063 4.48 0 0.224 0 0 0.1931 0 0
+BSA_min_23 694.199897766113 27.84 0.8038 4.451 0 0.2226 0 0 0.191 0 0
+BSA_min_23 695.199897766113 27.73 0.8013 4.423 0 0.2211 0 0 0.1889 0 0
+BSA_min_23 696.199897766113 27.62 0.7988 4.394 0 0.2197 0 0 0.1867 0 0
+BSA_min_23 697.199897766113 27.51 0.7963 4.366 0 0.2183 0 0 0.1846 0 0
+BSA_min_23 698.199897766113 27.41 0.7938 4.337 0 0.2169 0 0 0.1824 0 0
+BSA_min_23 699.199897766113 27.3 0.7913 4.309 0 0.2154 0 0 0.1803 0 0
+BSA_min_23 700.199897766113 27.19 0.7888 4.28 0 0.214 0 0 0.1781 0 0
+BSA_min_23 701.199897766113 27.09 0.7863 4.251 0 0.2126 0 0 0.176 0 0
+BSA_min_23 702.199897766113 26.98 0.7838 4.223 0 0.2111 0 0 0.1739 0 0
+BSA_min_23 703.199897766113 26.87 0.7813 4.194 0 0.2097 0 0 0.1717 0 0
+BSA_min_23 704.199897766113 26.76 0.7788 4.166 0 0.2083 0 0 0.1696 0 0
+BSA_min_23 705.199897766113 26.66 0.7763 4.137 0 0.2069 0 0 0.1674 0 0
+BSA_min_23 706.199897766113 26.55 0.7738 4.109 0 0.2054 0 0 0.1653 0 0
+BSA_min_23 707.199897766113 26.44 0.7713 4.08 0 0.204 0 0 0.1631 0 0
+BSA_min_23 708.199897766113 26.34 0.7688 4.051 0 0.2026 0 0 0.161 0 0
+BSA_min_23 709.199897766113 26.23 0.7663 4.023 0 0.2011 0 0 0.1589 0 0
+BSA_min_23 710.199897766113 26.12 0.764 3.997 0 0.1999 0 0 0.1571 0 0
+BSA_min_23 711.199897766113 26.03 0.7626 3.983 0 0.1991 0 0 0.1571 0 0
+BSA_min_23 712.199897766113 25.94 0.7611 3.969 0 0.1984 0 0 0.1571 0 0
+BSA_min_23 713.199897766113 25.85 0.7597 3.954 0 0.1977 0 0 0.1571 0 0
+BSA_min_23 714.199897766113 25.75 0.7583 3.94 0 0.197 0 0 0.1571 0 0
+BSA_min_23 715.199897766113 25.66 0.7569 3.926 0 0.1963 0 0 0.1571 0 0
+BSA_min_23 716.199897766113 25.57 0.7554 3.911 0 0.1956 0 0 0.1571 0 0
+BSA_min_23 717.199897766113 25.47 0.754 3.897 0 0.1949 0 0 0.1571 0 0
+BSA_min_23 718.199897766113 25.38 0.7526 3.883 0 0.1941 0 0 0.1571 0 0
+BSA_min_23 719.199897766113 25.29 0.7511 3.869 0 0.1934 0 0 0.1571 0 0
+BSA_min_23 720.199897766113 25.2 0.7497 3.854 0 0.1927 0 0 0.1571 0 0
+BSA_min_23 721.199897766113 25.1 0.7483 3.84 0 0.192 0 0 0.1571 0 0
+BSA_min_23 722.199897766113 25.01 0.7469 3.826 0 0.1913 0 0 0.1571 0 0
+BSA_min_23 723.199897766113 24.92 0.7454 3.811 0 0.1906 0 0 0.1571 0 0
+BSA_min_23 724.199897766113 24.82 0.744 3.797 0 0.1899 0 0 0.1571 0 0
+BSA_min_23 725.199897766113 24.73 0.7426 3.783 0 0.1891 0 0 0.1571 0 0
+BSA_min_23 726.199897766113 24.64 0.7411 3.769 0 0.1884 0 0 0.1571 0 0
+BSA_min_23 727.199897766113 24.55 0.7397 3.754 0 0.1877 0 0 0.1571 0 0
+BSA_min_23 728.199897766113 24.45 0.7383 3.74 0 0.187 0 0 0.1571 0 0
+BSA_min_23 729.199897766113 24.36 0.7369 3.726 0 0.1863 0 0 0.1571 0 0
+BSA_min_23 730.199897766113 24.27 0.735 3.713 0 0.1856 0 0 0.1567 0 0
+BSA_min_23 731.199897766113 24.17 0.7314 3.706 0 0.1853 0 0 0.1546 0 0
+BSA_min_23 732.199897766113 24.07 0.7279 3.699 0 0.1849 0 0 0.1524 0 0
+BSA_min_23 733.199897766113 23.97 0.7243 3.691 0 0.1846 0 0 0.1503 0 0
+BSA_min_23 734.199897766113 23.87 0.7207 3.684 0 0.1842 0 0 0.1481 0 0
+BSA_min_23 735.199897766113 23.77 0.7171 3.677 0 0.1839 0 0 0.146 0 0
+BSA_min_23 736.199897766113 23.67 0.7136 3.67 0 0.1835 0 0 0.1439 0 0
+BSA_min_23 737.199897766113 23.57 0.71 3.663 0 0.1831 0 0 0.1417 0 0
+BSA_min_23 738.199897766113 23.47 0.7064 3.656 0 0.1828 0 0 0.1396 0 0
+BSA_min_23 739.199897766113 23.37 0.7029 3.649 0 0.1824 0 0 0.1374 0 0
+BSA_min_23 740.199897766113 23.27 0.6993 3.641 0 0.1821 0 0 0.1353 0 0
+BSA_min_23 741.199897766113 23.17 0.6957 3.634 0 0.1817 0 0 0.1331 0 0
+BSA_min_23 742.199897766113 23.07 0.6921 3.627 0 0.1814 0 0 0.131 0 0
+BSA_min_23 743.199897766113 22.97 0.6886 3.62 0 0.181 0 0 0.1289 0 0
+BSA_min_23 744.199897766113 22.87 0.685 3.613 0 0.1806 0 0 0.1267 0 0
+BSA_min_23 745.199897766113 22.77 0.6814 3.606 0 0.1803 0 0 0.1246 0 0
+BSA_min_23 746.199897766113 22.67 0.6779 3.599 0 0.1799 0 0 0.1224 0 0
+BSA_min_23 747.199897766113 22.57 0.6743 3.591 0 0.1796 0 0 0.1203 0 0
+BSA_min_23 748.199897766113 22.47 0.6707 3.584 0 0.1792 0 0 0.1181 0 0
+BSA_min_23 749.199897766113 22.37 0.6671 3.577 0 0.1789 0 0 0.116 0 0
+BSA_min_23 750.199897766113 22.27 0.6641 3.567 0 0.1784 0 0 0.1141 0 0
+BSA_min_23 751.199897766113 22.21 0.6634 3.546 0 0.1773 0 0 0.113 0 0
+BSA_min_23 752.199897766113 22.14 0.6627 3.524 0 0.1762 0 0 0.1119 0 0
+BSA_min_23 753.199897766113 22.08 0.662 3.503 0 0.1751 0 0 0.1109 0 0
+BSA_min_23 754.199897766113 22.02 0.6613 3.481 0 0.1741 0 0 0.1098 0 0
+BSA_min_23 755.199897766113 21.95 0.6606 3.46 0 0.173 0 0 0.1087 0 0
+BSA_min_23 756.199897766113 21.89 0.6599 3.439 0 0.1719 0 0 0.1076 0 0
+BSA_min_23 757.199897766113 21.82 0.6591 3.417 0 0.1709 0 0 0.1066 0 0
+BSA_min_23 758.199897766113 21.76 0.6584 3.396 0 0.1698 0 0 0.1055 0 0
+BSA_min_23 759.199897766113 21.69 0.6577 3.374 0 0.1687 0 0 0.1044 0 0
+BSA_min_23 760.199897766113 21.63 0.657 3.353 0 0.1676 0 0 0.1034 0 0
+BSA_min_23 761.199897766113 21.57 0.6563 3.331 0 0.1666 0 0 0.1023 0 0
+BSA_min_23 762.199897766113 21.5 0.6556 3.31 0 0.1655 0 0 0.1012 0 0
+BSA_min_23 763.199897766113 21.44 0.6549 3.289 0 0.1644 0 0 0.1001 0 0
+BSA_min_23 764.199897766113 21.37 0.6541 3.267 0 0.1634 0 0 0.09907 0 0
+BSA_min_23 765.199897766113 21.31 0.6534 3.246 0 0.1623 0 0 0.098 0 0
+BSA_min_23 766.199897766113 21.24 0.6527 3.224 0 0.1612 0 0 0.09693 0 0
+BSA_min_23 767.199897766113 21.18 0.652 3.203 0 0.1601 0 0 0.09586 0 0
+BSA_min_23 768.199897766113 21.12 0.6513 3.181 0 0.1591 0 0 0.09479 0 0
+BSA_min_23 769.199897766113 21.05 0.6506 3.16 0 0.158 0 0 0.09371 0 0
+BSA_min_23 770.199897766113 20.97 0.6491 3.137 0 0.1569 0 0 0.09279 0 0
+BSA_min_23 771.199897766113 20.8 0.6449 3.109 0 0.1554 0 0 0.09243 0 0
+BSA_min_23 772.199897766113 20.64 0.6406 3.08 0 0.154 0 0 0.09207 0 0
+BSA_min_23 773.199897766113 20.47 0.6363 3.051 0 0.1526 0 0 0.09171 0 0
+BSA_min_23 774.199897766113 20.31 0.632 3.023 0 0.1511 0 0 0.09136 0 0
+BSA_min_23 775.199897766113 20.15 0.6277 2.994 0 0.1497 0 0 0.091 0 0
+BSA_min_23 776.199897766113 19.98 0.6234 2.966 0 0.1483 0 0 0.09064 0 0
+BSA_min_23 777.199897766113 19.82 0.6191 2.937 0 0.1469 0 0 0.09029 0 0
+BSA_min_23 778.199897766113 19.65 0.6149 2.909 0 0.1454 0 0 0.08993 0 0
+BSA_min_23 779.199897766113 19.49 0.6106 2.88 0 0.144 0 0 0.08957 0 0
+BSA_min_23 780.199897766113 19.32 0.6063 2.851 0 0.1426 0 0 0.08921 0 0
+BSA_min_23 781.199897766113 19.16 0.602 2.823 0 0.1411 0 0 0.08886 0 0
+BSA_min_23 782.199897766113 19 0.5977 2.794 0 0.1397 0 0 0.0885 0 0
+BSA_min_23 783.199897766113 18.83 0.5934 2.766 0 0.1383 0 0 0.08814 0 0
+BSA_min_23 784.199897766113 18.67 0.5891 2.737 0 0.1369 0 0 0.08779 0 0
+BSA_min_23 785.199897766113 18.5 0.5849 2.709 0 0.1354 0 0 0.08743 0 0
+BSA_min_23 786.199897766113 18.34 0.5806 2.68 0 0.134 0 0 0.08707 0 0
+BSA_min_23 787.199897766113 18.17 0.5763 2.651 0 0.1326 0 0 0.08671 0 0
+BSA_min_23 788.199897766113 18.01 0.572 2.623 0 0.1311 0 0 0.08636 0 0
+BSA_min_23 789.199897766113 17.85 0.5677 2.594 0 0.1297 0 0 0.086 0 0
+BSA_min_23 790.199897766113 17.7 0.5642 2.567 0 0.1284 0 0 0.08543 0 0
+BSA_min_23 791.199897766113 17.65 0.5639 2.546 0 0.1273 0 0 0.084 0 0
+BSA_min_23 792.199897766113 17.59 0.5635 2.524 0 0.1262 0 0 0.08257 0 0
+BSA_min_23 793.199897766113 17.53 0.5631 2.503 0 0.1251 0 0 0.08114 0 0
+BSA_min_23 794.199897766113 17.47 0.5628 2.481 0 0.1241 0 0 0.07971 0 0
+BSA_min_23 795.199897766113 17.42 0.5624 2.46 0 0.123 0 0 0.07829 0 0
+BSA_min_23 796.199897766113 17.36 0.5621 2.439 0 0.1219 0 0 0.07686 0 0
+BSA_min_23 797.199897766113 17.3 0.5617 2.417 0 0.1209 0 0 0.07543 0 0
+BSA_min_23 798.199897766113 17.25 0.5614 2.396 0 0.1198 0 0 0.074 0 0
+BSA_min_23 799.199897766113 17.19 0.561 2.374 0 0.1187 0 0 0.07257 0 0
+BSA_min_23 800.199897766113 17.13 0.5606 2.353 0 0.1176 0 0 0.07114 0 0
+BSA_min_23 801.199897766113 17.07 0.5603 2.331 0 0.1166 0 0 0.06971 0 0
+BSA_min_23 802.199897766113 17.02 0.5599 2.31 0 0.1155 0 0 0.06829 0 0
+BSA_min_23 803.199897766113 16.96 0.5596 2.289 0 0.1144 0 0 0.06686 0 0
+BSA_min_23 804.199897766113 16.9 0.5592 2.267 0 0.1134 0 0 0.06543 0 0
+BSA_min_23 805.199897766113 16.85 0.5589 2.246 0 0.1123 0 0 0.064 0 0
+BSA_min_23 806.199897766113 16.79 0.5585 2.224 0 0.1112 0 0 0.06257 0 0
+BSA_min_23 807.199897766113 16.73 0.5581 2.203 0 0.1101 0 0 0.06114 0 0
+BSA_min_23 808.199897766113 16.67 0.5578 2.181 0 0.1091 0 0 0.05971 0 0
+BSA_min_23 809.199897766113 16.62 0.5574 2.16 0 0.108 0 0 0.05829 0 0
+BSA_min_23 810.199897766113 16.59 0.5571 2.149 0 0.1074 0 0 0.05714 0 0
+BSA_min_23 811.199897766113 16.67 0.5567 2.177 0 0.1089 0 0 0.05714 0 0
+BSA_min_23 812.199897766113 16.74 0.5564 2.206 0 0.1103 0 0 0.05714 0 0
+BSA_min_23 813.199897766113 16.82 0.556 2.234 0 0.1117 0 0 0.05714 0 0
+BSA_min_23 814.199897766113 16.9 0.5556 2.263 0 0.1131 0 0 0.05714 0 0
+BSA_min_23 815.199897766113 16.98 0.5553 2.291 0 0.1146 0 0 0.05714 0 0
+BSA_min_23 816.199897766113 17.06 0.5549 2.32 0 0.116 0 0 0.05714 0 0
+BSA_min_23 817.199897766113 17.14 0.5546 2.349 0 0.1174 0 0 0.05714 0 0
+BSA_min_23 818.199897766113 17.22 0.5542 2.377 0 0.1189 0 0 0.05714 0 0
+BSA_min_23 819.199897766113 17.29 0.5539 2.406 0 0.1203 0 0 0.05714 0 0
+BSA_min_23 820.199897766113 17.37 0.5535 2.434 0 0.1217 0 0 0.05714 0 0
+BSA_min_23 821.199897766113 17.45 0.5531 2.463 0 0.1231 0 0 0.05714 0 0
+BSA_min_23 822.199897766113 17.53 0.5528 2.491 0 0.1246 0 0 0.05714 0 0
+BSA_min_23 823.199897766113 17.61 0.5524 2.52 0 0.126 0 0 0.05714 0 0
+BSA_min_23 824.199897766113 17.69 0.5521 2.549 0 0.1274 0 0 0.05714 0 0
+BSA_min_23 825.199897766113 17.77 0.5517 2.577 0 0.1289 0 0 0.05714 0 0
+BSA_min_23 826.199897766113 17.84 0.5514 2.606 0 0.1303 0 0 0.05714 0 0
+BSA_min_23 827.199897766113 17.92 0.551 2.634 0 0.1317 0 0 0.05714 0 0
+BSA_min_23 828.199897766113 18 0.5506 2.663 0 0.1331 0 0 0.05714 0 0
+BSA_min_23 829.199897766113 18.08 0.5503 2.691 0 0.1346 0 0 0.05714 0 0
+BSA_min_23 830.199897766113 18.13 0.5493 2.713 0 0.1356 0 0 0.05721 0 0
+BSA_min_23 831.199897766113 18.06 0.5457 2.706 0 0.1353 0 0 0.05757 0 0
+BSA_min_23 832.199897766113 17.99 0.5421 2.699 0 0.1349 0 0 0.05793 0 0
+BSA_min_23 833.199897766113 17.91 0.5386 2.691 0 0.1346 0 0 0.05829 0 0
+BSA_min_23 834.199897766113 17.84 0.535 2.684 0 0.1342 0 0 0.05864 0 0
+BSA_min_23 835.199897766113 17.77 0.5314 2.677 0 0.1339 0 0 0.059 0 0
+BSA_min_23 836.199897766113 17.7 0.5279 2.67 0 0.1335 0 0 0.05936 0 0
+BSA_min_23 837.199897766113 17.63 0.5243 2.663 0 0.1331 0 0 0.05971 0 0
+BSA_min_23 838.199897766113 17.56 0.5207 2.656 0 0.1328 0 0 0.06007 0 0
+BSA_min_23 839.199897766113 17.49 0.5171 2.649 0 0.1324 0 0 0.06043 0 0
+BSA_min_23 840.199897766113 17.41 0.5136 2.641 0 0.1321 0 0 0.06079 0 0
+BSA_min_23 841.199897766113 17.34 0.51 2.634 0 0.1317 0 0 0.06114 0 0
+BSA_min_23 842.199897766113 17.27 0.5064 2.627 0 0.1314 0 0 0.0615 0 0
+BSA_min_23 843.199897766113 17.2 0.5029 2.62 0 0.131 0 0 0.06186 0 0
+BSA_min_23 844.199897766113 17.13 0.4993 2.613 0 0.1306 0 0 0.06221 0 0
+BSA_min_23 845.199897766113 17.06 0.4957 2.606 0 0.1303 0 0 0.06257 0 0
+BSA_min_23 846.199897766113 16.99 0.4921 2.599 0 0.1299 0 0 0.06293 0 0
+BSA_min_23 847.199897766113 16.91 0.4886 2.591 0 0.1296 0 0 0.06329 0 0
+BSA_min_23 848.199897766113 16.84 0.485 2.584 0 0.1292 0 0 0.06364 0 0
+BSA_min_23 849.199897766113 16.77 0.4814 2.577 0 0.1289 0 0 0.064 0 0
+BSA_min_23 850.199897766113 16.7 0.4782 2.57 0 0.1285 0 0 0.06436 0 0
+BSA_min_23 851.199897766113 16.65 0.4764 2.563 0 0.1281 0 0 0.06471 0 0
+BSA_min_23 852.199897766113 16.6 0.4746 2.556 0 0.1278 0 0 0.06507 0 0
+BSA_min_23 853.199897766113 16.55 0.4729 2.549 0 0.1274 0 0 0.06543 0 0
+BSA_min_23 854.199897766113 16.5 0.4711 2.541 0 0.1271 0 0 0.06579 0 0
+BSA_min_23 855.199897766113 16.45 0.4693 2.534 0 0.1267 0 0 0.06614 0 0
+BSA_min_23 856.199897766113 16.4 0.4675 2.527 0 0.1264 0 0 0.0665 0 0
+BSA_min_23 857.199897766113 16.35 0.4657 2.52 0 0.126 0 0 0.06686 0 0
+BSA_min_23 858.199897766113 16.3 0.4639 2.513 0 0.1256 0 0 0.06721 0 0
+BSA_min_23 859.199897766113 16.25 0.4621 2.506 0 0.1253 0 0 0.06757 0 0
+BSA_min_23 860.199897766113 16.2 0.4604 2.499 0 0.1249 0 0 0.06793 0 0
+BSA_min_23 861.199897766113 16.15 0.4586 2.491 0 0.1246 0 0 0.06829 0 0
+BSA_min_23 862.199897766113 16.1 0.4568 2.484 0 0.1242 0 0 0.06864 0 0
+BSA_min_23 863.199897766113 16.05 0.455 2.477 0 0.1239 0 0 0.069 0 0
+BSA_min_23 864.199897766113 16 0.4532 2.47 0 0.1235 0 0 0.06936 0 0
+BSA_min_23 865.199897766113 15.95 0.4514 2.463 0 0.1231 0 0 0.06971 0 0
+BSA_min_23 866.199897766113 15.9 0.4496 2.456 0 0.1228 0 0 0.07007 0 0
+BSA_min_23 867.199897766113 15.85 0.4479 2.449 0 0.1224 0 0 0.07043 0 0
+BSA_min_23 868.199897766113 15.8 0.4461 2.441 0 0.1221 0 0 0.07079 0 0
+BSA_min_23 869.199897766113 15.75 0.4443 2.434 0 0.1217 0 0 0.07114 0 0
+BSA_min_23 870.199897766113 15.72 0.4434 2.426 0 0.1213 0 0 0.07129 0 0
+BSA_min_23 871.199897766113 15.75 0.4463 2.411 0 0.1206 0 0 0.07057 0 0
+BSA_min_23 872.199897766113 15.78 0.4491 2.397 0 0.1199 0 0 0.06986 0 0
+BSA_min_23 873.199897766113 15.81 0.452 2.383 0 0.1191 0 0 0.06914 0 0
+BSA_min_23 874.199897766113 15.83 0.4549 2.369 0 0.1184 0 0 0.06843 0 0
+BSA_min_23 875.199897766113 15.86 0.4577 2.354 0 0.1177 0 0 0.06771 0 0
+BSA_min_23 876.199897766113 15.89 0.4606 2.34 0 0.117 0 0 0.067 0 0
+BSA_min_23 877.199897766113 15.92 0.4634 2.326 0 0.1163 0 0 0.06629 0 0
+BSA_min_23 878.199897766113 15.95 0.4663 2.311 0 0.1156 0 0 0.06557 0 0
+BSA_min_23 879.199897766113 15.98 0.4691 2.297 0 0.1149 0 0 0.06486 0 0
+BSA_min_23 880.199897766113 16.01 0.472 2.283 0 0.1141 0 0 0.06414 0 0
+BSA_min_23 881.199897766113 16.03 0.4749 2.269 0 0.1134 0 0 0.06343 0 0
+BSA_min_23 882.199897766113 16.06 0.4777 2.254 0 0.1127 0 0 0.06271 0 0
+BSA_min_23 883.199897766113 16.09 0.4806 2.24 0 0.112 0 0 0.062 0 0
+BSA_min_23 884.199897766113 16.12 0.4834 2.226 0 0.1113 0 0 0.06129 0 0
+BSA_min_23 885.199897766113 16.15 0.4863 2.211 0 0.1106 0 0 0.06057 0 0
+BSA_min_23 886.199897766113 16.18 0.4891 2.197 0 0.1099 0 0 0.05986 0 0
+BSA_min_23 887.199897766113 16.21 0.492 2.183 0 0.1091 0 0 0.05914 0 0
+BSA_min_23 888.199897766113 16.23 0.4949 2.169 0 0.1084 0 0 0.05843 0 0
+BSA_min_23 889.199897766113 16.26 0.4977 2.154 0 0.1077 0 0 0.05771 0 0
+BSA_min_23 890.199897766113 16.27 0.4996 2.141 0 0.1071 0 0 0.05721 0 0
+BSA_min_23 891.199897766113 16.22 0.4974 2.134 0 0.1067 0 0 0.05757 0 0
+BSA_min_23 892.199897766113 16.16 0.4953 2.127 0 0.1064 0 0 0.05793 0 0
+BSA_min_23 893.199897766113 16.1 0.4931 2.12 0 0.106 0 0 0.05829 0 0
+BSA_min_23 894.199897766113 16.05 0.491 2.113 0 0.1056 0 0 0.05864 0 0
+BSA_min_23 895.199897766113 15.99 0.4889 2.106 0 0.1053 0 0 0.059 0 0
+BSA_min_23 896.199897766113 15.93 0.4867 2.099 0 0.1049 0 0 0.05936 0 0
+BSA_min_23 897.199897766113 15.87 0.4846 2.091 0 0.1046 0 0 0.05971 0 0
+BSA_min_23 898.199897766113 15.82 0.4824 2.084 0 0.1042 0 0 0.06007 0 0
+BSA_min_23 899.199897766113 15.76 0.4803 2.077 0 0.1039 0 0 0.06043 0 0
+BSA_min_23 900.199897766113 15.7 0.4781 2.07 0 0.1035 0 0 0.06079 0 0
+BSA_min_23 901.199897766113 15.65 0.476 2.063 0 0.1031 0 0 0.06114 0 0
+BSA_min_23 902.199897766113 15.59 0.4739 2.056 0 0.1028 0 0 0.0615 0 0
+BSA_min_23 903.199897766113 15.53 0.4717 2.049 0 0.1024 0 0 0.06186 0 0
+BSA_min_23 904.199897766113 15.47 0.4696 2.041 0 0.1021 0 0 0.06221 0 0
+BSA_min_23 905.199897766113 15.42 0.4674 2.034 0 0.1017 0 0 0.06257 0 0
+BSA_min_23 906.199897766113 15.36 0.4653 2.027 0 0.1014 0 0 0.06293 0 0
+BSA_min_23 907.199897766113 15.3 0.4631 2.02 0 0.101 0 0 0.06329 0 0
+BSA_min_23 908.199897766113 15.25 0.461 2.013 0 0.1006 0 0 0.06364 0 0
+BSA_min_23 909.199897766113 15.19 0.4589 2.006 0 0.1003 0 0 0.064 0 0
+BSA_min_23 910.199897766113 15.14 0.4571 1.999 0 0.09993 0 0 0.06414 0 0
+BSA_min_23 911.199897766113 15.13 0.4567 1.991 0 0.09957 0 0 0.06343 0 0
+BSA_min_23 912.199897766113 15.11 0.4564 1.984 0 0.09921 0 0 0.06271 0 0
+BSA_min_23 913.199897766113 15.1 0.456 1.977 0 0.09886 0 0 0.062 0 0
+BSA_min_23 914.199897766113 15.08 0.4556 1.97 0 0.0985 0 0 0.06129 0 0
+BSA_min_23 915.199897766113 15.07 0.4553 1.963 0 0.09814 0 0 0.06057 0 0
+BSA_min_23 916.199897766113 15.05 0.4549 1.956 0 0.09779 0 0 0.05986 0 0
+BSA_min_23 917.199897766113 15.04 0.4546 1.949 0 0.09743 0 0 0.05914 0 0
+BSA_min_23 918.199897766113 15.03 0.4542 1.941 0 0.09707 0 0 0.05843 0 0
+BSA_min_23 919.199897766113 15.01 0.4539 1.934 0 0.09671 0 0 0.05771 0 0
+BSA_min_23 920.199897766113 15 0.4535 1.927 0 0.09636 0 0 0.057 0 0
+BSA_min_23 921.199897766113 14.98 0.4531 1.92 0 0.096 0 0 0.05629 0 0
+BSA_min_23 922.199897766113 14.97 0.4528 1.913 0 0.09564 0 0 0.05557 0 0
+BSA_min_23 923.199897766113 14.95 0.4524 1.906 0 0.09529 0 0 0.05486 0 0
+BSA_min_23 924.199897766113 14.94 0.4521 1.899 0 0.09493 0 0 0.05414 0 0
+BSA_min_23 925.199897766113 14.93 0.4517 1.891 0 0.09457 0 0 0.05343 0 0
+BSA_min_23 926.199897766113 14.91 0.4514 1.884 0 0.09421 0 0 0.05271 0 0
+BSA_min_23 927.199897766113 14.9 0.451 1.877 0 0.09386 0 0 0.052 0 0
+BSA_min_23 928.199897766113 14.88 0.4506 1.87 0 0.0935 0 0 0.05129 0 0
+BSA_min_23 929.199897766113 14.87 0.4503 1.863 0 0.09314 0 0 0.05057 0 0
+BSA_min_23 930.199897766113 14.86 0.4499 1.86 0 0.093 0 0 0.05007 0 0
+BSA_min_23 931.199897766113 14.86 0.4491 1.874 0 0.09371 0 0 0.05043 0 0
+BSA_min_23 932.199897766113 14.86 0.4484 1.889 0 0.09443 0 0 0.05079 0 0
+BSA_min_23 933.199897766113 14.86 0.4477 1.903 0 0.09514 0 0 0.05114 0 0
+BSA_min_23 934.199897766113 14.86 0.447 1.917 0 0.09586 0 0 0.0515 0 0
+BSA_min_23 935.199897766113 14.86 0.4463 1.931 0 0.09657 0 0 0.05186 0 0
+BSA_min_23 936.199897766113 14.86 0.4456 1.946 0 0.09729 0 0 0.05221 0 0
+BSA_min_23 937.199897766113 14.86 0.4449 1.96 0 0.098 0 0 0.05257 0 0
+BSA_min_23 938.199897766113 14.86 0.4441 1.974 0 0.09871 0 0 0.05293 0 0
+BSA_min_23 939.199897766113 14.86 0.4434 1.989 0 0.09943 0 0 0.05329 0 0
+BSA_min_23 940.199897766113 14.86 0.4427 2.003 0 0.1001 0 0 0.05364 0 0
+BSA_min_23 941.199897766113 14.86 0.442 2.017 0 0.1009 0 0 0.054 0 0
+BSA_min_23 942.199897766113 14.86 0.4413 2.031 0 0.1016 0 0 0.05436 0 0
+BSA_min_23 943.199897766113 14.86 0.4406 2.046 0 0.1023 0 0 0.05471 0 0
+BSA_min_23 944.199897766113 14.86 0.4399 2.06 0 0.103 0 0 0.05507 0 0
+BSA_min_23 945.199897766113 14.86 0.4391 2.074 0 0.1037 0 0 0.05543 0 0
+BSA_min_23 946.199897766113 14.86 0.4384 2.089 0 0.1044 0 0 0.05579 0 0
+BSA_min_23 947.199897766113 14.86 0.4377 2.103 0 0.1051 0 0 0.05614 0 0
+BSA_min_23 948.199897766113 14.86 0.437 2.117 0 0.1059 0 0 0.0565 0 0
+BSA_min_23 949.199897766113 14.86 0.4363 2.131 0 0.1066 0 0 0.05686 0 0
+BSA_min_23 950.199897766113 14.8 0.4344 2.133 0 0.1066 0 0 0.057 0 0
+BSA_min_23 951.199897766113 14.53 0.4276 2.083 0 0.1041 0 0 0.05629 0 0
+BSA_min_23 952.199897766113 14.26 0.4208 2.033 0 0.1016 0 0 0.05557 0 0
+BSA_min_23 953.199897766113 13.99 0.414 1.983 0 0.09914 0 0 0.05486 0 0
+BSA_min_23 954.199897766113 13.72 0.4072 1.933 0 0.09664 0 0 0.05414 0 0
+BSA_min_23 955.199897766113 13.45 0.4004 1.883 0 0.09414 0 0 0.05343 0 0
+BSA_min_23 956.199897766113 13.17 0.3936 1.833 0 0.09164 0 0 0.05271 0 0
+BSA_min_23 957.199897766113 12.9 0.3869 1.783 0 0.08914 0 0 0.052 0 0
+BSA_min_23 958.199897766113 12.63 0.3801 1.733 0 0.08664 0 0 0.05129 0 0
+BSA_min_23 959.199897766113 12.36 0.3733 1.683 0 0.08414 0 0 0.05057 0 0
+BSA_min_23 960.199897766113 12.09 0.3665 1.633 0 0.08164 0 0 0.04986 0 0
+BSA_min_23 961.199897766113 11.82 0.3597 1.583 0 0.07914 0 0 0.04914 0 0
+BSA_min_23 962.199897766113 11.55 0.3529 1.533 0 0.07664 0 0 0.04843 0 0
+BSA_min_23 963.199897766113 11.27 0.3461 1.483 0 0.07414 0 0 0.04771 0 0
+BSA_min_23 964.199897766113 11 0.3394 1.433 0 0.07164 0 0 0.047 0 0
+BSA_min_23 965.199897766113 10.73 0.3326 1.383 0 0.06914 0 0 0.04629 0 0
+BSA_min_23 966.199897766113 10.46 0.3258 1.333 0 0.06664 0 0 0.04557 0 0
+BSA_min_23 967.199897766113 10.19 0.319 1.283 0 0.06414 0 0 0.04486 0 0
+BSA_min_23 968.199897766113 9.917 0.3122 1.233 0 0.06164 0 0 0.04414 0 0
+BSA_min_23 969.199897766113 9.646 0.3054 1.183 0 0.05914 0 0 0.04343 0 0
+BSA_min_23 970.199897766113 9.426 0.3001 1.143 0 0.05714 0 0 0.04279 0 0
+BSA_min_23 971.199897766113 9.411 0.3009 1.143 0 0.05714 0 0 0.04243 0 0
+BSA_min_23 972.199897766113 9.397 0.3016 1.143 0 0.05714 0 0 0.04207 0 0
+BSA_min_23 973.199897766113 9.383 0.3023 1.143 0 0.05714 0 0 0.04171 0 0
+BSA_min_23 974.199897766113 9.369 0.303 1.143 0 0.05714 0 0 0.04136 0 0
+BSA_min_23 975.199897766113 9.354 0.3037 1.143 0 0.05714 0 0 0.041 0 0
+BSA_min_23 976.199897766113 9.34 0.3044 1.143 0 0.05714 0 0 0.04064 0 0
+BSA_min_23 977.199897766113 9.326 0.3051 1.143 0 0.05714 0 0 0.04029 0 0
+BSA_min_23 978.199897766113 9.311 0.3059 1.143 0 0.05714 0 0 0.03993 0 0
+BSA_min_23 979.199897766113 9.297 0.3066 1.143 0 0.05714 0 0 0.03957 0 0
+BSA_min_23 980.199897766113 9.283 0.3073 1.143 0 0.05714 0 0 0.03921 0 0
+BSA_min_23 981.199897766113 9.269 0.308 1.143 0 0.05714 0 0 0.03886 0 0
+BSA_min_23 982.199897766113 9.254 0.3087 1.143 0 0.05714 0 0 0.0385 0 0
+BSA_min_23 983.199897766113 9.24 0.3094 1.143 0 0.05714 0 0 0.03814 0 0
+BSA_min_23 984.199897766113 9.226 0.3101 1.143 0 0.05714 0 0 0.03779 0 0
+BSA_min_23 985.199897766113 9.211 0.3109 1.143 0 0.05714 0 0 0.03743 0 0
+BSA_min_23 986.199897766113 9.197 0.3116 1.143 0 0.05714 0 0 0.03707 0 0
+BSA_min_23 987.199897766113 9.183 0.3123 1.143 0 0.05714 0 0 0.03671 0 0
+BSA_min_23 988.199897766113 9.169 0.313 1.143 0 0.05714 0 0 0.03636 0 0
+BSA_min_23 989.199897766113 9.154 0.3137 1.143 0 0.05714 0 0 0.036 0 0
+BSA_min_23 990.199897766113 9.134 0.3139 1.143 0 0.05714 0 0 0.03557 0 0
+BSA_min_23 991.199897766113 9.091 0.3121 1.143 0 0.05714 0 0 0.03486 0 0
+BSA_min_23 992.199897766113 9.049 0.3104 1.143 0 0.05714 0 0 0.03414 0 0
+BSA_min_23 993.199897766113 9.006 0.3086 1.143 0 0.05714 0 0 0.03343 0 0
+BSA_min_23 994.199897766113 8.963 0.3068 1.143 0 0.05714 0 0 0.03271 0 0
+BSA_min_23 995.199897766113 8.92 0.305 1.143 0 0.05714 0 0 0.032 0 0
+BSA_min_23 996.199897766113 8.877 0.3032 1.143 0 0.05714 0 0 0.03129 0 0
+BSA_min_23 997.199897766113 8.834 0.3014 1.143 0 0.05714 0 0 0.03057 0 0
+BSA_min_23 998.199897766113 8.791 0.2996 1.143 0 0.05714 0 0 0.02986 0 0
+BSA_min_23 999.199897766113 8.749 0.2979 1.143 0 0.05714 0 0 0.02914 0 0
+BSA_min_23 1000.19989776611 8.706 0.2961 1.143 0 0.05714 0 0 0.02843 0 0
+BSA_min_23 1001.19989776611 8.663 0.2943 1.143 0 0.05714 0 0 0.02771 0 0
+BSA_min_23 1002.19989776611 8.62 0.2925 1.143 0 0.05714 0 0 0.027 0 0
+BSA_min_23 1003.19989776611 8.577 0.2907 1.143 0 0.05714 0 0 0.02629 0 0
+BSA_min_23 1004.19989776611 8.534 0.2889 1.143 0 0.05714 0 0 0.02557 0 0
+BSA_min_23 1005.19989776611 8.491 0.2871 1.143 0 0.05714 0 0 0.02486 0 0
+BSA_min_23 1006.19989776611 8.449 0.2854 1.143 0 0.05714 0 0 0.02414 0 0
+BSA_min_23 1007.19989776611 8.406 0.2836 1.143 0 0.05714 0 0 0.02343 0 0
+BSA_min_23 1008.19989776611 8.363 0.2818 1.143 0 0.05714 0 0 0.02271 0 0
+BSA_min_23 1009.19989776611 8.32 0.28 1.143 0 0.05714 0 0 0.022 0 0
+BSA_min_23 1010.19989776611 8.26 0.2773 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1011.19989776611 8.131 0.2709 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1012.19989776611 8.003 0.2644 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1013.19989776611 7.874 0.258 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1014.19989776611 7.746 0.2516 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1015.19989776611 7.617 0.2451 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1016.19989776611 7.489 0.2387 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1017.19989776611 7.36 0.2323 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1018.19989776611 7.231 0.2259 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1019.19989776611 7.103 0.2194 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1020.19989776611 6.974 0.213 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1021.19989776611 6.846 0.2066 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1022.19989776611 6.717 0.2001 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1023.19989776611 6.589 0.1937 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1024.19989776611 6.46 0.1873 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1025.19989776611 6.331 0.1809 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1026.19989776611 6.203 0.1744 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1027.19989776611 6.074 0.168 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1028.19989776611 5.946 0.1616 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1029.19989776611 5.817 0.1551 1.143 0 0.05714 0 0 0.02143 0 0
+BSA_min_23 1030.19989776611 5.706 0.1501 1.14 0 0.057 0 0 0.02129 0 0
+BSA_min_23 1031.19989776611 5.663 0.1504 1.126 0 0.05629 0 0 0.02057 0 0
+BSA_min_23 1032.19989776611 5.62 0.1508 1.111 0 0.05557 0 0 0.01986 0 0
+BSA_min_23 1033.19989776611 5.577 0.1511 1.097 0 0.05486 0 0 0.01914 0 0
+BSA_min_23 1034.19989776611 5.534 0.1515 1.083 0 0.05414 0 0 0.01843 0 0
+BSA_min_23 1035.19989776611 5.491 0.1519 1.069 0 0.05343 0 0 0.01771 0 0
+BSA_min_23 1036.19989776611 5.449 0.1522 1.054 0 0.05271 0 0 0.017 0 0
+BSA_min_23 1037.19989776611 5.406 0.1526 1.04 0 0.052 0 0 0.01629 0 0
+BSA_min_23 1038.19989776611 5.363 0.1529 1.026 0 0.05129 0 0 0.01557 0 0
+BSA_min_23 1039.19989776611 5.32 0.1533 1.011 0 0.05057 0 0 0.01486 0 0
+BSA_min_23 1040.19989776611 5.277 0.1536 0.9971 0 0.04986 0 0 0.01414 0 0
+BSA_min_23 1041.19989776611 5.234 0.154 0.9829 0 0.04914 0 0 0.01343 0 0
+BSA_min_23 1042.19989776611 5.191 0.1544 0.9686 0 0.04843 0 0 0.01271 0 0
+BSA_min_23 1043.19989776611 5.149 0.1547 0.9543 0 0.04771 0 0 0.012 0 0
+BSA_min_23 1044.19989776611 5.106 0.1551 0.94 0 0.047 0 0 0.01129 0 0
+BSA_min_23 1045.19989776611 5.063 0.1554 0.9257 0 0.04629 0 0 0.01057 0 0
+BSA_min_23 1046.19989776611 5.02 0.1558 0.9114 0 0.04557 0 0 0.009857 0 0
+BSA_min_23 1047.19989776611 4.977 0.1561 0.8971 0 0.04486 0 0 0.009143 0 0
+BSA_min_23 1048.19989776611 4.934 0.1565 0.8829 0 0.04414 0 0 0.008429 0 0
+BSA_min_23 1049.19989776611 4.891 0.1569 0.8686 0 0.04343 0 0 0.007714 0 0
+BSA_min_23 1050.19989776611 4.854 0.1571 0.8557 0 0.04279 0 0 0.007143 0 0
+BSA_min_23 1051.19989776611 4.84 0.1571 0.8486 0 0.04243 0 0 0.007143 0 0
+BSA_min_23 1052.19989776611 4.826 0.1571 0.8414 0 0.04207 0 0 0.007143 0 0
+BSA_min_23 1053.19989776611 4.811 0.1571 0.8343 0 0.04171 0 0 0.007143 0 0
+BSA_min_23 1054.19989776611 4.797 0.1571 0.8271 0 0.04136 0 0 0.007143 0 0
+BSA_min_23 1055.19989776611 4.783 0.1571 0.82 0 0.041 0 0 0.007143 0 0
+BSA_min_23 1056.19989776611 4.769 0.1571 0.8129 0 0.04064 0 0 0.007143 0 0
+BSA_min_23 1057.19989776611 4.754 0.1571 0.8057 0 0.04029 0 0 0.007143 0 0
+BSA_min_23 1058.19989776611 4.74 0.1571 0.7986 0 0.03993 0 0 0.007143 0 0
+BSA_min_23 1059.19989776611 4.726 0.1571 0.7914 0 0.03957 0 0 0.007143 0 0
+BSA_min_23 1060.19989776611 4.711 0.1571 0.7843 0 0.03921 0 0 0.007143 0 0
+BSA_min_23 1061.19989776611 4.697 0.1571 0.7771 0 0.03886 0 0 0.007143 0 0
+BSA_min_23 1062.19989776611 4.683 0.1571 0.77 0 0.0385 0 0 0.007143 0 0
+BSA_min_23 1063.19989776611 4.669 0.1571 0.7629 0 0.03814 0 0 0.007143 0 0
+BSA_min_23 1064.19989776611 4.654 0.1571 0.7557 0 0.03779 0 0 0.007143 0 0
+BSA_min_23 1065.19989776611 4.64 0.1571 0.7486 0 0.03743 0 0 0.007143 0 0
+BSA_min_23 1066.19989776611 4.626 0.1571 0.7414 0 0.03707 0 0 0.007143 0 0
+BSA_min_23 1067.19989776611 4.611 0.1571 0.7343 0 0.03671 0 0 0.007143 0 0
+BSA_min_23 1068.19989776611 4.597 0.1571 0.7271 0 0.03636 0 0 0.007143 0 0
+BSA_min_23 1069.19989776611 4.583 0.1571 0.72 0 0.036 0 0 0.007143 0 0
+BSA_min_23 1070.19989776611 4.556 0.1566 0.7114 0 0.03557 0 0 0.007071 0 0
+BSA_min_23 1071.19989776611 4.477 0.1541 0.6971 0 0.03486 0 0 0.006714 0 0
+BSA_min_23 1072.19989776611 4.399 0.1516 0.6829 0 0.03414 0 0 0.006357 0 0
+BSA_min_23 1073.19989776611 4.32 0.1491 0.6686 0 0.03343 0 0 0.006 0 0
+BSA_min_23 1074.19989776611 4.241 0.1466 0.6543 0 0.03271 0 0 0.005643 0 0
+BSA_min_23 1075.19989776611 4.163 0.1441 0.64 0 0.032 0 0 0.005286 0 0
+BSA_min_23 1076.19989776611 4.084 0.1416 0.6257 0 0.03129 0 0 0.004929 0 0
+BSA_min_23 1077.19989776611 4.006 0.1391 0.6114 0 0.03057 0 0 0.004571 0 0
+BSA_min_23 1078.19989776611 3.927 0.1366 0.5971 0 0.02986 0 0 0.004214 0 0
+BSA_min_23 1079.19989776611 3.849 0.1341 0.5829 0 0.02914 0 0 0.003857 0 0
+BSA_min_23 1080.19989776611 3.77 0.1316 0.5686 0 0.02843 0 0 0.0035 0 0
+BSA_min_23 1081.19989776611 3.691 0.1291 0.5543 0 0.02771 0 0 0.003143 0 0
+BSA_min_23 1082.19989776611 3.613 0.1266 0.54 0 0.027 0 0 0.002786 0 0
+BSA_min_23 1083.19989776611 3.534 0.1241 0.5257 0 0.02629 0 0 0.002429 0 0
+BSA_min_23 1084.19989776611 3.456 0.1216 0.5114 0 0.02557 0 0 0.002071 0 0
+BSA_min_23 1085.19989776611 3.377 0.1191 0.4971 0 0.02486 0 0 0.001714 0 0
+BSA_min_23 1086.19989776611 3.299 0.1166 0.4829 0 0.02414 0 0 0.001357 0 0
+BSA_min_23 1087.19989776611 3.22 0.1141 0.4686 0 0.02343 0 0 0.001 0 0
+BSA_min_23 1088.19989776611 3.141 0.1116 0.4543 0 0.02271 0 0 0.0006429 0 0
+BSA_min_23 1089.19989776611 3.063 0.1091 0.44 0 0.022 0 0 0.0002858 0 0
+BSA_min_23 1090.19989776611 3.023 0.1072 0.4357 0 0.02179 0 0 0.000357 0 0
+BSA_min_23 1091.19989776611 3.137 0.1076 0.4714 0 0.02357 0 0 0.002143 0 0
+BSA_min_23 1092.19989776611 3.251 0.1079 0.5071 0 0.02536 0 0 0.003928 0 0
+BSA_min_23 1093.19989776611 3.366 0.1083 0.5429 0 0.02714 0 0 0.005714 0 0
+BSA_min_23 1094.19989776611 3.48 0.1086 0.5786 0 0.02893 0 0 0.0075 0 0
+BSA_min_23 1095.19989776611 3.594 0.109 0.6143 0 0.03071 0 0 0.009286 0 0
+BSA_min_23 1096.19989776611 3.709 0.1094 0.65 0 0.0325 0 0 0.01107 0 0
+BSA_min_23 1097.19989776611 3.823 0.1097 0.6857 0 0.03429 0 0 0.01286 0 0
+BSA_min_23 1098.19989776611 3.937 0.1101 0.7214 0 0.03607 0 0 0.01464 0 0
+BSA_min_23 1099.19989776611 4.051 0.1104 0.7571 0 0.03786 0 0 0.01643 0 0
+BSA_min_23 1100.19989776611 4.166 0.1108 0.7929 0 0.03964 0 0 0.01821 0 0
+BSA_min_23 1101.19989776611 4.28 0.1111 0.8286 0 0.04143 0 0 0.02 0 0
+BSA_min_23 1102.19989776611 4.394 0.1115 0.8643 0 0.04321 0 0 0.02179 0 0
+BSA_min_23 1103.19989776611 4.509 0.1119 0.9 0 0.045 0 0 0.02357 0 0
+BSA_min_23 1104.19989776611 4.623 0.1122 0.9357 0 0.04679 0 0 0.02536 0 0
+BSA_min_23 1105.19989776611 4.737 0.1126 0.9714 0 0.04857 0 0 0.02714 0 0
+BSA_min_23 1106.19989776611 4.851 0.1129 1.007 0 0.05036 0 0 0.02893 0 0
+BSA_min_23 1107.19989776611 4.966 0.1133 1.043 0 0.05214 0 0 0.03071 0 0
+BSA_min_23 1108.19989776611 5.08 0.1136 1.079 0 0.05393 0 0 0.0325 0 0
+BSA_min_23 1109.19989776611 5.194 0.114 1.114 0 0.05571 0 0 0.03429 0 0
+BSA_min_23 1110.19989776611 5.274 0.114 1.14 0 0.057 0 0 0.03571 0 0
+BSA_min_23 1111.19989776611 5.217 0.1126 1.126 0 0.05629 0 0 0.03571 0 0
+BSA_min_23 1112.19989776611 5.16 0.1111 1.111 0 0.05557 0 0 0.03571 0 0
+BSA_min_23 1113.19989776611 5.103 0.1097 1.097 0 0.05486 0 0 0.03571 0 0
+BSA_min_23 1114.19989776611 5.046 0.1083 1.083 0 0.05414 0 0 0.03571 0 0
+BSA_min_23 1115.19989776611 4.989 0.1069 1.069 0 0.05343 0 0 0.03571 0 0
+BSA_min_23 1116.19989776611 4.931 0.1054 1.054 0 0.05271 0 0 0.03571 0 0
+BSA_min_23 1117.19989776611 4.874 0.104 1.04 0 0.052 0 0 0.03571 0 0
+BSA_min_23 1118.19989776611 4.817 0.1026 1.026 0 0.05129 0 0 0.03571 0 0
+BSA_min_23 1119.19989776611 4.76 0.1011 1.011 0 0.05057 0 0 0.03571 0 0
+BSA_min_23 1120.19989776611 4.703 0.09971 0.9971 0 0.04986 0 0 0.03571 0 0
+BSA_min_23 1121.19989776611 4.646 0.09829 0.9829 0 0.04914 0 0 0.03571 0 0
+BSA_min_23 1122.19989776611 4.589 0.09686 0.9686 0 0.04843 0 0 0.03571 0 0
+BSA_min_23 1123.19989776611 4.531 0.09543 0.9543 0 0.04771 0 0 0.03571 0 0
+BSA_min_23 1124.19989776611 4.474 0.094 0.94 0 0.047 0 0 0.03571 0 0
+BSA_min_23 1125.19989776611 4.417 0.09257 0.9257 0 0.04629 0 0 0.03571 0 0
+BSA_min_23 1126.19989776611 4.36 0.09114 0.9114 0 0.04557 0 0 0.03571 0 0
+BSA_min_23 1127.19989776611 4.303 0.08971 0.8971 0 0.04486 0 0 0.03571 0 0
+BSA_min_23 1128.19989776611 4.246 0.08829 0.8829 0 0.04414 0 0 0.03571 0 0
+BSA_min_23 1129.19989776611 4.189 0.08686 0.8686 0 0.04343 0 0 0.03571 0 0
+BSA_min_23 1130.19989776611 4.141 0.08579 0.8557 0 0.04279 0 0 0.03571 0 0
+BSA_min_23 1131.19989776611 4.134 0.08614 0.8486 0 0.04243 0 0 0.03571 0 0
+BSA_min_23 1132.19989776611 4.127 0.0865 0.8414 0 0.04207 0 0 0.03571 0 0
+BSA_min_23 1133.19989776611 4.12 0.08686 0.8343 0 0.04171 0 0 0.03571 0 0
+BSA_min_23 1134.19989776611 4.113 0.08721 0.8271 0 0.04136 0 0 0.03571 0 0
+BSA_min_23 1135.19989776611 4.106 0.08757 0.82 0 0.041 0 0 0.03571 0 0
+BSA_min_23 1136.19989776611 4.099 0.08793 0.8129 0 0.04064 0 0 0.03571 0 0
+BSA_min_23 1137.19989776611 4.091 0.08829 0.8057 0 0.04029 0 0 0.03571 0 0
+BSA_min_23 1138.19989776611 4.084 0.08864 0.7986 0 0.03993 0 0 0.03571 0 0
+BSA_min_23 1139.19989776611 4.077 0.089 0.7914 0 0.03957 0 0 0.03571 0 0
+BSA_min_23 1140.19989776611 4.07 0.08936 0.7843 0 0.03921 0 0 0.03571 0 0
+BSA_min_23 1141.19989776611 4.063 0.08971 0.7771 0 0.03886 0 0 0.03571 0 0
+BSA_min_23 1142.19989776611 4.056 0.09007 0.77 0 0.0385 0 0 0.03571 0 0
+BSA_min_23 1143.19989776611 4.049 0.09043 0.7629 0 0.03814 0 0 0.03571 0 0
+BSA_min_23 1144.19989776611 4.041 0.09079 0.7557 0 0.03779 0 0 0.03571 0 0
+BSA_min_23 1145.19989776611 4.034 0.09114 0.7486 0 0.03743 0 0 0.03571 0 0
+BSA_min_23 1146.19989776611 4.027 0.0915 0.7414 0 0.03707 0 0 0.03571 0 0
+BSA_min_23 1147.19989776611 4.02 0.09186 0.7343 0 0.03671 0 0 0.03571 0 0
+BSA_min_23 1148.19989776611 4.013 0.09221 0.7271 0 0.03636 0 0 0.03571 0 0
+BSA_min_23 1149.19989776611 4.006 0.09257 0.72 0 0.036 0 0 0.03571 0 0
+BSA_min_23 1150.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1151.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1152.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1153.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1154.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1155.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1156.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1157.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1158.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1159.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1160.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1161.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1162.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1163.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1164.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1165.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1166.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1167.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1168.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1169.19989776611 4 0.09286 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1170.19989776611 3.996 0.09264 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1171.19989776611 3.974 0.09157 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1172.19989776611 3.953 0.0905 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1173.19989776611 3.931 0.08943 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1174.19989776611 3.91 0.08836 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1175.19989776611 3.889 0.08729 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1176.19989776611 3.867 0.08621 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1177.19989776611 3.846 0.08514 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1178.19989776611 3.824 0.08407 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1179.19989776611 3.803 0.083 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1180.19989776611 3.781 0.08193 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1181.19989776611 3.76 0.08086 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1182.19989776611 3.739 0.07979 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1183.19989776611 3.717 0.07871 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1184.19989776611 3.696 0.07764 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1185.19989776611 3.674 0.07657 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1186.19989776611 3.653 0.0755 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1187.19989776611 3.631 0.07443 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1188.19989776611 3.61 0.07336 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1189.19989776611 3.589 0.07229 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1190.19989776611 3.57 0.07136 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1191.19989776611 3.563 0.071 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1192.19989776611 3.556 0.07064 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1193.19989776611 3.549 0.07029 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1194.19989776611 3.541 0.06993 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1195.19989776611 3.534 0.06957 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1196.19989776611 3.527 0.06921 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1197.19989776611 3.52 0.06886 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1198.19989776611 3.513 0.0685 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1199.19989776611 3.506 0.06814 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1200.19989776611 3.499 0.06779 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1201.19989776611 3.491 0.06743 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1202.19989776611 3.484 0.06707 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1203.19989776611 3.477 0.06671 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1204.19989776611 3.47 0.06636 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1205.19989776611 3.463 0.066 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1206.19989776611 3.456 0.06564 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1207.19989776611 3.449 0.06529 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1208.19989776611 3.441 0.06493 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1209.19989776611 3.434 0.06457 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1210.19989776611 3.427 0.06421 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1211.19989776611 3.42 0.06386 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1212.19989776611 3.413 0.0635 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1213.19989776611 3.406 0.06314 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1214.19989776611 3.399 0.06279 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1215.19989776611 3.391 0.06243 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1216.19989776611 3.384 0.06207 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1217.19989776611 3.377 0.06171 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1218.19989776611 3.37 0.06136 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1219.19989776611 3.363 0.061 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1220.19989776611 3.356 0.06064 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1221.19989776611 3.349 0.06029 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1222.19989776611 3.341 0.05993 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1223.19989776611 3.334 0.05957 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1224.19989776611 3.327 0.05921 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1225.19989776611 3.32 0.05886 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1226.19989776611 3.313 0.0585 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1227.19989776611 3.306 0.05814 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1228.19989776611 3.299 0.05779 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1229.19989776611 3.291 0.05743 0.7143 0 0.03571 0 0 0.03571 0 0
+BSA_min_23 1230.19989776611 3.261 0.057 0.7071 0 0.03536 0 0 0.03536 0 0
+BSA_min_23 1231.19989776611 3.14 0.05629 0.6714 0 0.03357 0 0 0.03357 0 0
+BSA_min_23 1232.19989776611 3.019 0.05557 0.6357 0 0.03179 0 0 0.03179 0 0
+BSA_min_23 1233.19989776611 2.897 0.05486 0.6 0 0.03 0 0 0.03 0 0
+BSA_min_23 1234.19989776611 2.776 0.05414 0.5643 0 0.02821 0 0 0.02821 0 0
+BSA_min_23 1235.19989776611 2.654 0.05343 0.5286 0 0.02643 0 0 0.02643 0 0
+BSA_min_23 1236.19989776611 2.533 0.05271 0.4929 0 0.02464 0 0 0.02464 0 0
+BSA_min_23 1237.19989776611 2.411 0.052 0.4571 0 0.02286 0 0 0.02286 0 0
+BSA_min_23 1238.19989776611 2.29 0.05129 0.4214 0 0.02107 0 0 0.02107 0 0
+BSA_min_23 1239.19989776611 2.169 0.05057 0.3857 0 0.01929 0 0 0.01929 0 0
+BSA_min_23 1240.19989776611 2.047 0.04986 0.35 0 0.0175 0 0 0.0175 0 0
+BSA_min_23 1241.19989776611 1.926 0.04914 0.3143 0 0.01571 0 0 0.01571 0 0
+BSA_min_23 1242.19989776611 1.804 0.04843 0.2786 0 0.01393 0 0 0.01393 0 0
+BSA_min_23 1243.19989776611 1.683 0.04771 0.2429 0 0.01214 0 0 0.01214 0 0
+BSA_min_23 1244.19989776611 1.561 0.047 0.2071 0 0.01036 0 0 0.01036 0 0
+BSA_min_23 1245.19989776611 1.44 0.04629 0.1714 0 0.008572 0 0 0.008572 0 0
+BSA_min_23 1246.19989776611 1.319 0.04557 0.1357 0 0.006786 0 0 0.006786 0 0
+BSA_min_23 1247.19989776611 1.197 0.04486 0.1 0 0.005 0 0 0.005 0 0
+BSA_min_23 1248.19989776611 1.076 0.04414 0.06429 0 0.003214 0 0 0.003214 0 0
+BSA_min_23 1249.19989776611 0.9543 0.04343 0.02858 0 0.001429 0 0 0.001429 0 0
+BSA_min_23 1250.19989776611 0.8557 0.04279 0 0 0 0 NaN 0 0
+BSA_min_23 1251.19989776611 0.8486 0.04243 0 0 0 0 NaN 0 0
+BSA_min_23 1252.19989776611 0.8414 0.04207 0 0 0 0 NaN 0 0
+BSA_min_23 1253.19989776611 0.8343 0.04171 0 0 0 0 NaN 0 0
+BSA_min_23 1254.19989776611 0.8271 0.04136 0 0 0 0 NaN 0 0
+BSA_min_23 1255.19989776611 0.82 0.041 0 0 0 0 NaN 0 0
+BSA_min_23 1256.19989776611 0.8129 0.04064 0 0 0 0 NaN 0 0
+BSA_min_23 1257.19989776611 0.8057 0.04029 0 0 0 0 NaN 0 0
+BSA_min_23 1258.19989776611 0.7986 0.03993 0 0 0 0 NaN 0 0
+BSA_min_23 1259.19989776611 0.7914 0.03957 0 0 0 0 NaN 0 0
+BSA_min_23 1260.19989776611 0.7843 0.03921 0 0 0 0 NaN 0 0
+BSA_min_23 1261.19989776611 0.7771 0.03886 0 0 0 0 NaN 0 0
+BSA_min_23 1262.19989776611 0.77 0.0385 0 0 0 0 NaN 0 0
+BSA_min_23 1263.19989776611 0.7629 0.03814 0 0 0 0 NaN 0 0
+BSA_min_23 1264.19989776611 0.7557 0.03779 0 0 0 0 NaN 0 0
+BSA_min_23 1265.19989776611 0.7486 0.03743 0 0 0 0 NaN 0 0
+BSA_min_23 1266.19989776611 0.7414 0.03707 0 0 0 0 NaN 0 0
+BSA_min_23 1267.19989776611 0.7343 0.03671 0 0 0 0 NaN 0 0
+BSA_min_23 1268.19989776611 0.7271 0.03636 0 0 0 0 NaN 0 0
+BSA_min_23 1269.19989776611 0.72 0.036 0 0 0 0 NaN 0 0
+BSA_min_23 1270.19989776611 0.7114 0.03557 0 0 0 0 NaN 0 0
+BSA_min_23 1271.19989776611 0.6971 0.03486 0 0 0 0 NaN 0 0
+BSA_min_23 1272.19989776611 0.6829 0.03414 0 0 0 0 NaN 0 0
+BSA_min_23 1273.19989776611 0.6686 0.03343 0 0 0 0 NaN 0 0
+BSA_min_23 1274.19989776611 0.6543 0.03271 0 0 0 0 NaN 0 0
+BSA_min_23 1275.19989776611 0.64 0.032 0 0 0 0 NaN 0 0
+BSA_min_23 1276.19989776611 0.6257 0.03129 0 0 0 0 NaN 0 0
+BSA_min_23 1277.19989776611 0.6114 0.03057 0 0 0 0 NaN 0 0
+BSA_min_23 1278.19989776611 0.5971 0.02986 0 0 0 0 NaN 0 0
+BSA_min_23 1279.19989776611 0.5829 0.02914 0 0 0 0 NaN 0 0
+BSA_min_23 1280.19989776611 0.5686 0.02843 0 0 0 0 NaN 0 0
+BSA_min_23 1281.19989776611 0.5543 0.02771 0 0 0 0 NaN 0 0
+BSA_min_23 1282.19989776611 0.54 0.027 0 0 0 0 NaN 0 0
+BSA_min_23 1283.19989776611 0.5257 0.02629 0 0 0 0 NaN 0 0
+BSA_min_23 1284.19989776611 0.5114 0.02557 0 0 0 0 NaN 0 0
+BSA_min_23 1285.19989776611 0.4971 0.02486 0 0 0 0 NaN 0 0
+BSA_min_23 1286.19989776611 0.4829 0.02414 0 0 0 0 NaN 0 0
+BSA_min_23 1287.19989776611 0.4686 0.02343 0 0 0 0 NaN 0 0
+BSA_min_23 1288.19989776611 0.4543 0.02271 0 0 0 0 NaN 0 0
+BSA_min_23 1289.19989776611 0.44 0.022 0 0 0 0 NaN 0 0
+BSA_min_23 1290.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1291.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1292.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1293.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1294.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1295.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1296.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1297.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1298.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1299.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1300.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1301.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1302.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1303.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1304.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1305.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1306.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1307.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1308.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1309.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1310.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1311.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1312.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1313.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1314.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1315.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1316.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1317.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1318.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1319.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1320.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1321.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1322.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1323.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1324.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1325.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1326.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1327.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1328.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1329.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1330.19989776611 0.4257 0.02129 0 0 0 0 NaN 0 0
+BSA_min_23 1331.19989776611 0.4114 0.02057 0 0 0 0 NaN 0 0
+BSA_min_23 1332.19989776611 0.3971 0.01986 0 0 0 0 NaN 0 0
+BSA_min_23 1333.19989776611 0.3829 0.01914 0 0 0 0 NaN 0 0
+BSA_min_23 1334.19989776611 0.3686 0.01843 0 0 0 0 NaN 0 0
+BSA_min_23 1335.19989776611 0.3543 0.01771 0 0 0 0 NaN 0 0
+BSA_min_23 1336.19989776611 0.34 0.017 0 0 0 0 NaN 0 0
+BSA_min_23 1337.19989776611 0.3257 0.01629 0 0 0 0 NaN 0 0
+BSA_min_23 1338.19989776611 0.3114 0.01557 0 0 0 0 NaN 0 0
+BSA_min_23 1339.19989776611 0.2971 0.01486 0 0 0 0 NaN 0 0
+BSA_min_23 1340.19989776611 0.2829 0.01414 0 0 0 0 NaN 0 0
+BSA_min_23 1341.19989776611 0.2686 0.01343 0 0 0 0 NaN 0 0
+BSA_min_23 1342.19989776611 0.2543 0.01271 0 0 0 0 NaN 0 0
+BSA_min_23 1343.19989776611 0.24 0.012 0 0 0 0 NaN 0 0
+BSA_min_23 1344.19989776611 0.2257 0.01129 0 0 0 0 NaN 0 0
+BSA_min_23 1345.19989776611 0.2114 0.01057 0 0 0 0 NaN 0 0
+BSA_min_23 1346.19989776611 0.1971 0.009857 0 0 0 0 NaN 0 0
+BSA_min_23 1347.19989776611 0.1829 0.009143 0 0 0 0 NaN 0 0
+BSA_min_23 1348.19989776611 0.1686 0.008429 0 0 0 0 NaN 0 0
+BSA_min_23 1349.19989776611 0.1543 0.007714 0 0 0 0 NaN 0 0
+BSA_min_23 1350.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1351.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1352.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1353.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1354.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1355.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1356.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1357.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1358.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1359.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1360.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1361.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1362.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1363.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1364.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1365.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1366.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1367.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1368.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1369.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1370.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1371.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1372.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1373.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1374.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1375.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1376.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1377.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1378.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1379.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1380.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1381.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1382.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1383.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1384.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1385.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1386.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1387.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1388.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1389.19989776611 0.1429 0.007143 0 0 0 0 NaN 0 0
+BSA_min_23 1390.19989776611 0.1457 0.007286 0 0 0 0 NaN 0 0
+BSA_min_23 1391.19989776611 0.16 0.008 0 0 0 0 NaN 0 0
+BSA_min_23 1392.19989776611 0.1743 0.008714 0 0 0 0 NaN 0 0
+BSA_min_23 1393.19989776611 0.1886 0.009428 0 0 0 0 NaN 0 0
+BSA_min_23 1394.19989776611 0.2029 0.01014 0 0 0 0 NaN 0 0
+BSA_min_23 1395.19989776611 0.2171 0.01086 0 0 0 0 NaN 0 0
+BSA_min_23 1396.19989776611 0.2314 0.01157 0 0 0 0 NaN 0 0
+BSA_min_23 1397.19989776611 0.2457 0.01229 0 0 0 0 NaN 0 0
+BSA_min_23 1398.19989776611 0.26 0.013 0 0 0 0 NaN 0 0
+BSA_min_23 1399.19989776611 0.2743 0.01371 0 0 0 0 NaN 0 0
+BSA_min_23 1400.19989776611 0.2886 0.01443 0 0 0 0 NaN 0 0
+BSA_min_23 1401.19989776611 0.3029 0.01514 0 0 0 0 NaN 0 0
+BSA_min_23 1402.19989776611 0.3171 0.01586 0 0 0 0 NaN 0 0
+BSA_min_23 1403.19989776611 0.3314 0.01657 0 0 0 0 NaN 0 0
+BSA_min_23 1404.19989776611 0.3457 0.01729 0 0 0 0 NaN 0 0
+BSA_min_23 1405.19989776611 0.36 0.018 0 0 0 0 NaN 0 0
+BSA_min_23 1406.19989776611 0.3743 0.01871 0 0 0 0 NaN 0 0
+BSA_min_23 1407.19989776611 0.3886 0.01943 0 0 0 0 NaN 0 0
+BSA_min_23 1408.19989776611 0.4029 0.02014 0 0 0 0 NaN 0 0
+BSA_min_23 1409.19989776611 0.4171 0.02086 0 0 0 0 NaN 0 0
+BSA_min_23 1410.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1411.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1412.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1413.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1414.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1415.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1416.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1417.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1418.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1419.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1420.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1421.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1422.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1423.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1424.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1425.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1426.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1427.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1428.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1429.19989776611 0.4286 0.02143 0 0 0 0 NaN 0 0
+BSA_min_23 1430.19989776611 0.4343 0.02171 0 0 0 0 NaN 0 0
+BSA_min_23 1431.19989776611 0.4629 0.02314 0 0 0 0 NaN 0 0
+BSA_min_23 1432.19989776611 0.4914 0.02457 0 0 0 0 NaN 0 0
+BSA_min_23 1433.19989776611 0.52 0.026 0 0 0 0 NaN 0 0
+BSA_min_23 1434.19989776611 0.5486 0.02743 0 0 0 0 NaN 0 0
+BSA_min_23 1435.19989776611 0.5771 0.02886 0 0 0 0 NaN 0 0
+BSA_min_23 1436.19989776611 0.6057 0.03029 0 0 0 0 NaN 0 0
+BSA_min_23 1437.19989776611 0.6343 0.03171 0 0 0 0 NaN 0 0
+BSA_min_23 1438.19989776611 0.6629 0.03314 0 0 0 0 NaN 0 0
+BSA_min_23 1439.19989776611 0.6914 0.03457 0 0 0 0 NaN 0 0
+BSA_min_23 1440.19989776611 0.72 0.036 0 0 0 0 NaN 0 0
+BSA_min_23 1441.19989776611 0.7486 0.03743 0 0 0 0 NaN 0 0
+BSA_min_23 1442.19989776611 0.7771 0.03886 0 0 0 0 NaN 0 0
+BSA_min_23 1443.19989776611 0.8057 0.04029 0 0 0 0 NaN 0 0
+BSA_min_23 1444.19989776611 0.8343 0.04171 0 0 0 0 NaN 0 0
+BSA_min_23 1445.19989776611 0.8629 0.04314 0 0 0 0 NaN 0 0
+BSA_min_23 1446.19989776611 0.8914 0.04457 0 0 0 0 NaN 0 0
+BSA_min_23 1447.19989776611 0.92 0.046 0 0 0 0 NaN 0 0
+BSA_min_23 1448.19989776611 0.9486 0.04743 0 0 0 0 NaN 0 0
+BSA_min_23 1449.19989776611 0.9771 0.04886 0 0 0 0 NaN 0 0
+BSA_min_23 1450.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1451.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1452.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1453.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1454.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1455.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1456.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1457.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1458.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1459.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1460.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1461.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1462.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1463.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1464.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1465.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1466.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1467.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1468.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1469.19989776611 1 0.05 0 0 0 0 NaN 0 0
+BSA_min_23 1470.19989776611 1.007 0.05036 0 0 0 0 NaN 0 0
+BSA_min_23 1471.19989776611 1.043 0.05214 0 0 0 0 NaN 0 0
+BSA_min_23 1472.19989776611 1.079 0.05393 0 0 0 0 NaN 0 0
+BSA_min_23 1473.19989776611 1.114 0.05571 0 0 0 0 NaN 0 0
+BSA_min_23 1474.19989776611 1.15 0.0575 0 0 0 0 NaN 0 0
+BSA_min_23 1475.19989776611 1.186 0.05929 0 0 0 0 NaN 0 0
+BSA_min_23 1476.19989776611 1.221 0.06107 0 0 0 0 NaN 0 0
+BSA_min_23 1477.19989776611 1.257 0.06286 0 0 0 0 NaN 0 0
+BSA_min_23 1478.19989776611 1.293 0.06464 0 0 0 0 NaN 0 0
+BSA_min_23 1479.19989776611 1.329 0.06643 0 0 0 0 NaN 0 0
+BSA_min_23 1480.19989776611 1.364 0.06821 0 0 0 0 NaN 0 0
+BSA_min_23 1481.19989776611 1.4 0.07 0 0 0 0 NaN 0 0
+BSA_min_23 1482.19989776611 1.436 0.07179 0 0 0 0 NaN 0 0
+BSA_min_23 1483.19989776611 1.471 0.07357 0 0 0 0 NaN 0 0
+BSA_min_23 1484.19989776611 1.507 0.07536 0 0 0 0 NaN 0 0
+BSA_min_23 1485.19989776611 1.543 0.07714 0 0 0 0 NaN 0 0
+BSA_min_23 1486.19989776611 1.579 0.07893 0 0 0 0 NaN 0 0
+BSA_min_23 1487.19989776611 1.614 0.08071 0 0 0 0 NaN 0 0
+BSA_min_23 1488.19989776611 1.65 0.0825 0 0 0 0 NaN 0 0
+BSA_min_23 1489.19989776611 1.686 0.08429 0 0 0 0 NaN 0 0
+BSA_min_23 1490.19989776611 1.756 0.0875 0.002856 0 0.0001428 0 0 0 0
+BSA_min_23 1491.19989776611 1.963 0.09643 0.01714 0 0.0008571 0 0 0 0
+BSA_min_23 1492.19989776611 2.17 0.1054 0.03143 0 0.001571 0 0 0 0
+BSA_min_23 1493.19989776611 2.377 0.1143 0.04571 0 0.002286 0 0 0 0
+BSA_min_23 1494.19989776611 2.584 0.1232 0.06 0 0.003 0 0 0 0
+BSA_min_23 1495.19989776611 2.791 0.1321 0.07428 0 0.003714 0 0 0 0
+BSA_min_23 1496.19989776611 2.999 0.1411 0.08857 0 0.004428 0 0 0 0
+BSA_min_23 1497.19989776611 3.206 0.15 0.1029 0 0.005143 0 0 0 0
+BSA_min_23 1498.19989776611 3.413 0.1589 0.1171 0 0.005857 0 0 0 0
+BSA_min_23 1499.19989776611 3.62 0.1679 0.1314 0 0.006571 0 0 0 0
+BSA_min_23 1500.19989776611 3.827 0.1768 0.1457 0 0.007286 0 0 0 0
+BSA_min_23 1501.19989776611 4.034 0.1857 0.16 0 0.008 0 0 0 0
+BSA_min_23 1502.19989776611 4.241 0.1946 0.1743 0 0.008714 0 0 0 0
+BSA_min_23 1503.19989776611 4.449 0.2036 0.1886 0 0.009428 0 0 0 0
+BSA_min_23 1504.19989776611 4.656 0.2125 0.2029 0 0.01014 0 0 0 0
+BSA_min_23 1505.19989776611 4.863 0.2214 0.2171 0 0.01086 0 0 0 0
+BSA_min_23 1506.19989776611 5.07 0.2304 0.2314 0 0.01157 0 0 0 0
+BSA_min_23 1507.19989776611 5.277 0.2393 0.2457 0 0.01229 0 0 0 0
+BSA_min_23 1508.19989776611 5.484 0.2482 0.26 0 0.013 0 0 0 0
+BSA_min_23 1509.19989776611 5.691 0.2571 0.2743 0 0.01371 0 0 0 0
+BSA_min_23 1510.19989776611 5.871 0.265 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1511.19989776611 5.943 0.2686 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1512.19989776611 6.014 0.2721 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1513.19989776611 6.086 0.2757 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1514.19989776611 6.157 0.2793 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1515.19989776611 6.229 0.2829 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1516.19989776611 6.3 0.2864 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1517.19989776611 6.371 0.29 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1518.19989776611 6.443 0.2936 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1519.19989776611 6.514 0.2971 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1520.19989776611 6.586 0.3007 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1521.19989776611 6.657 0.3043 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1522.19989776611 6.729 0.3079 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1523.19989776611 6.8 0.3114 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1524.19989776611 6.871 0.315 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1525.19989776611 6.943 0.3186 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1526.19989776611 7.014 0.3221 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1527.19989776611 7.086 0.3257 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1528.19989776611 7.157 0.3293 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1529.19989776611 7.229 0.3329 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1530.19989776611 7.284 0.3356 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1531.19989776611 7.277 0.3353 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1532.19989776611 7.27 0.3349 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1533.19989776611 7.263 0.3346 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1534.19989776611 7.256 0.3342 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1535.19989776611 7.249 0.3339 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1536.19989776611 7.241 0.3335 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1537.19989776611 7.234 0.3331 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1538.19989776611 7.227 0.3328 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1539.19989776611 7.22 0.3324 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1540.19989776611 7.213 0.3321 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1541.19989776611 7.206 0.3317 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1542.19989776611 7.199 0.3314 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1543.19989776611 7.191 0.331 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1544.19989776611 7.184 0.3306 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1545.19989776611 7.177 0.3303 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1546.19989776611 7.17 0.3299 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1547.19989776611 7.163 0.3296 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1548.19989776611 7.156 0.3292 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1549.19989776611 7.149 0.3289 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1550.19989776611 7.144 0.3286 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1551.19989776611 7.151 0.329 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1552.19989776611 7.159 0.3294 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1553.19989776611 7.166 0.3297 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1554.19989776611 7.173 0.3301 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1555.19989776611 7.18 0.3304 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1556.19989776611 7.187 0.3308 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1557.19989776611 7.194 0.3311 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1558.19989776611 7.201 0.3315 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1559.19989776611 7.209 0.3319 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1560.19989776611 7.216 0.3322 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1561.19989776611 7.223 0.3326 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1562.19989776611 7.23 0.3329 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1563.19989776611 7.237 0.3333 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1564.19989776611 7.244 0.3336 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1565.19989776611 7.251 0.334 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1566.19989776611 7.259 0.3344 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1567.19989776611 7.266 0.3347 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1568.19989776611 7.273 0.3351 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1569.19989776611 7.28 0.3354 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1570.19989776611 7.28 0.3354 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1571.19989776611 7.251 0.334 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1572.19989776611 7.223 0.3326 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1573.19989776611 7.194 0.3311 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1574.19989776611 7.166 0.3297 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1575.19989776611 7.137 0.3283 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1576.19989776611 7.109 0.3269 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1577.19989776611 7.08 0.3254 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1578.19989776611 7.051 0.324 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1579.19989776611 7.023 0.3226 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1580.19989776611 6.994 0.3211 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1581.19989776611 6.966 0.3197 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1582.19989776611 6.937 0.3183 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1583.19989776611 6.909 0.3169 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1584.19989776611 6.88 0.3154 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1585.19989776611 6.851 0.314 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1586.19989776611 6.823 0.3126 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1587.19989776611 6.794 0.3111 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1588.19989776611 6.766 0.3097 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1589.19989776611 6.737 0.3083 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1590.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1591.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1592.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1593.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1594.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1595.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1596.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1597.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1598.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1599.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1600.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1601.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1602.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1603.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1604.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1605.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1606.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1607.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1608.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1609.19989776611 6.714 0.3071 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1610.19989776611 6.706 0.3067 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1611.19989776611 6.663 0.3046 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1612.19989776611 6.62 0.3024 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1613.19989776611 6.577 0.3003 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1614.19989776611 6.534 0.2981 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1615.19989776611 6.491 0.296 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1616.19989776611 6.449 0.2939 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1617.19989776611 6.406 0.2917 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1618.19989776611 6.363 0.2896 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1619.19989776611 6.32 0.2874 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1620.19989776611 6.277 0.2853 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1621.19989776611 6.234 0.2831 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1622.19989776611 6.191 0.281 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1623.19989776611 6.149 0.2789 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1624.19989776611 6.106 0.2767 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1625.19989776611 6.063 0.2746 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1626.19989776611 6.02 0.2724 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1627.19989776611 5.977 0.2703 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1628.19989776611 5.934 0.2681 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1629.19989776611 5.891 0.266 0.2857 0 0.01429 0 0 0 0
+BSA_min_23 1630.19989776611 5.816 0.2625 0.2829 0 0.01414 0 0 0 0
+BSA_min_23 1631.19989776611 5.609 0.2536 0.2686 0 0.01343 0 0 0 0
+BSA_min_23 1632.19989776611 5.401 0.2446 0.2543 0 0.01271 0 0 0 0
+BSA_min_23 1633.19989776611 5.194 0.2357 0.24 0 0.012 0 0 0 0
+BSA_min_23 1634.19989776611 4.987 0.2268 0.2257 0 0.01129 0 0 0 0
+BSA_min_23 1635.19989776611 4.78 0.2179 0.2114 0 0.01057 0 0 0 0
+BSA_min_23 1636.19989776611 4.573 0.2089 0.1971 0 0.009857 0 0 0 0
+BSA_min_23 1637.19989776611 4.366 0.2 0.1829 0 0.009143 0 0 0 0
+BSA_min_23 1638.19989776611 4.159 0.1911 0.1686 0 0.008429 0 0 0 0
+BSA_min_23 1639.19989776611 3.951 0.1821 0.1543 0 0.007714 0 0 0 0
+BSA_min_23 1640.19989776611 3.744 0.1732 0.14 0 0.007 0 0 0 0
+BSA_min_23 1641.19989776611 3.537 0.1643 0.1257 0 0.006286 0 0 0 0
+BSA_min_23 1642.19989776611 3.33 0.1554 0.1114 0 0.005572 0 0 0 0
+BSA_min_23 1643.19989776611 3.123 0.1464 0.09714 0 0.004857 0 0 0 0
+BSA_min_23 1644.19989776611 2.916 0.1375 0.08286 0 0.004143 0 0 0 0
+BSA_min_23 1645.19989776611 2.709 0.1286 0.06857 0 0.003429 0 0 0 0
+BSA_min_23 1646.19989776611 2.501 0.1196 0.05429 0 0.002714 0 0 0 0
+BSA_min_23 1647.19989776611 2.294 0.1107 0.04 0 0.002 0 0 0 0
+BSA_min_23 1648.19989776611 2.087 0.1018 0.02572 0 0.001286 0 0 0 0
+BSA_min_23 1649.19989776611 1.88 0.09286 0.01143 0 0.0005715 0 0 0 0
+BSA_min_23 1650.19989776611 1.7 0.085 0 0 0 0 NaN 0 0
+BSA_min_23 1651.19989776611 1.629 0.08143 0 0 0 0 NaN 0 0
+BSA_min_23 1652.19989776611 1.557 0.07786 0 0 0 0 NaN 0 0
+BSA_min_23 1653.19989776611 1.486 0.07429 0 0 0 0 NaN 0 0
+BSA_min_23 1654.19989776611 1.414 0.07071 0 0 0 0 NaN 0 0
+BSA_min_23 1655.19989776611 1.343 0.06714 0 0 0 0 NaN 0 0
+BSA_min_23 1656.19989776611 1.271 0.06357 0 0 0 0 NaN 0 0
+BSA_min_23 1657.19989776611 1.2 0.06 0 0 0 0 NaN 0 0
+BSA_min_23 1658.19989776611 1.129 0.05643 0 0 0 0 NaN 0 0
+BSA_min_23 1659.19989776611 1.057 0.05286 0 0 0 0 NaN 0 0
+BSA_min_23 1660.19989776611 0.9857 0.04929 0 0 0 0 NaN 0 0
+BSA_min_23 1661.19989776611 0.9143 0.04571 0 0 0 0 NaN 0 0
+BSA_min_23 1662.19989776611 0.8429 0.04214 0 0 0 0 NaN 0 0
+BSA_min_23 1663.19989776611 0.7714 0.03857 0 0 0 0 NaN 0 0
+BSA_min_23 1664.19989776611 0.7 0.035 0 0 0 0 NaN 0 0
+BSA_min_23 1665.19989776611 0.6286 0.03143 0 0 0 0 NaN 0 0
+BSA_min_23 1666.19989776611 0.5572 0.02786 0 0 0 0 NaN 0 0
+BSA_min_23 1667.19989776611 0.4857 0.02429 0 0 0 0 NaN 0 0
+BSA_min_23 1668.19989776611 0.4143 0.02071 0 0 0 0 NaN 0 0
+BSA_min_23 1669.19989776611 0.3429 0.01714 0 0 0 0 NaN 0 0
+BSA_min_23 1670.19989776611 0.2845 0.01423 0 0 0 0 NaN 0 0
+BSA_min_23 1671.19989776611 0.2786 0.01393 0 0 0 0 NaN 0 0
+BSA_min_23 1672.19989776611 0.2726 0.01363 0 0 0 0 NaN 0 0
+BSA_min_23 1673.19989776611 0.2667 0.01333 0 0 0 0 NaN 0 0
+BSA_min_23 1674.19989776611 0.2607 0.01304 0 0 0 0 NaN 0 0
+BSA_min_23 1675.19989776611 0.2548 0.01274 0 0 0 0 NaN 0 0
+BSA_min_23 1676.19989776611 0.2488 0.01244 0 0 0 0 NaN 0 0
+BSA_min_23 1677.19989776611 0.2429 0.01214 0 0 0 0 NaN 0 0
+BSA_min_23 1678.19989776611 0.2369 0.01185 0 0 0 0 NaN 0 0
+BSA_min_23 1679.19989776611 0.231 0.01155 0 0 0 0 NaN 0 0
+BSA_min_23 1680.19989776611 0.225 0.01125 0 0 0 0 NaN 0 0
+BSA_min_23 1681.19989776611 0.219 0.01095 0 0 0 0 NaN 0 0
+BSA_min_23 1682.19989776611 0.2131 0.01065 0 0 0 0 NaN 0 0
+BSA_min_23 1683.19989776611 0.2071 0.01036 0 0 0 0 NaN 0 0
+BSA_min_23 1684.19989776611 0.2012 0.01006 0 0 0 0 NaN 0 0
+BSA_min_23 1685.19989776611 0.1952 0.009762 0 0 0 0 NaN 0 0
+BSA_min_23 1686.19989776611 0.1893 0.009464 0 0 0 0 NaN 0 0
+BSA_min_23 1687.19989776611 0.1833 0.009167 0 0 0 0 NaN 0 0
+BSA_min_23 1688.19989776611 0.1774 0.008869 0 0 0 0 NaN 0 0
+BSA_min_23 1689.19989776611 0.1714 0.008571 0 0 0 0 NaN 0 0
+BSA_min_23 1690.19989776611 0.165 0.00825 0 0 0 0 NaN 0 0
+BSA_min_23 1691.19989776611 0.1567 0.007833 0 0 0 0 NaN 0 0
+BSA_min_23 1692.19989776611 0.1483 0.007417 0 0 0 0 NaN 0 0
+BSA_min_23 1693.19989776611 0.14 0.007 0 0 0 0 NaN 0 0
+BSA_min_23 1694.19989776611 0.1317 0.006583 0 0 0 0 NaN 0 0
+BSA_min_23 1695.19989776611 0.1233 0.006167 0 0 0 0 NaN 0 0
+BSA_min_23 1696.19989776611 0.115 0.00575 0 0 0 0 NaN 0 0
+BSA_min_23 1697.19989776611 0.1067 0.005333 0 0 0 0 NaN 0 0
+BSA_min_23 1698.19989776611 0.09833 0.004917 0 0 0 0 NaN 0 0
+BSA_min_23 1699.19989776611 0.09 0.0045 0 0 0 0 NaN 0 0
+BSA_min_23 1700.19989776611 0.08167 0.004083 0 0 0 0 NaN 0 0
+BSA_min_23 1701.19989776611 0.07333 0.003667 0 0 0 0 NaN 0 0
+BSA_min_23 1702.19989776611 0.065 0.00325 0 0 0 0 NaN 0 0
+BSA_min_23 1703.19989776611 0.05667 0.002833 0 0 0 0 NaN 0 0
+BSA_min_23 1704.19989776611 0.04833 0.002417 0 0 0 0 NaN 0 0
+BSA_min_23 1705.19989776611 0.04 0.002 0 0 0 0 NaN 0 0
+BSA_min_23 1706.19989776611 0.03167 0.001583 0 0 0 0 NaN 0 0
+BSA_min_23 1707.19989776611 0.02333 0.001167 0 0 0 0 NaN 0 0
+BSA_min_23 1708.19989776611 0.015 0.00075 0 0 0 0 NaN 0 0
+BSA_min_23 1709.19989776611 0.006668 0.0003334 0 0 0 0 NaN 0 0
+BSA_min_23 1710.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1711.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1712.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1713.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1714.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1715.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1716.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1717.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1718.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1719.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1720.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1721.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1722.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1723.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1724.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1725.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1726.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1727.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1728.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1729.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1730.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1731.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1732.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1733.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1734.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1735.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1736.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1737.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1738.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1739.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1740.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1741.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1742.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1743.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1744.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1745.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1746.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1747.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1748.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1749.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1750.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1751.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1752.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1753.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1754.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1755.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1756.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1757.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1758.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1759.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1760.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1761.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1762.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1763.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1764.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1765.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1766.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1767.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1768.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1769.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1770.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1771.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1772.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1773.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1774.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1775.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1776.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1777.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1778.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1779.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1780.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1781.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1782.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1783.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1784.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1785.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1786.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1787.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1788.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1789.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1790.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1791.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1792.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1793.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1794.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1795.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1796.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1797.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1798.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1799.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1800.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1801.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1802.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1803.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1804.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1805.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1806.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1807.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1808.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1809.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1810.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1811.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1812.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1813.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1814.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1815.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1816.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1817.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1818.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1819.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1820.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1821.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1822.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1823.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1824.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1825.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1826.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1827.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1828.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1829.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1830.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1831.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1832.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1833.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1834.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1835.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1836.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1837.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1838.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1839.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1840.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1841.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1842.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1843.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1844.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1845.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1846.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1847.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1848.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1849.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1850.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1851.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1852.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1853.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1854.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1855.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1856.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1857.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1858.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1859.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1860.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1861.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1862.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1863.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1864.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1865.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1866.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1867.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1868.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1869.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1870.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1871.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1872.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1873.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1874.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1875.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1876.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1877.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1878.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1879.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1880.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1881.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1882.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1883.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1884.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1885.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1886.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1887.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1888.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1889.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1890.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1891.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1892.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1893.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1894.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1895.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1896.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1897.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1898.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1899.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1900.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1901.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1902.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1903.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1904.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1905.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1906.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1907.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1908.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1909.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1910.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1911.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1912.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1913.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1914.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1915.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1916.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1917.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1918.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1919.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1920.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1921.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1922.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1923.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1924.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1925.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1926.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1927.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1928.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1929.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1930.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1931.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1932.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1933.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1934.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1935.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1936.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1937.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1938.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1939.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1940.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1941.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1942.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1943.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1944.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1945.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1946.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1947.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1948.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1949.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1950.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1951.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1952.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1953.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1954.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1955.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1956.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1957.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1958.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1959.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1960.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1961.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1962.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1963.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1964.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1965.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1966.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1967.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1968.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1969.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1970.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1971.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1972.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1973.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1974.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1975.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1976.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1977.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1978.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1979.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1980.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1981.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1982.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1983.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1984.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1985.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1986.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1987.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1988.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1989.19989776611 0 0 0 0 0 0 NaN 0 0
+BSA_min_23 1990.19989776611 0 0 0 0 0 0 NaN 0 0
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/mzTab.mzTab
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/mzTab.mzTab Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,45 @@
+MTD mzTab-version 1.0.0
+MTD mzTab-mode Complete
+MTD mzTab-type Identification
+MTD title null
+MTD description null
+MTD software[1] [MS, MS:1001583, MaxQuant,1.6.3.4]
+COM [, CHEMMOD:57.0214637236, Carbamidomethyl (C),]
+MTD fixed_mod[1] [, , CHEMMOD:57.0214637236,]
+MTD fixed_mod[1]-site C
+MTD fixed_mod[1]-position Anywhere
+COM [, CHEMMOD:15.9949146221, Oxidation (M),]
+MTD variable_mod[1] [, , CHEMMOD:15.9949146221,]
+MTD variable_mod[1]-site M
+MTD variable_mod[1]-position Anywhere
+MTD protein_search_engine_score[1] [MS, MS:1002375, protein group-level combined FDRscore, ]
+MTD peptide_search_engine_score[1] [MS, MS:1001250, local FDR, ]
+MTD psm_search_engine_score[1] [MS, MS:1002338, Andromeda:score, ]
+MTD psm_search_engine_score[2] [MS, MS:1002995, Andromeda:PEP, ]
+MTD ms_run[1]-format [MS, MS:1002996, Andromeda:apl file format, ]
+MTD ms_run[1]-location file://d:/shared/dglaetzer/maxquant_tool/test1/combined/andromeda/allspectra.cid.ftms.secpep.sil0_0.apl
+MTD ms_run[1]-id_format [MS, MS:1000776, scan number only nativeID format, ]
+MTD ms_run[2]-format [MS, MS:1002996, Andromeda:apl file format, ]
+MTD ms_run[2]-location file://d:/shared/dglaetzer/maxquant_tool/test1/combined/andromeda/allspectra.cid.ftms.iso_0.apl
+MTD ms_run[2]-id_format [MS, MS:1000776, scan number only nativeID format, ]
+
+PRH accession description taxid species database database_version search_engine best_search_engine_score[1] search_engine_score[1]_ms_run[1] search_engine_score[1]_ms_run[2] num_psms_ms_run[1] num_psms_ms_run[2] num_peptides_distinct_ms_run[1] num_peptides_distinct_ms_run[2] num_peptides_unique_ms_run[1] num_peptides_unique_ms_run[2] ambiguity_members modifications protein_coverage opt_global_cv_MS:1002217_decoy_peptide
+PRT CON__P02769 null null null null null [MS, MS:1002337, Andromeda, 1.6.3.4] 6.33205607832812 null null null null null null null null CON__P02769, bsa, CON__P02768-1 null 0.012 0
+PRT CON__ENSEMBL:ENSBTAP00000001528 null null null null null [MS, MS:1002337, Andromeda, 1.6.3.4] 5.93746772688895 null null null null null null null null CON__ENSEMBL:ENSBTAP00000001528 null 0.008 0
+PRT CON__ENSEMBL:ENSBTAP00000016046 null null null null null [MS, MS:1002337, Andromeda, 1.6.3.4] 5.97677849538172 null null null null null null null null CON__ENSEMBL:ENSBTAP00000016046 null 0.01 0
+PRT CON__ENSEMBL:ENSBTAP00000018574 null null null null null [MS, MS:1002337, Andromeda, 1.6.3.4] 5.95544937626172 null null null null null null null null CON__ENSEMBL:ENSBTAP00000018574 null 0.016 0
+PRT CON__Q03247 null null null null null [MS, MS:1002337, Andromeda, 1.6.3.4] 5.93746772688895 null null null null null null null null CON__Q03247 null 0.025 0
+PRT CON__Q14CN4-1 null null null null null [MS, MS:1002337, Andromeda, 1.6.3.4] 6.1237531147968 null null null null null null null null CON__Q14CN4-1, CON__Q3SY84, CON__Q9R0H5 null 0.016 0
+
+PSH sequence PSM_ID accession unique database database_version search_engine search_engine_score[1] search_engine_score[2] modifications retention_time charge exp_mass_to_charge calc_mass_to_charge spectra_ref pre post start end opt_global_cv_MS:1000776_scan_number_only_nativeID_format opt_global_cv_MS:1002217_decoy_peptide
+PSM DSFDIIK 1 CON__ENSEMBL:ENSBTAP00000016046 1 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 0 0.010549248059121 null 0.570428333333333 2 419.22 419.22127 ms_run[2]:index=5 R R 646 652 96 0
+PSM LLESEECR 2 CON__Q14CN4-1 0 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 1.63126590808724 0.00752050293704335 null 0.509571666666667 2 518.24 518.24241 ms_run[2]:index=13 K M 430 437 86 0
+PSM LLESEECR 2 CON__Q3SY84 0 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 1.63126590808724 0.00752050293704335 null 0.509571666666667 2 518.24 518.24241 ms_run[2]:index=13 K M 430 437 86 0
+PSM LLESEECR 2 CON__Q9R0H5 0 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 1.63126590808724 0.00752050293704335 null 0.509571666666667 2 518.24 518.24241 ms_run[2]:index=13 K M 430 437 86 0
+PSM LVTDLTK 3 CON__P02769 0 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 0 0.00465525978542915 null 0.0100133333333333 2 395.24 395.23946 ms_run[2]:index=4 K V 257 263 2 0
+PSM LVTDLTK 3 bsa 0 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 0 0.00465525978542915 null 0.0100133333333333 2 395.24 395.23946 ms_run[2]:index=4 K V 257 263 2 0
+PSM LVTDLTK 3 CON__P02768-1 0 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 0 0.00465525978542915 null 0.0100133333333333 2 395.24 395.23946 ms_run[2]:index=4 K V 257 263 2 0
+PSM QLELEKQLEK 4 CON__ENSEMBL:ENSBTAP00000001528 1 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 0 0.0115486780155693 null 0.570428333333333 3 419.91 419.90648 ms_run[1]:index=5 R Q 408 417 96 0
+PSM SLSAIRER 5 CON__Q03247 1 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 0 0.0115486780155693 null 0.0965533333333333 2 466.27 466.26962 ms_run[1]:index=2 R F 190 197 17 0
+PSM TLGPWGQR 6 CON__ENSEMBL:ENSBTAP00000018574 1 null null [MS, MS:1002338, Andromeda:score, 1.6.3.4] 0 0.0110802771561295 null 0.425933333333333 2 457.75 457.74578 ms_run[2]:index=9 R D 20 27 72 0
+
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/parameters.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/parameters.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,105 @@
+Parameter Value
+Version 1.6.3.4
+User name dglaetzer
+Machine name FPROT-BEAST
+Date of writing 04/04/2019 17:32:37
+Include contaminants True
+PSM FDR 0.01
+PSM FDR Crosslink 0.01
+Protein FDR 0.01
+Site FDR 0.01
+Use Normalized Ratios For Occupancy True
+Min. peptide Length 7
+Min. score for unmodified peptides 0
+Min. score for modified peptides 40
+Min. delta score for unmodified peptides 0
+Min. delta score for modified peptides 6
+Min. unique peptides 0
+Min. razor peptides 1
+Min. peptides 1
+Use only unmodified peptides and True
+Modifications included in protein quantification Oxidation (M)
+Peptides used for protein quantification Razor
+Discard unmodified counterpart peptides True
+Label min. ratio count 2
+Use delta score False
+iBAQ False
+iBAQ log fit False
+Match between runs False
+Find dependent peptides False
+Fasta file D:\fasta\bsa.fasta
+Decoy mode revert
+Include contaminants True
+Advanced ratios True
+Fixed andromeda index folder
+Temporary folder
+Combined folder location
+Second peptides True
+Stabilize large LFQ ratios True
+Separate LFQ in parameter groups False
+Require MS/MS for LFQ comparisons True
+Calculate peak properties False
+Main search max. combinations 200
+Advanced site intensities True
+Write msScans table False
+Write msmsScans table True
+Write ms3Scans table True
+Write allPeptides table True
+Write mzRange table True
+Write pasefMsmsScans table True
+Write accumulatedPasefMsmsScans table True
+Max. peptide mass [Da] 4600
+Min. peptide length for unspecific search 8
+Max. peptide length for unspecific search 25
+Razor protein FDR True
+Disable MD5 False
+Max mods in site table 3
+Match unidentified features False
+Epsilon score for mutations
+Evaluate variant peptides separately True
+Variation mode None
+MS/MS tol. (FTMS) 20 ppm
+Top MS/MS peaks per Da interval. (FTMS) 12
+Da interval. (FTMS) 100
+MS/MS deisotoping (FTMS) True
+MS/MS deisotoping tolerance (FTMS) 7
+MS/MS deisotoping tolerance unit (FTMS) ppm
+MS/MS higher charges (FTMS) True
+MS/MS water loss (FTMS) True
+MS/MS ammonia loss (FTMS) True
+MS/MS dependent losses (FTMS) True
+MS/MS recalibration (FTMS) False
+MS/MS tol. (ITMS) 0.5 Da
+Top MS/MS peaks per Da interval. (ITMS) 8
+Da interval. (ITMS) 100
+MS/MS deisotoping (ITMS) False
+MS/MS deisotoping tolerance (ITMS) 0.15
+MS/MS deisotoping tolerance unit (ITMS) Da
+MS/MS higher charges (ITMS) True
+MS/MS water loss (ITMS) True
+MS/MS ammonia loss (ITMS) True
+MS/MS dependent losses (ITMS) True
+MS/MS recalibration (ITMS) False
+MS/MS tol. (TOF) 40 ppm
+Top MS/MS peaks per Da interval. (TOF) 10
+Da interval. (TOF) 100
+MS/MS deisotoping (TOF) True
+MS/MS deisotoping tolerance (TOF) 0.01
+MS/MS deisotoping tolerance unit (TOF) Da
+MS/MS higher charges (TOF) True
+MS/MS water loss (TOF) True
+MS/MS ammonia loss (TOF) True
+MS/MS dependent losses (TOF) True
+MS/MS recalibration (TOF) False
+MS/MS tol. (Unknown) 0.5 Da
+Top MS/MS peaks per Da interval. (Unknown) 8
+Da interval. (Unknown) 100
+MS/MS deisotoping (Unknown) False
+MS/MS deisotoping tolerance (Unknown) 0.15
+MS/MS deisotoping tolerance unit (Unknown) Da
+MS/MS higher charges (Unknown) True
+MS/MS water loss (Unknown) True
+MS/MS ammonia loss (Unknown) True
+MS/MS dependent losses (Unknown) True
+MS/MS recalibration (Unknown) False
+Site tables Oxidation (M)Sites.txt
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/peptideSection.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/peptideSection.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,7 @@
+PEH sequence accession unique database database_version search_engine best_search_engine_score[1] search_engine_score[1]_ms_run[0] modifications retention_time retention_time_window charge mass_to_charge spectra_ref peptide_abundance_study_variable[0] peptide_abundance_stdev_study_variable[0] peptide_abundance_std_error_study_variable[0]
+PEP DSFDIIK null
+PEP LLESEECR null
+PEP LVTDLTK null
+PEP QLELEKQLEK null
+PEP SLSAIRER null
+PEP TLGPWGQR null
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/peptides.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/peptides.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,7 @@
+Sequence N-term cleavage window C-term cleavage window Amino acid before First amino acid Second amino acid Second last amino acid Last amino acid Amino acid after A Count R Count N Count D Count C Count Q Count E Count G Count H Count I Count L Count K Count M Count F Count P Count S Count T Count W Count Y Count V Count U Count O Count Length Missed cleavages Mass Proteins Leading razor protein Start position End position Unique (Groups) Unique (Proteins) Charges PEP Score Experiment BSA_min_23.mzXML Intensity Intensity BSA_min_23.mzXML Reverse Potential contaminant id Protein group IDs Mod. peptide IDs Evidence IDs MS/MS IDs Best MS/MS Oxidation (M) site IDs MS/MS Count
+DSFDIIK NHADIIFDITDGNLRDSFDIIKRYMDGMTV DITDGNLRDSFDIIKRYMDGMTVGVVRQVR R D S I K R 0 0 0 2 0 0 0 0 0 2 0 1 0 1 0 1 0 0 0 0 0 0 7 0 836.42798 CON__ENSEMBL:ENSBTAP00000016046 CON__ENSEMBL:ENSBTAP00000016046 646 652 yes yes 2 0.010549 0 1 768320 768320 + 0 2 0 0 0 0 1
+LLESEECR SLKLALDMEIATYRKLLESEECRMSGEYPN EIATYRKLLESEECRMSGEYPNSVSISVIS K L L C R M 0 1 0 0 1 0 3 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 8 0 1034.4703 CON__Q14CN4-1;CON__Q3SY84;CON__Q9R0H5 CON__Q14CN4-1 430 437 yes no 2 0.0075205 1.6313 1 0 0 + 1 5 1 1 1 1 1
+LVTDLTK LSQKFPKAEFVEVTKLVTDLTKVHKECCHG AEFVEVTKLVTDLTKVHKECCHGDLLECAD K L V T K V 0 0 0 1 0 0 0 0 0 0 2 1 0 0 0 0 2 0 0 1 0 0 7 0 788.46437 CON__P02769;bsa;CON__P02768-1 CON__P02769 257 263 yes no 2 0.0046553 0 1 0 0 + 2 0 2 2 2 2 1
+QLELEKQLEK QERKERERQEQERKRQLELEKQLEKQRELE QERKRQLELEKQLEKQRELERQREEERRKE R Q L E K Q 0 0 0 0 0 2 3 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 10 1 1256.6976 CON__ENSEMBL:ENSBTAP00000001528 CON__ENSEMBL:ENSBTAP00000001528 408 417 yes yes 3 0.011549 0 1 57554 57554 + 3 1 3 3 3 3 0
+SLSAIRER RLAVYQAGASEGAERSLSAIRERFGPLVEQ ASEGAERSLSAIRERFGPLVEQGQSRAATL R S L E R F 1 2 0 0 0 0 1 0 0 1 1 0 0 0 0 2 0 0 0 0 0 0 8 1 930.52468 CON__Q03247 CON__Q03247 190 197 yes yes 2 0.011549 0 1 33499 33499 + 4 4 4 4 4 4 0
+TLGPWGQR LRPLLLALLLASACRTLGPWGQRDDGGGEP LLASACRTLGPWGQRDDGGGEPESMEPRWG R T L Q R D 0 1 0 0 0 1 0 2 0 0 1 0 0 0 1 0 1 1 0 0 0 0 8 0 913.477 CON__ENSEMBL:ENSBTAP00000018574 CON__ENSEMBL:ENSBTAP00000018574 20 27 yes yes 2 0.01108 0 1 61894 61894 + 5 3 5 5 5 5 1
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/proteinGroups.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/proteinGroups.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,7 @@
+Protein IDs Majority protein IDs Peptide counts (all) Peptide counts (razor+unique) Peptide counts (unique) Fasta headers Number of proteins Peptides Razor + unique peptides Unique peptides Peptides BSA_min_23.mzXML Razor + unique peptides BSA_min_23.mzXML Unique peptides BSA_min_23.mzXML Sequence coverage [%] Unique + razor sequence coverage [%] Unique sequence coverage [%] Mol. weight [kDa] Sequence length Sequence lengths Q-value Score Sequence coverage BSA_min_23.mzXML [%] Intensity Intensity BSA_min_23.mzXML MS/MS count Only identified by site Reverse Potential contaminant id Peptide IDs Peptide is razor Mod. peptide IDs Evidence IDs MS/MS IDs Best MS/MS Oxidation (M) site IDs Oxidation (M) site positions
+CON__P02769;bsa;CON__P02768-1 CON__P02769;bsa;CON__P02768-1 1;1;1 1;1;1 1;1;1 ;bsa sp|P02769|ALBU_BOVIN Serum albumin OS=Bos taurus OX=9913 GN=ALB PE=1 SV=4; 3 1 1 1 1 1 1 1.2 1.2 1.2 69.293 607 607;607;609 0 6.3321 1.2 0 0 1 + 0 2 True 2 2 2 2
+CON__ENSEMBL:ENSBTAP00000001528 CON__ENSEMBL:ENSBTAP00000001528 1 1 1 1 1 1 1 1 1 1 0.8 0.8 0.8 137.98 1222 1222 0 5.9375 0.8 57554 57554 0 + 1 3 True 3 3 3 3
+CON__ENSEMBL:ENSBTAP00000016046 CON__ENSEMBL:ENSBTAP00000016046 1 1 1 1 1 1 1 1 1 1 1 1 1 77.456 706 706 0 5.9768 1 768320 768320 1 + 2 0 True 0 0 0 0
+CON__ENSEMBL:ENSBTAP00000018574 CON__ENSEMBL:ENSBTAP00000018574 1 1 1 1 1 1 1 1 1 1 1.6 1.6 1.6 55.207 496 496 0 5.9554 1.6 61894 61894 1 + 3 5 True 5 5 5 5
+CON__Q03247 CON__Q03247 1 1 1 1 1 1 1 1 1 1 2.5 2.5 2.5 35.979 316 316 0 5.9375 2.5 33499 33499 0 + 4 4 True 4 4 4 4
+CON__Q14CN4-1;CON__Q3SY84;CON__Q9R0H5 CON__Q14CN4-1;CON__Q3SY84;CON__Q9R0H5 1;1;1 1;1;1 1;1;1 ;; 3 1 1 1 1 1 1 1.6 1.6 1.6 55.877 511 511;523;524 0 6.1238 1.6 0 0 1 + 5 1 True 1 1 1 1
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/combined/txt/summary.txt
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/combined/txt/summary.txt Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,3 @@
+Raw file Experiment Enzyme Enzyme mode Enzyme first search Enzyme mode first search Use enzyme first search Variable modifications Fixed modifications Multi modifications Variable modifications first search Use variable modifications first search Requantify Multiplicity Max. missed cleavages Labels0 LC-MS run type Time-dependent recalibration MS MS/MS MS3 MS/MS Submitted MS/MS Submitted (SIL) MS/MS Submitted (ISO) MS/MS Submitted (PEAK) MS/MS Identified MS/MS Identified (SIL) MS/MS Identified (ISO) MS/MS Identified (PEAK) MS/MS Identified [%] MS/MS Identified (SIL) [%] MS/MS Identified (ISO) [%] MS/MS Identified (PEAK) [%] Peptide Sequences Identified Peaks Peaks Sequenced Peaks Sequenced [%] Peaks Repeatedly Sequenced Peaks Repeatedly Sequenced [%] Isotope Patterns Isotope Patterns Sequenced Isotope Patterns Sequenced (z>1) Isotope Patterns Sequenced [%] Isotope Patterns Sequenced (z>1) [%] Isotope Patterns Repeatedly Sequenced Isotope Patterns Repeatedly Sequenced [%] Recalibrated Av. Absolute Mass Deviation [ppm] Mass Standard Deviation [ppm] Av. Absolute Mass Deviation [mDa] Mass Standard Deviation [mDa]
+BSA_min_23 BSA_min_23.mzXML Trypsin/P Specific False Oxidation (M) Carbamidomethyl (C) False False 1 1 Standard 19 81 0 111 51 0 60 4 2 0 2 3.6 3.92 NaN 3.33 6 1201 57 4.75 4 7.02 165 39 35 23.64 26.52 10 25.64 + 0.41463 0.43436 0.1789 0.18539
+Total 19 81 0 111 51 0 60 4 2 0 2 3.6 3.92 NaN 3.33 6 1201 165 39 35 23.64 26.52 10 25.64 0.41463 0.43436 0.1789 0.18539
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/single/mqpar.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/single/mqpar.xml Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,426 @@
+
+
+
+
+ D:\fasta\bsa.fasta
+ >([^\s]*)
+ >(.*)
+
+
+
+
+
+
+
+
+
+
+
+ 350000
+ True
+ 0.005
+ False
+ False
+ False
+ False
+ True
+ True
+ revert
+ all
+ True
+ 4600
+ True
+ True
+ True
+ 0
+ 6
+ 0
+ 40
+ True
+ False
+ False
+ False
+ False
+ 0
+ 0
+ False
+ False
+ False
+ False
+ 0
+ False
+ False
+ False
+ False
+ False
+ False
+ Species
+ False
+ 3
+ False
+ True
+ False
+ True
+ False
+ False
+
+
+
+ 7
+ 0.01
+ 0.01
+ 0.01
+ 0.01
+ 8
+ 25
+ True
+ 1
+ 1
+ 0
+ False
+ True
+ False
+
+ 2
+ True
+
+ Oxidation (M)
+
+ 0
+ 0
+ 25
+ 15
+ 0
+ 1
+
+
+ 200
+ False
+ True
+ True
+ True
+ True
+ True
+ True
+ True
+ False
+ True
+ False
+ True
+ False
+ 0
+ 20
+
+ none
+ False
+ session1
+ 1.6.3.4
+
+
+ 1
+
+
+
+
+ -1.79589544172745E+308
+ 1.79589544172745E+308
+ False
+ False
+ False
+ False
+ False
+ False
+ False
+
+ D:\shared\dglaetzer\maxquant_tool\test1\BSA_min_23.mzXML
+
+
+ BSA_min_23.mzXML
+
+
+ 32767
+
+
+ False
+
+
+ 0
+
+
+
+
+
+
+ 0
+ 7
+ 2
+ False
+ False
+ True
+ 1
+ NaN
+ NaN
+ MatchFromAndTo
+ 0
+ 8
+ True
+ 35
+ True
+ 1.4
+ 1.2
+ False
+ 0
+
+
+
+ Standard
+ False
+ 0
+ False
+ 3
+ 6
+ 100000
+ 0
+ 0
+ False
+ False
+ True
+ False
+ 2
+ 0
+ 5
+ 1
+ 1
+ 0
+ 0
+ 0
+ 0
+
+ Carbamidomethyl (C)
+
+
+ Trypsin/P
+
+
+
+ 0
+ False
+ False
+
+ Oxidation (M)
+
+ False
+
+
+
+
+
+
+
+
+ False
+
+
+
+
+ True
+ 20
+ 4.5
+ True
+ 2
+ True
+ 0.6
+ 0.6
+ True
+ True
+ False
+ 70
+ False
+
+ 0
+ 0
+ 0
+ NaN
+ NaN
+ False
+ NaN
+ NaN
+ 0
+ 0
+ 0
+ 0
+ True
+ False
+ True
+ False
+
+ 0
+ 6
+ False
+ 0
+ 0
+ 0
+ 0
+ False
+
+
+
+
+ PeptidesWithCleavedLinker
+ False
+ True
+
+
+
+
+ FTMS
+ 20
+ True
+ 7
+ True
+ 10
+ True
+ True
+ 12
+ 100
+ True
+ True
+ True
+ True
+ False
+
+
+ ITMS
+ 0.5
+ False
+ 0.15
+ False
+ 0.25
+ False
+ False
+ 8
+ 100
+ True
+ True
+ True
+ True
+ False
+
+
+ TOF
+ 40
+ True
+ 0.01
+ False
+ 0.02
+ False
+ True
+ 10
+ 100
+ True
+ True
+ True
+ True
+ False
+
+
+ Unknown
+ 0.5
+ False
+ 0.15
+ False
+ 0.25
+ False
+ False
+ 8
+ 100
+ True
+ True
+ True
+ True
+ False
+
+
+
+
+ CID
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ HCD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ ETD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ PQD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ ETHCD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ ETCID
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ UVPD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ Unknown
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+
diff -r d4b6c9eae635 -r 8bac3cc5c5de test-data/template.xml
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/test-data/template.xml Sat Jul 20 05:01:05 2019 -0400
@@ -0,0 +1,428 @@
+
+
+
+
+
+ >(.*)
+
+
+
+
+
+
+
+
+
+
+
+
+ 350000
+ True
+ 0.005
+ False
+ False
+ False
+ False
+ True
+ True
+ revert
+ all
+ True
+ 4600
+ True
+ True
+ True
+ 0
+ 6
+ 0
+ 40
+ True
+ False
+ False
+ False
+ False
+ 0
+ 0
+ False
+ False
+ False
+ False
+ 0
+ False
+ False
+ False
+ False
+ False
+ False
+ Species
+ False
+ 3
+ False
+ True
+ False
+ True
+ False
+ False
+
+
+
+ 7
+ 0.01
+ 0.01
+ 0.01
+ 0.01
+ 8
+ 25
+ True
+ 1
+ 1
+ 0
+ False
+ True
+ False
+
+ 2
+ True
+
+ Oxidation (M)
+ Acetyl (Protein N-term)
+
+ 0
+ 0
+ 25
+ 15
+ 0
+ 1
+
+
+ 200
+ False
+ True
+ True
+ True
+ True
+ True
+ True
+ False
+ False
+ True
+ False
+ True
+ False
+ 0
+ 20
+
+ none
+ False
+ templateSession
+ 1.6.3.4
+
+
+ 1
+
+
+
+
+ -1.79769313486232E+308
+ 1.79769313486232E+308
+ False
+ False
+ False
+ False
+ False
+ False
+ False
+
+ file.example.RAW
+
+
+ experiment.example
+
+
+ 32767
+
+
+ False
+
+
+ 0
+
+
+
+
+
+
+ 0
+ 7
+ 2
+ False
+ False
+ True
+ 1
+ NaN
+ NaN
+ MatchFromAndTo
+ 0
+ 8
+ True
+ 35
+ True
+ 1.4
+ 1.2
+ False
+ 0
+
+
+
+ Standard
+ False
+ 0
+ False
+ 3
+ 6
+ 100000
+ 0
+ 0
+ False
+ False
+ True
+ False
+ 2
+ 0
+ 5
+ 2
+ 1
+ 0
+ 0
+ 0
+ 0
+
+ Carbamidomethyl (C)
+
+
+ Trypsin/P
+
+
+
+ 0
+ False
+ False
+
+ Oxidation (M)
+ Acetyl (Protein N-term)
+
+ False
+
+
+
+
+
+
+
+
+ False
+
+
+
+
+ True
+ 20
+ 4.5
+ True
+ 2
+ True
+ 0.6
+ 0.6
+ True
+ True
+ False
+ 70
+ False
+
+ 0
+ 0
+ 0
+ NaN
+ NaN
+ False
+ NaN
+ NaN
+ 0
+ 0
+ 0
+ 0
+ True
+ False
+ True
+ False
+
+ 0
+ 6
+ False
+ 0
+ 0
+ 0
+ 0
+ False
+
+
+
+
+ PeptidesWithCleavedLinker
+ False
+ True
+
+
+
+
+ FTMS
+ 20
+ True
+ 7
+ True
+ 10
+ True
+ True
+ 12
+ 100
+ True
+ True
+ True
+ True
+ False
+
+
+ ITMS
+ 0.5
+ False
+ 0.15
+ False
+ 0.25
+ False
+ False
+ 8
+ 100
+ True
+ True
+ True
+ True
+ False
+
+
+ TOF
+ 40
+ True
+ 0.01
+ False
+ 0.02
+ False
+ True
+ 10
+ 100
+ True
+ True
+ True
+ True
+ False
+
+
+ Unknown
+ 0.5
+ False
+ 0.15
+ False
+ 0.25
+ False
+ False
+ 8
+ 100
+ True
+ True
+ True
+ True
+ False
+
+
+
+
+ CID
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ HCD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ ETD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ PQD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ ETHCD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ ETCID
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ UVPD
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+ Unknown
+ False
+ 1
+ 1
+ 1
+ False
+ 1
+ KRH
+
+
+
diff -r d4b6c9eae635 -r 8bac3cc5c5de unimod.xml
--- a/unimod.xml Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,15140 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- GIST acetyl light
-
-
- PT and GIST acetyl light
-
-
- O-acetyl
-
-
-
-
-
-
-
-
- 14730666
- PubMed PMID
-
-
-
- 15350136
- PubMed PMID
-
-
-
- AA0055
- RESID
-
-
-
- IonSource acetylation tutorial
- Misc. URL
- http://www.ionsource.com/Card/acetylation/acetylation.htm
-
-
- Chemical Reagents for Protein Modification 3rd edition, pp 215-221, Roger L. Lundblad, CRC Press, New York, N.Y., 2005
- Book
-
-
-
- 11999733
- PubMed PMID
-
-
-
- AA0043
- RESID
-
-
-
- AA0044
- RESID
-
-
-
- AA0354
- RESID
-
-
-
- AA0045
- RESID
-
-
-
- AA0056
- RESID
-
-
-
- AA0046
- RESID
-
-
-
- AA0051
- RESID
-
-
-
- AA0052
- RESID
-
-
-
- AA0364
- RESID
-
-
-
- AA0041
- RESID
-
-
-
- AA0049
- RESID
-
-
-
- AA0048
- RESID
-
-
-
- AA0047
- RESID
-
-
-
- 12175151
- PubMed PMID
-
-
-
- 11857757
- PubMed PMID
-
-
-
- AA0042
- RESID
-
-
-
- AA0050
- RESID
-
-
-
- AA0053
- RESID
-
-
-
- AA0054
- RESID
-
-
-
- ACET
- FindMod
-
-
-
- PNAS 2006 103: 18574-18579
- Journal
- http://dx.doi.org/10.1073/pnas.0608995103
-
-
-
-
-
-
-
-
-
-
-
- AA0100
- RESID
-
-
-
- AA0099
- RESID
-
-
-
- AA0098
- RESID
-
-
-
- AA0097
- RESID
-
-
-
- AA0096
- RESID
-
-
-
- AA0095
- RESID
-
-
-
- AA0094
- RESID
-
-
-
- AA0093
- RESID
-
-
-
- AA0092
- RESID
-
-
-
- AA0091
- RESID
-
-
-
- AA0090
- RESID
-
-
-
- AA0089
- RESID
-
-
-
- AA0081
- RESID
-
-
-
- AA0082
- RESID
-
-
-
- AA0083
- RESID
-
-
-
- AA0084
- RESID
-
-
-
- AA0085
- RESID
-
-
-
- AA0086
- RESID
-
-
-
- AA0087
- RESID
-
-
-
- AA0088
- RESID
-
-
-
- AMID
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0117
- RESID
-
-
-
- BIOT
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Carboxyamidomethylation
-
- Creasy, D. M., Cottrell, J. S., Proteomics 2 1426-34 (2002)
- Journal
-
-
-
- 11510821
- PubMed PMID
-
-
-
- Boja, E. S., Fales, H. M., Anal. Chem. 73 3576-82 (2001)
- Journal
-
-
-
- 12422359
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0343
- RESID
-
-
-
- 12203680
- PubMed PMID
-
-
-
- AA0332
- RESID
-
-
-
- IonSource carbamylation tutorial
- Misc. URL
- http://www.ionsource.com/Card/carbam/carbam.htm
-
-
- 10978403
- PubMed PMID
-
-
- Carbamylation is an irreversible process of non-enzymatic modification of proteins by the breakdown products of urea isocyanic acid reacts with the N-term of a proteine or side chains of lysine and arginine residues
-
-
-
-
-
-
- Hydroxylethanone
-
-
-
-
-
-
- Carboxymethylation
-
-
-
- Protein which is post-translationally modified by the de-imination of one or more arginine residues; Peptidylarginine deiminase (PAD) converts protein bound to citrulline
-
-
- Convertion of glycosylated asparagine residues upon deglycosylation with PGNase F in H2O
-
-
-
-
-
-
-
-
- phenyllactyl from N-term Phe
- Citrullination
-
- IonSource tutorial
- Misc. URL
- http://www.ionsource.com/Card/Deamidation/deamidation.htm
-
-
- CITR
- FindMod
-
-
-
- FLAC
- FindMod
-
-
-
- AA0128
- RESID
-
-
-
- AA0214
- RESID
-
-
-
- 6838602
- PubMed PMID
-
-
-
- 15700232
- PubMed PMID
-
-
-
- DEAM
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
- 10504701
- PubMed PMID
-
-
-
- Gygi S.P., et. al. Nat Biotechnol. 1999 Oct;17(10):994-9
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 10504701
- PubMed PMID
-
-
-
- Gygi S.P., et. al. Nat Biotechnol. 1999 Oct;17(10):994-9
- Journal
-
-
-
-
-
-
-
-
-
-
-
- Cyanogen bromide (CNBr) cleavage converts the C-term Met to either homoserine or homoserine lactone, depending on pH.
-
-
-
-
-
-
-
-
-
- Donald Voet, Judith G. Voet (1995): Biochemistry; p 115
- Book
-
-
- Cyanogen bromide (CNBr) cleavage converts the C-term Met to either homoserine or homoserine lactone, depending on pH.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Structure
- Misc. URL
- http://www.chemsoc.org/exemplarchem/entries/2002/proteomics/images/icat_reagent.gif
-
-
- Molecular & Cellular Proteomics 2:428-442, 2003
- Journal
- http://www.mcponline.org/cgi/content/full/2/7/428
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Structure
- Misc. URL
- http://www.chemsoc.org/exemplarchem/entries/2002/proteomics/images/icat_reagent.gif
-
-
- Molecular & Cellular Proteomics 2:428-442, 2003
- Journal
- http://www.mcponline.org/cgi/content/full/2/7/428
-
-
-
-
-
-
-
-
-
-
- Dimethylacrylamide, DMA
-
- Krutzsch and Inman, Analytical Biochemistry, 209, 109-116, (1993)
- Journal
-
-
-
- Galvani et.al. (2000) Electrophoresis vol 22 p2046-p2074
- Journal
-
-
-
- 8465942
- PubMed PMID
-
-
-
- 11465505
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
- Pierce EZ-Link PEO-Iodoacetyl Biotin
-
- 12038753
- PubMed PMID
-
-
-
- J. Biol. Chem., Vol. 278, Issue 7, 4500-4509, February 14, 2003
- Journal
- http://www.jbc.org/cgi/content/full/278/7/4500#F1
-
-
- 15253424
- PubMed PMID
-
-
-
-
-
-
- Rare
-
-
- Rare
-
-
- Usually don't see beta elimination of phosphate
-
-
- Rare
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- IonSource
- Misc. URL
- http://www.ionsource.com/Card/phos/phos.htm
-
-
- AA0037
- RESID
-
-
-
- AA0033
- RESID
-
-
-
- AA0038
- RESID
-
-
-
- AA0039
- RESID
-
-
-
- AA0222
- RESID
-
-
-
- PHOS
- FindMod
-
-
-
- AA0034
- RESID
-
-
-
- AA0036
- RESID
-
-
-
- AA0035
- RESID
-
-
- Protein which is posttranslationally modified by the attachment of at least one phosphate group usually on serine, threonine or tyrosine residues, but also on aspartic acid or histidine residues.
-
-
-
-
- beta-elimination
-
-
- beta-elimination
-
-
- beta-elimination
-
-
-
-
- Pyro-carboxymethyl as a delta from Carboxymethyl-Cys
-
-
-
-
-
- didehydroalanine
- C-terminal imide
- Prompt loss of phosphate from phosphorylated residue
- D-Succinimide
-
- DHAS
- FindMod
-
-
-
- AA0303
- RESID
-
-
-
- AA0302
- RESID
-
-
-
- AA0181
- RESID
-
-
-
- AA0182
- RESID
-
-
-
- DHB
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 9276974
- PubMed PMID
-
-
-
-
-
-
-
-
-
- Carboxymethyl-Cys cyclization (N-terminus)
- Carbamidomethyl-Cys cyclization (N-terminus)
-
- 12643538
- PubMed PMID
-
-
-
- J. Proteome Res. 1, 181-187 (2002)
- Journal
-
-
- Cyclisation of N-term Carbamidomethyl-Cys or Carboxymethyl-Cys. The delta is relative to Cys. For a delta relative to alkylated Cys, see Ammonia-loss and Dehydrated.
-
-
-
-
-
-
-
-
- AA0031
- RESID
-
-
-
- Miller et.al. Arch. Biochem. Biophy. (1993) 301, 41-52.
- Journal
-
-
-
- 8442665
- PubMed PMID
-
-
-
- PYRE
- FindMod
-
-
-
-
-
-
-
-
-
-
- AA0031
- RESID
-
-
-
- PYRR
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
- 10446193
- PubMed PMID
-
-
-
- Sherman, N. E., Yates, N. A., Shabanowitz, J., Hunt, D. F., Jeffery, W. A., Bartlet-Jones, M., and Pappin, D. J. C. (1995) Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics, May 21-26, 1995, Atlanta, GA
- Journal
-
-
-
-
-
-
-
-
-
-
-
- Proton replaced by sodium cation
-
-
-
-
-
-
-
-
-
- 11760118
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- methyl ester
-
- METH
- FindMod
-
-
-
- AA0318
- RESID
-
-
-
- AA0338
- RESID
-
-
-
- AA0064
- RESID
-
-
-
- AA0061
- RESID
-
-
-
- AA0063
- RESID
-
-
-
- AA0065
- RESID
-
-
-
- AA0069
- RESID
-
-
-
- AA0336
- RESID
-
-
-
- AA0305
- RESID
-
-
-
- AA0272
- RESID
-
-
-
- AA0076
- RESID
-
-
-
- AA0071
- RESID
-
-
-
- AA0070
- RESID
-
-
-
- AA0073
- RESID
-
-
-
- AA0234
- RESID
-
-
-
- AA0273
- RESID
-
-
-
- AA0317
- RESID
-
-
-
- AA0337
- RESID
-
-
-
- AA0299
- RESID
-
-
-
- AA0072
- RESID
-
-
-
- 11875433
- PubMed PMID
-
-
-
- AA0105
- RESID
-
-
-
-
-
-
-
- Cysteine sulfenic acid
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Proline oxidation to glutamic semialdehyde
-
-
-
-
-
- Hydroxyglycine derivative in amidation pathway
-
-
-
-
-
- HYDR
- FindMod
-
-
-
- AA0322
- RESID
-
-
-
- 11212008
- PubMed PMID
-
-
-
- 11120890
- PubMed PMID
-
-
-
- DOPA
- FindMod
-
-
-
- CSEA
- FindMod
-
-
-
- 14661084
- PubMed PMID
-
-
-
- AA0026
- RESID
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- 15569593
- PubMed PMID
-
-
-
- AA0205
- RESID
-
-
-
- AA0215
- RESID
-
-
-
- Lagerwerf FM, van de Weert M, Heerma W, Haverkamp J, Rapid Commun Mass Spectrom. 1996;10(15):1905-10
- Journal
-
-
-
- AA0029
- RESID
-
-
-
- AA0030
- RESID
-
-
-
- 9004526
- PubMed PMID
-
-
-
- AA0028
- RESID
-
-
-
- 11461766
- PubMed PMID
-
-
-
- AA0027
- RESID
-
-
-
- AA0235
- RESID
-
-
-
- AA0146
- RESID
-
-
-
- 14661085
- PubMed PMID
-
-
-
- 12781462
- PubMed PMID
-
-
-
- 2057999
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- DIMETH
- FindMod
-
-
-
- AA0311
- RESID
-
-
-
- AA0068
- RESID
-
-
-
- 14570711
- PubMed PMID
-
-
-
- AA0067
- RESID
-
-
-
- 12964758
- PubMed PMID
-
-
-
- AA0075
- RESID
-
-
-
- AA0066
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- 12590383
- PubMed PMID
-
-
-
- AA0074
- RESID
-
-
-
- AA0062
- RESID
-
-
-
- Role of arginine and its methylated derivatives in cancer biology and treatment
- Misc. URL
- http://www.cancerci.com/content/1/1/3
-
-
- J. Hirota et. al., Rapid Commun. Mass Spectrom., 17 371-6 (2003)
- Journal
-
-
-
- TRIMETH
- FindMod
-
-
- RESID gives the delta as 43 Da?
-
-
-
-
-
-
-
-
-
-
- Methyl methanethiosulfonate
- MMTS
-
- J. A. Kowalak and K. A. Walsh, Protein Science (1996) 5: 1625-1632
- Journal
-
-
-
- AA0232
- RESID
-
-
-
- TRC data sheet
- Misc. URL
- http://www.trc-canada.com/white_papers.lasso
-
-
- Applied Biosystems iTRAQ(TM) Reagents Chemistry Reference Guide Part Number 4351918 Rev. A
- Misc. URL
- http://docs.appliedbiosystems.com/pebiodocs/04351918.pdf
-
-
- AA0320
- RESID
-
-
-
- 8844851
- PubMed PMID
-
-
-
- AA0101
- RESID
-
-
-
- BMTH
- FindMod
-
-
-
-
-
-
-
-
- Sulfitolysis
-
-
-
-
-
-
- AA0362
- RESID
-
-
-
- AA0361
- RESID
-
-
-
- SULF
- FindMod
-
-
-
- AA0171
- RESID
-
-
-
- Medzihradszky et al., Mol. Cell. Proteomics 2004, 3, 429-440
- Journal
-
-
-
- 14752058
- PubMed PMID
-
-
-
- AA0172
- RESID
-
-
-
-
-
-
-
-
-
-
- glycation
-
-
-
- glycation
-
-
-
-
-
-
- Fructose
- Glucose
- Galactose
- Mannose
-
- GLUC
- FindMod
-
-
-
- 15279557
- PubMed PMID
-
-
-
- AA0152
- RESID
-
-
-
- AA0157
- RESID
-
-
-
- AA0327
- RESID
-
-
-
- AA0217
- RESID
-
-
-
- CMAN
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
- PDOC00168
- Prosite
-
-
-
- AA0118
- RESID
-
-
-
- LIPY
- FindMod
-
-
-
- 3522581
- PubMed PMID
-
-
- This group is normally a substituent on N6 of a lysine residue of an enzyme or other protein
-
-
-
-
-
-
-
-
-
-
-
-
- GLCN
- FindMod
-
-
-
- AA0151
- RESID
-
-
-
- AA0154
- RESID
-
-
-
- 3086323
- PubMed PMID
-
-
-
- AA0155
- RESID
-
-
- The amine derivative of a hexose formed by replacing a hydroxyl group with an amino group.(+acetyl group)
-
-
-
-
-
-
-
-
- 15609361
- PubMed PMID
-
-
-
- AA0102
- RESID
-
-
-
- FARN
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
- PDOC00008
- Prosite
-
-
-
- AA0059
- RESID
-
-
-
- AA0307
- RESID
-
-
-
- AA0078
- RESID
-
-
-
- MYRI
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
- Biochemistry; D.Voet and J.G.Voet WILEY(p728)
- Book
-
-
-
- AA0119
- RESID
-
-
-
- PLP
- FindMod
-
-
- The co-enzyme derivative of vitamin B6. Forms Schiff\'s bases of substrate amino acids during catalysis of transamination, decarboxylation and racemisation reactions.
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0080
- RESID
-
-
-
- AA0079
- RESID
-
-
-
- AA0106
- RESID
-
-
-
- AA0077
- RESID
-
-
-
- PALM
- FindMod
-
-
-
- AA0339
- RESID
-
-
-
- AA0060
- RESID
-
-
- Palmitoylation is a post-translational modification that consists in the addition of a 16 carbons fatty acid, palmitate, to a cysteine residue through the creation of a thioester link.
-
-
-
-
-
-
-
-
- AA0104
- RESID
-
-
-
- 15609361
- PubMed PMID
-
-
-
- GERA
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0150
- RESID
-
-
-
- PPAN
- FindMod
-
-
- Protein which contains at least one phosphopantetheine as the prosthetic group. In acyl carrier proteins (ACP) for example, it serves as a \'swinging arm\' for the attachment of activated fatty acid and amino-acid groups.
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0143
- RESID
-
-
-
- Structure
- Misc. URL
- http://www.aw-bc.com/mathews/EF/FAD.GIF
-
-
- AA0144
- RESID
-
-
-
- AA0145
- RESID
-
-
-
- AA0221
- RESID
-
-
-
- FAD
- FindMod
-
-
-
-
-
-
-
-
-
-
-
- 10356335
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- homoarginine
-
- 11078590
- PubMed PMID
-
-
-
- ASMS 2001 abstract
- Misc. URL
- http://www.indiana.edu/~reillyjp/ASMS2001posters/beardsley_poster.pdf
-
-
- 11821862
- PubMed PMID
-
-
-
- 11085420
- PubMed PMID
-
-
-
- Anal. Biochem. 287, p110-117, 2000
- Journal
-
-
- Specific for sidechain of lysine. Does not modify the N-termini except for glycine at a slower rate than the side chain of lysine.
-
-
-
-
-
-
-
-
-
-
-
- 11327326
- PubMed PMID
-
-
-
- Poli G, Schaur RJ., IUBMB Life 2000 Oct-Nov;50(4-5):315-21
- Journal
-
-
- A lipid-type modification. HNE forms a Michael addition product on Cysteine, Histidine and Lysines. Unusually, it doesn\'t replace a hydrogen on the amino acid side chain.
-
-
-
-
-
-
-
-
-
- glucuronosyl
-
- AA0291
- RESID
-
-
-
- AA0058
- RESID
-
-
-
- Lin, T.S. Kolattukudy, P.E., Eur. J. Biochem. 106, 341-351, 1980
- Journal
-
-
-
- 7398618
- PubMed PMID
-
-
- The addition of a sugar unit to a protein amino acid, e.g. the addition of glycan chains to proteins. Addition of glucuronic acid. Observed for N-term G
-
-
-
-
-
-
-
-
-
-
-
- 3083866
- PubMed PMID
-
-
-
- 8344916
- PubMed PMID
-
-
-
- AA0229
- RESID
-
-
-
- GLUT
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
- N-trideuteriumacetoxy
-
- 11857757
- PubMed PMID
-
-
-
- 11999733
- PubMed PMID
-
-
-
- 12175151
- PubMed PMID
-
-
-
- Controlling Deuterium isotope effects in comparative proteomics. Zhang, Roujian; Sioma, Cathy S.; Thompson, Robert A.; Xiong, Li; Regnier, Fred E.. Department of Chemistry, Purdue University, West Lafayette, IN, USA. Analytical Chemistry (2
- Journal
-
-
-
- Global internal standard technology for comparative proteomics. Chakraborty, Asish; Regnier, Fred E.. Department of Chemistry, Purdue University, West Lafayette, IN, USA. Journal of Chromatography, A (2002), 949(1-2), 173-184.
- Journal
-
-
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
- 12175151
- PubMed PMID
-
-
-
- 11999733
- PubMed PMID
-
-
-
- 11857757
- PubMed PMID
-
-
-
- Global internal standard technology for comparative proteomics. Chakraborty, Asish; Regnier, Fred E.. Department of Chemistry, Purdue University, West Lafayette, IN, USA. Journal of Chromatography, A (2002), 949(1-2), 173-184.
- Journal
-
-
-
- Controlling Deuterium isotope effects in comparative proteomics. Zhang, Roujian; Sioma, Cathy S.; Thompson, Robert A.; Xiong, Li; Regnier, Fred E.. Department of Chemistry, Purdue University, West Lafayette, IN, USA. Analytical Chemistry (2
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
- Global internal standard technology for comparative proteomics. Chakraborty, Asish; Regnier, Fred E.. Department of Chemistry, Purdue University, West Lafayette, IN, USA. Journal of Chromatography, A (2002), 949(1-2), 173-184.
- Journal
-
-
-
- Controlling Deuterium isotope effects in comparative proteomics. Zhang, Roujian; Sioma, Cathy S.; Thompson, Robert A.; Xiong, Li; Regnier, Fred E.. Department of Chemistry, Purdue University, West Lafayette, IN, USA. Analytical Chemistry (2
- Journal
-
-
-
- 11857757
- PubMed PMID
-
-
-
- 12175151
- PubMed PMID
-
-
-
- 11999733
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- N-(4-trimethylammoniumbutanoxy)-NHS
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
- 11857757
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
- 11857757
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
- 11857757
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
- 11857757
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- Controlling Deuterium isotope effects in comparative proteomics. Zhang, Roujian; Sioma, Cathy S.; Thompson, Robert A.; Xiong, Li; Regnier, Fred E.. Department of Chemistry, Purdue University, West Lafayette, IN, USA. Analytical Chemistry (2
- Journal
-
-
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
- 12175151
- PubMed PMID
-
-
-
- 11857757
- PubMed PMID
-
-
-
- AA0130
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- Controlling Deuterium isotope effects in comparative proteomics. Zhang, Roujian; Sioma, Cathy S.; Thompson, Robert A.; Xiong, Li; Regnier, Fred E.. Department of Chemistry, Purdue University, West Lafayette, IN, USA. Analytical Chemistry (2
- Journal
-
-
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
- 11857757
- PubMed PMID
-
-
-
- 12175151
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
- Controlling Deuterium isotope effects in comparative proteomics. Zhang, Roujian; Sioma, Cathy S.; Thompson, Robert A.; Xiong, Li; Regnier, Fred E.. Department of Chemistry, Purdue University, West Lafayette, IN, USA. Analytical Chemistry (2
- Journal
-
-
-
- Comparative proteomics based on stable isotope labeling and affinity selection. Regnier, Fred E.; Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu, Peiran; Chakraborty, Asish; Seeley, Erin; Sioma, Cathy; Thompson, Robert A. Department of Chemistry, Pu
- Journal
-
-
-
- 11857757
- PubMed PMID
-
-
-
- 12175151
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- http://www.piercenet.com/Proteomics/browse.cfm?fldID=84EBE112-F871-4CA5-807F-47327153CFCB
- Misc. URL
-
-
-
- 15174056
- PubMed PMID
-
-
-
- Yoo, Byoung-Sam; Regnier, Fred E. Electrophoresis (2004), 25(9), 1334-1341
- Journal
-
-
-
-
-
-
-
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- 9252331
- PubMed PMID
-
-
-
- 10717661
- PubMed PMID
-
-
-
-
-
- Could also be classed as chemical derivative
-
-
-
-
-
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- 9252331
- PubMed PMID
-
-
-
-
-
- Could also be classed as chemical derivative
-
-
-
-
-
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- 9252331
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- Degradation of the amino acids Isoleucine, Leucine and Tryptophan
- Misc. URL
- http://www.lbqp.unb.br/bioq/htm/aulas2D/deg_aa_ile_leu_trp.htm?reload_coolmenus
-
-
- 9252331
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Reduction of Schiff base formed between K amino group and acetaldehyde
-
-
-
-
-
-
-
-
- 11212008
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- Arginine oxidation to gamma-glutamyl semialdehyde
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- Jesus Requena, Chien-Chung Chao, Rodney L. Levine, and Earl R. Stadtman, Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins, PNAS 98 69-74 (2001)
- Journal
- http://www.pnas.org/cgi/content/full/98/1/69
-
-
- 9252331
- PubMed PMID
-
-
-
- 1680314
- PubMed PMID
-
-
-
-
-
-
-
-
-
- 14678012
- PubMed PMID
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- 9252331
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 9750125
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Poster abstract P-48
- Misc. URL
- http://www.wzw.tum.de/proteomik/forum2003/Posters-Abstracts.pdf
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Poster abstract P-48
- Misc. URL
- http://www.wzw.tum.de/proteomik/forum2003/Posters-Abstracts.pdf
-
-
-
-
-
-
-
-
-
-
-
-
-
- Introduction to Protein Labeling
- Misc. URL
- http://www.piercenet.com/Proteomics/browse.cfm?fldID=84EBE112-F871-4CA5-807F-47327153CFCB
-
-
- EZ-Link Sulfo-NHS-Biotin Reagents
- Misc. URL
- http://www.piercenet.com/Products/Browse.cfm?fldID=8D38BA83-EFDC-421A-853F-E96EBA380612
-
-
-
-
-
-
-
-
-
-
-
-
-
- EZ-Link Maleimide PEOn-Biotin (n = 2 and 11)
- Misc. URL
- http://www.piercenet.com/Products/Browse.cfm?fldID=01031005
-
-
-
-
-
-
-
-
-
- 2-methoxy-4,5-dihydro-1H-imidazole derivative
- Lys imidazole
-
- 11746907
- PubMed PMID
-
-
-
- Rapid Communications in Mass Spectrometry, Volume 15, Issue 24 , Pages 2387 - 2392
- Journal
- http://dx.doi.org/10.1002/rcm.517
-
-
- Agilent Lys Tag 4H Reagent Kit
- Misc. URL
- http://www.chem.agilent.com/cag/lystag.asp
-
-
- Poster: Kelly Zhang, Gordon Nicol, Nina Zolotarjova, Cory Szafranski, Jerome Bailey, Liang-Sheng Yang, and Barry Boyes
- Misc. URL
- http://www.chem.agilent.com/cag/other/IMTHUPO2003.pdf
-
-
-
-
-
-
-
-
-
- 2-methoxy-4,5-dihydro-1H-imidazole derivative
-
- Rapid Communications in Mass Spectrometry, Volume 15, Issue 24 , Pages 2387 - 2392
- Journal
- http://dx.doi.org/10.1002/rcm.517
-
-
- Agilent Lys Tag 4H Reagent Kit
- Misc. URL
- http://www.chem.agilent.com/cag/lystag.asp
-
-
- 11746907
- PubMed PMID
-
-
-
- Poster: Kelly Zhang, Gordon Nicol, Nina Zolotarjova, Cory Szafranski, Jerome Bailey, Liang-Sheng Yang, and Barry Boyes
- Misc. URL
- http://www.chem.agilent.com/cag/other/IMTHUPO2003.pdf
-
-
-
-
-
-
-
-
-
-
-
-
- http://www.piercenet.com/Proteomics/browse.cfm?fldID=84EBE112-F871-4CA5-807F-47327153CFCB
- Misc. URL
-
-
-
- Yoo, Byoung-Sam; Regnier, Fred E. Electrophoresis (2004), 25(9), 1334-1341
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 8839040
- PubMed PMID
-
-
-
- 9252331
- PubMed PMID
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
- ICAT page from the Royal Society of Chemistry
- Misc. URL
- http://www.chemsoc.org/exemplarchem/entries/2002/proteomics/icat.htm
-
-
- Applied Biosystems product page
- Misc. URL
- https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=600902
-
-
- Cleavable ICAT Reagent Kit for Protein Labeling
- Misc. URL
- http://docs.appliedbiosystems.com/pebiodocs/04333373.pdf
-
-
-
-
-
-
-
-
-
-
- 7744761
- PubMed PMID
-
-
- Lys modification is formation of Schiff base.
-
-
-
-
-
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- 9252331
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- AA0121
- RESID
-
-
-
- ALLYS
- FindMod
-
-
-
- 9252331
- PubMed PMID
-
-
-
- 11120890
- PubMed PMID
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
- Cleavable ICAT Reagent Kit for Protein Labeling
- Misc. URL
- http://docs.appliedbiosystems.com/pebiodocs/04333373.pdf
-
-
- Applied Biosystems product page
- Misc. URL
- https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=600902
-
-
- ICAT page from the Royal Society of Chemistry
- Misc. URL
- http://www.chemsoc.org/exemplarchem/entries/2002/proteomics/icat.htm
-
-
-
-
- only with Listeria monocytogenes (gram-positive bacteria)
-
-
-
-
-
-
-
-
-
- AA0021
- RESID
-
-
-
- 10825024
- PubMed PMID
-
-
-
- 8758896
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- CysNEM
-
- reaction
- Misc. URL
- http://www.chemistry.ucsc.edu/~fink/231/Image118.gif
-
-
- 12777388
- PubMed PMID
-
-
-
- 11813307
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- J. Biol. Chem 2002 vol277 pp17048-17056
- Journal
-
-
-
- 11861642
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Reference http://www.piercenet.com/Proteomics/browse.cfm?fldID=84EBE112-F871-4CA5-807F-47327153CFCB
- Misc. URL
-
-
-
- http://web.indstate.edu/thcme/mwking/nitrogen-metabolism.html#urea
- Misc. URL
-
-
-
-
-
-
-
-
-
-
-
-
-
- http://web.indstate.edu/thcme/mwking/nitrogen-metabolism.html#urea
- Misc. URL
-
-
-
- http://www.piercenet.com/Proteomics/browse.cfm?fldID=84EBE112-F871-4CA5-807F-47327153CFCB
- Misc. URL
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- glycineglycine
-
- Grou et al., J Biol Chem. 2008 Mar 22; Epub
- Journal
- http://www.jbc.org/cgi/content/abstract/M800402200v1
-
-
- Wang et al., J Cell Biol. 2007 May 21;177(4):613-24
- Journal
- http://www.ncbi.nlm.nih.gov/pubmed/17502423
-
-
- 12872131
- PubMed PMID
-
-
-
- The Ubiquitin System for Protein Modification and Degradation
- Misc. URL
- http://www.nottingham.ac.uk/biochemcourses/students/ub/ubindex.html
-
- The two glycine residues left on ubiquitinylated lysine after tryptic digestion
-
-
-
- A protein in which either the N-terminal N-formylmethionine has not been processed by the methionyl-tRNA formyltransferase or which is posttranslationally modified by the attachment of at least one formyl group.
-
-
- Can occur under CNBr cleavage conditions (70% HCOOH)
-
-
- Can occur under CNBr cleavage conditions (70% HCOOH)
-
-
- Can occur under CNBr cleavage conditions (70% HCOOH)
-
-
- Can occur under CNBr cleavage conditions (70% HCOOH)
-
-
-
-
-
-
- AA0211
- RESID
-
-
-
- 15799070
- PubMed PMID
-
-
-
- AA0021
- RESID
-
-
-
- FORM
- FindMod
-
-
-
- AA0384
- RESID
-
-
-
- AA0057
- RESID
-
-
-
- AA0384
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- Harbury glyco-ICAT C12
-
- Silverman, Harbury, J. Biol. Chem. 2002, 277, 34, pp. 30968-30975
- Journal
-
-
-
- 12185208
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- Harbury glyco-ICAT C13
-
- Silverman, Harbury, J. Biol. Chem. 2002, 277, 34, pp. 30968-30975
- Journal
-
-
-
- 12185208
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 3,3-Dithio-bis-(sulfosuccinimidyl)propionate
-
- Lomant, A.J. and Fairbanks, G., J.Mol. Biol. 104, 243-261 (1976)
- Journal
-
-
-
- Lee,W.T. and Conrad, D.H. 1985, J. Immunol. 134:518
- Journal
-
-
-
- 11710128
- PubMed PMID
-
-
-
- 3155470
- PubMed PMID
-
-
-
- 957432
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
- 1093385
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
- 5-iodoacetamidofluorescein, [63368-54-7]
- CAS Registry
-
-
-
- 3578767
- PubMed PMID
-
-
-
- Gorman, J. J., Eur. J. Biochem 1987, 168-9
- Journal
-
-
-
- Gorman, J. J., Anal Biochem 1984, 160, 376
- Journal
-
-
-
- 3311742
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- 2026710
- PubMed PMID
-
-
-
- 15627961
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- 15627961
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- 2026710
- PubMed PMID
-
-
-
- 15627961
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- myristoyl with one double bond
- C14:1 acylation
-
- Neubert TA, Johnson RS, Hurley JB, Walsh KA (1992). The rod transducin alpha subunit amino terminus is heterogeneously fatty acylated. J Biol Chem. 267(26):18274-7.
- Journal
-
-
-
- 1326520
- PubMed PMID
-
-
- Found on vision signal transduction proteins
-
-
-
-
-
-
-
-
-
- 9252331
- PubMed PMID
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
-
-
-
-
-
-
-
- myristoyl with 2 double bonds
- C14:2 fatty acylation
-
- Neubert TA, Johnson RS, Hurley JB, Walsh KA (1992). The rod transducin alpha subunit amino terminus is heterogeneously fatty acylated. J Biol Chem. 267(26):18274-7.
- Journal
-
-
-
- 1326520
- PubMed PMID
-
-
- Found on vision signal transduction proteins
-
-
-
-
-
-
-
-
-
-
- Julka,S.Regnier,F.E Anal Chem. 2004 Oct 1;76(19):5799-806.
- Journal
-
-
-
- 15456300
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- Man5
- Core structure of high-mannose N-linked oligosaccharides
-
-
-
-
-
-
-
-
-
-
-
-
- dansyl chloride [605-65-2]
- CAS Registry
-
-
-
-
-
- Virtual Modification for MS/MS of a-type ions
-
-
-
-
-
-
- Decarboxylation of C-terminus as reaction inside the mass spectrometer
-
- 14588022
- PubMed PMID
-
-
-
- D. Suckau, A. Resemann, Anal. Chem., 75(21):5817-24 (2003)
- Journal
-
-
- MS/MS experiments of mass spectrometric a-ions (MS^3) can be used for protein identification by library searching. T3-sequencing is such a technique (see reference). Search engines must recognize this \'virtual modification\' for this purpose.
-
-
-
-
-
-
-
-
-
-
- ASMS 2004 abstract
- Misc. URL
- http://www.indiana.edu/~reillyjp/ASMS2004/janecki_Ext-Abs%20Amidination.pdf
-
-
- 12643539
- PubMed PMID
-
-
-
- 6273432
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Saito T., Itoh T.; Journal of dairy Science, 75 (1992). p1768.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- chitobiose core
-
-
-
-
-
-
-
-
-
-
-
-
- Saito T., Itoh T.; Journal of dairy Science, 75 (1992). p1768.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Selenocysteine conventionally represented by 1 letter code U
-
-
-
-
-
-
- 12148805
- PubMed PMID
-
-
-
- AA0022
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- NBS reagent heavy
-
- Rapid Communications in Mass Spectrometry, 17, 1642-1650 (2003)
- Journal
-
-
-
- 12845591
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- Identifying and quantifying in vivo methylation sites by heavy methyl SILAC, Shao-En Ong et al., Nature methods 1(2) 2004, 1-8
- Journal
-
-
-
-
-
-
-
-
-
-
-
- Identifying and quantifying in vivo methylation sites by heavy methyl SILAC, Shao-En Ong et al., Nature Methods 1(2) 1-8
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
- 2-nitrobenzenesulfenyl
-
- 12845591
- PubMed PMID
-
-
-
- Rapid Communications in Mass Spectrometry, 17, 1642-1650 (2003)
- Journal
-
-
-
-
-
-
-
-
-
-
-
- 1443554
- PubMed PMID
-
-
-
- Anal. Biochem. 1992, 205:151-158
- Journal
-
-
- Conversion of glycosylated asparagine residues upon deglycosylation with PGNase F in 18O labelled water.
-
-
-
-
-
-
-
-
-
- (3-acrylamidopropyl)trimethylammonium
-
- 15283597
- PubMed PMID
-
-
-
-
-
- Secondary adduct - much less common as C
-
-
- Secondary adduct - much less common as C
-
-
- Primary adduct formed
-
-
-
-
-
-
- Butylated Hydroxytoluene
-
- 9448752
- PubMed PMID
-
-
- BHT metabolism has been studied in rats and mice in relation to tumor promotion.
-
-
-
-
-
-
-
-
-
-
- 2005 ASMS poster Presentation TP 527
- Other
-
-
- Phosphoserine to S-ethylcystine\r\nvia Beta elimination/Michael addition of ethylthiol
-
-
-
-
-
-
-
-
-
-
-
- b-elimination thiol derivatization
-
- 12216740
- PubMed PMID
-
-
- DAET = 2-(dimethylamino)ethanethiol; The phosphorylation to amine is the beta elimination of phosphate and Michael addition of 2-(dimethylamino)ethanethiol to the site.
-
-
-
-
-
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- 9252331
- PubMed PMID
-
-
-
-
-
- Used in SILAC experiment
-
-
-
-
-
-
- heavy tyrosine
-
- Ong, S-E, I. Kratchmarova, and M. Mann (2003). J Proteome Research 2: 173-181
- Journal
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- 12716131
- PubMed PMID
-
-
-
-
-
- Used in SILAC experiment
-
-
-
-
-
-
-
-
- heavy phosphotyrosine
-
- 12716131
- PubMed PMID
-
-
-
- Ong, S-E, I. Kratchmarova, and M. Mann (2003). J Proteome Research 2: 173-181
- Journal
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
-
-
- Used in SILAC experiment
-
-
- Used in SILAC experiment
-
-
- Used in SILAC experiment
-
-
- Used in SILAC experiment
-
-
-
-
-
-
- Ong, S-E, I. Kratchmarova, and M. Mann (2003). J Proteome Research 2: 173-181
- Journal
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- 12716131
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- HPG arginine
-
- 11698400
- PubMed PMID
-
-
-
- 11914093
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- 2 HPG arginine
-
- 11698400
- PubMed PMID
-
-
- OH-PGO and PGO react with arginine at a stoichiometry of 2:1
-
-
-
-
-
-
-
-
-
-
- (3-acrylamidopropyl)trimethylammonium
-
- 15283597
- PubMed PMID
-
-
-
-
-
-
-
-
-
- Double O18 (C-term)
-
- 11467524
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- Waters Application Note 930494
- Misc. URL
- http://www2.waters.com/watprod.nsf/newdocs/930494
-
-
- 14997490
- PubMed PMID
-
-
-
- Hochleitner, E. O. et al, Proteomics 2004, 4, 669-676,
- Journal
-
-
-
-
-
-
-
-
-
-
-
- reductive amination
-
- Anal Chem 2003. 75, 6843
- Journal
-
-
-
- 14670044
- PubMed PMID
-
-
-
- Jue-Liang Hsu, Sheng-Yu Huang, and Shu-Hui Chen. Stable-Isotope based Multiplex Labeling Coupled with LC-MS/MS, HUPO 3rd ANNUAL WORLD CONGRESS, Bejing (China) 2004
- Book
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 11507762
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 12766232
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- Acrolein94, FDP
-
-
-
-
-
-
-
-
-
-
- Acrolein56
-
- 10825247
- PubMed PMID
-
-
-
- 15541752
- PubMed PMID
-
-
-
-
-
-
-
-
-
- Acrolein38
-
-
-
-
-
-
-
- Acrolein76
-
-
-
-
-
-
-
-
- Acrolein112
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0237
- RESID
-
-
-
- AA0169
- RESID
-
-
-
- Structure
- Misc. URL
- http://betelgeuse.u-strasbg.fr/DocPARP/DocPARG/images/Structure-pADPR.jpg
-
-
- AA0168
- RESID
-
-
-
- AA0231
- RESID
-
-
-
- 15842200
- PubMed PMID
-
-
-
- AA0295
- RESID
-
-
-
- ADP
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
- 12766232
- PubMed PMID
-
-
-
-
-
- Low abundance
-
-
-
-
-
-
-
-
-
-
-
- AKA iTRAQ4plex116/7
- Applied Biosystems iTRAQ(TM) multiplexed quantitation chemistry
-
- Applied Biosystems Chemistry Reference Guide
- Misc. URL
- http://docs.appliedbiosystems.com/pebiodocs/04351918.pdf
-
- Different channels have the same nominal mass but slightly different exact masses. Use this value for all channels for quantitation purposes
-
-
-
-
-
-
-
-
-
-
-
- 11283024
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
- BROM
- FindMod
-
-
-
- AA0179
- RESID
-
-
-
- AA0180
- RESID
-
-
-
- AA0173
- RESID
-
-
-
- AA0176
- RESID
-
-
-
- AA0175
- RESID
-
-
-
- AA0174
- RESID
-
-
-
- 9033387
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- 9252331
- PubMed PMID
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
- Yoo, Byoung-Sam; Regnier, Fred E. Electrophoresis (2004), 25(9), 1334-1341.
- Journal
-
-
-
- 15828771
- PubMed PMID
-
-
-
-
-
- alkaline phosphatase to dephosphorylate
-
-
- alkaline phosphatase to dephosphorylate
-
-
- alkaline phosphatase to dephosphorylate
-
-
- digesting in labelled water
-
-
-
-
-
- H2 18O Alkaline Phosphatase
-
- 11467524
- PubMed PMID
-
-
-
-
-
- Used in SILAC experiment
-
-
-
-
-
-
-
- heavy lysine
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- 12716131
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 12110917
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- N-terminal / lysine sulfonation
-
- Wang et al. 2004. Rapid Commun Mass Spectrom. 18(1):96-102
- Journal
-
-
-
- Chen et. al. Rapid Commun Mass Spectrom. 2004;18(2):191-8.
- Journal
-
-
-
- Shimadzu application note
- Misc. URL
- http://www.shimadzu-biotech.net/literature/application_note/202_1.pdf
-
-
- 14745769
- PubMed PMID
-
-
-
- 14689565
- PubMed PMID
-
-
-
- 16526082
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- Under construction
- Misc. URL
- http://www.targetdiscovery.com/index.php?topic=prod.idbe
-
-
- Target discovery , Inc. IDBEST IGBP user manual
- Other
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 15549660
- PubMed PMID
-
-
- Cytopiloyne is a polyacetylenic glucoside isolated form Bidens pilosa which can modulate T helper cell differentiation. Biotinylated cytopiloyne might be use to identify its receptor in T cell.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 15549660
- PubMed PMID
-
-
- Cytopiloyne is a polyacetylenic glucoside isolated form Bidens pilosa which can modulated T helper cell differentiation. Biotinylated cytopiloyne might be use to identify its receptor in T cell.
-
-
-
- Used in SILAC experiment
-
-
-
-
-
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- 12716131
- PubMed PMID
-
-
-
-
-
- Used in AQUA experiment
-
-
-
-
-
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- 12771378
- PubMed PMID
-
-
-
-
-
- for SILAC expt
-
-
-
-
-
- Trideuteration
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
-
-
- Used in AQUA experiment
-
-
-
-
-
-
-
-
- 12771378
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- b-elimination PET derivatisation
-
- Manfredo Quadroni in: ''Proteome Research: Mass Spectrometry (ed. P.James)'' pp 187-206
- Book
-
-
- PET = 2-[4-pyridyl]ethanethiol. This modification is a chemical derivative, based on a alkaline catalysed beta-elimination of phosphoserines and phosphothreonines and subsequent 1,4-addition of 2-[4-pyridine]ethanethiol. These modified serines and threonines produce in MS/MS a characteristic fragment which can be used for precursor-ion-scan experiments.
-
-
-
-
-
-
-
-
-
- Ettan CAF MALDI
-
- Anal.Chem 75(7):156A-165A
- Journal
-
-
-
- 15732931
- PubMed PMID
-
-
-
- 16046801
- PubMed PMID
-
-
- N-terminal sulfonation of diglycine to detect ubiquitination sites
-
-
-
-
-
-
-
-
-
-
- Partis MD et al. 1983 J Prot Chem 2 263-277
- Journal
-
-
-
-
-
-
-
-
-
-
-
- AA0230
- RESID
-
-
-
- 10442087
- PubMed PMID
-
-
-
- NTRY
- FindMod
-
-
-
- 15688001
- PubMed PMID
-
-
- Protein which is posttranslationally modified by the attachment of a nitric oxide group on the sulfur atom of one or more cysteine residues.
-
-
-
-
- Primary site of modification
-
-
-
-
-
-
-
-
-
-
-
-
- Biochim Biophys Acta. 1996 Feb 16; 1299(3):353-7
- Journal
-
-
-
- 8597590
- PubMed PMID
-
-
- Potential protein modification when using AEBSF (Pefabloc) as a serine protease inhibitor.
-
-
-
- from reaction of SH group with iodoethanol
-
-
-
-
-
-
-
- Anal Biochem. 2004 Oct 1;333(1):174-81
- Journal
-
-
-
- 15351294
- PubMed PMID
-
-
- A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Hale JE, Butler JP, Gelfanova V, You JS, Knierman MD.
-
-
-
-
-
-
-
-
- hydroxymethylvinyl ketone
-
- 11743741
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- 9629898
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Structure
- Misc. URL
- http://commons.wikimedia.org/wiki/Image:Coenzyme_a.png
-
-
- AA0306
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- Glutamate methyl ester
-
- P02942
- Swiss-Prot
-
-
-
- DEAME
- FindMod
-
-
-
- Anal Chem. 2007 Jan 15;79(2):673-81.
- Journal
-
-
-
-
-
-
-
-
-
-
- DIMETP
- FindMod
-
-
-
-
-
-
-
-
-
-
- Nature. 2004 Nov 18;432(7015):353-60. Epub 2004 Nov 03
- Journal
-
-
-
- 15525938
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- C-Terminal/Glutamate/Aspartate sulfonation
-
- ASMS 2005: Panchaud et al. (Poster ThP 509) ''Combining protein identification and quantitation: C-terminal isotope-coded tagging''
- Other
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- C-Terminal/Glutamate/Aspartate sulfonation
-
- ASMS 2005: Panchaud et al. (Poster ThP 509) ''Combining protein identification and quantitation: C-terminal isotope-coded tagging''
- Other
-
-
-
- 9254591
- PubMed PMID
-
-
-
-
-
- EDC-coupled modification of D, E and C-terminus
-
-
- EDC-coupled modification of D, E and C-terminus
-
-
- EDC-coupled modification of D, E and C-terminus
-
-
-
-
-
-
-
-
-
- Introduction to Protein Labeling
- Misc. URL
- http://www.piercenet.com/Proteomics/browse.cfm?fldID=84EBE112-F871-4CA5-807F-47327153CFCB
-
- EDC crosslinker is used to couple biotin PEO-amine to carboxyl groups or 5\' phosphate groups
-
-
-
-
-
-
-
-
- 7949339
- PubMed PMID
-
-
- The cleavage of a peptide bond between Try-Xxx with oxidation of tryptophan to the oxolactone occurs in the presence of BNPS-skatole. This is a useful method for the chemical cleavage of proteins specifically at tryptophan residues.
-
-
-
-
-
-
-
-
-
-
-
- EZ-Link Biotin-HPDP (N-(6-(Biotinamido)hexyl)-3'-(2'-pyridyldithio)-propionamide
- Misc. URL
- http://www.piercenet.com/Products/Browse.cfm?fldID=01031002
-
-
-
-
-
-
-
-
- 10695144
- PubMed PMID
-
-
-
-
-
- Used in base/residue interactions (in principle?)
-
-
- Used in base/residue interactions (observed)
-
-
- Used in base/residue interactions (in principle?)
-
-
-
-
-
-
-
-
- UV induced cross-link product of Iodo-U-amp with WFY
-
- 6540775
- PubMed PMID
-
-
-
- 11112526
- PubMed PMID
-
-
-
- 11567090
- PubMed PMID
-
-
- One note about this chemistry is that for W you have to take care of O2 big time (and extract the I-uracil monophosphate with organics to get rid of residual iodide).
-
-
-
-
-
-
-
-
-
-
-
- 3-thiopropanoyl moiety from reduced DSP crosslinker or NHS-SS-biotin, modified with Iodoacetamide
-
- Peirce MJ, Wait R, Begum S, Saklatvala J, Cope AP (2004) Mol Cell Proteomics 3: 56-65
- Journal
-
-
-
- Swaim CL, Smith JB, Smith DL (2004) J Am Soc Mass Spectrom 15:736-749
- Journal
-
-
-
- 15121203
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- 10906242
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- deoxyhexose
-
- 15189151
- PubMed PMID
-
-
-
- Mormann, M., Macek, B., Gonzalez de Peredo, A., Hofsteenge, J., Peter-Katalinic, J. (2004). ''Structural studies on protein O-fucosylation by electron capture dissoziation.'' International Journal of Mass Spectrometry 234:11-21
- Journal
-
-
-
- 11344537
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
- esterification of carboxylic acids using D3-Methanolic HCl
-
-
-
- Gamma-carboxylation
-
-
- Gamma-carboxylation
-
-
-
-
-
-
-
-
-
- AA0114
- RESID
-
-
-
- GGLU
- FindMod
-
-
-
- AA0363
- RESID
-
-
-
- AA0032
- RESID
-
-
-
- 3802193
- PubMed PMID
-
-
-
- AA0304
- RESID
-
-
-
-
-
-
-
-
-
-
-
- mBromobimane
-
- 7856876
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- Vitamin k3 (Q)
-
- 15939799
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
- 12442261
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0025
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- 16078144
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Amersham (GE Healthcare) instruction leaflet 25800983PL Rev-B, 2003
- Other
-
-
-
- 12872219
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- MDA62
- usually major adduct formed from malondialdehyde (MDA) with the amino group of lysine residues
-
-
-
- Malondialdehyde (MDA) adduct
-
-
- 5-hydro-5-methylimidazol-4-one, Methylglyoxal adduct
-
-
-
-
-
-
- MDA54
-
- Uchida K, Sakai K, Itakura K, Osawa T, Toyokuni S. 1977. Protein modification by lipid peroxidation products: formation of malondialdehyde-derived N(epsilon)-(2-propenol)lysine in proteins. Arch Biochem Biophys. 346(1):45-52
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
- Chemistry of Protein Conjugation and Crosslinking by Shan S. Wong, 1991, pg.32
- Book
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Invitrogen X-link reagent
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Pierce data sheet
- Misc. URL
- http://www.piercenet.com/files/0668ss5.pdf
-
-
- 770170
- PubMed PMID
-
-
- imidoester cross-linker
-
-
-
-
-
-
-
-
-
-
-
-
-
- O-ethyl-N-(biotinamidopentyl)decanamido phosphonate
-
- 10611275
- PubMed PMID
-
-
-
- Liu, Patricelli and Cravatt; Activity-based protein profiling: The serine hydrolases. Proc Natl Acad Sci USA 96, 14694-14699 (1999)
- Journal
-
-
-
- Schopfer, Champion, Tamblyn, Thompson and Lockridge; Characteristic mass spectral fragments of the organophosphorus agent FP-biotin and FP-biotinylated peptides from trypsin and bovine albumin (Tyr410). Anal Biochem 345, 122-132 (2005)
- Journal
-
-
- FP-biotin was designed to label the active site serine of serine esterases/proteases.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Thiophos-biotin disulfide
-
-
-
-
-
-
-
-
-
-
-
-
-
- O-isopropyl-N-biotinylaminohexyl phosphonate
-
- Higson, Ferguson and Nikolaev; Synthesis of 6-N-biotinylaminohexyl isopropyl phosphorofluoridate: A potent tool for the inhibition/isolation of serine esterases and proteases. Synthesis 3, 407-409 (1999)
- Journal
-
-
- Commercially available from Toronto Research Chemicals Inc, as of 2005. Designed to label the active site serine of serine esterases/proteases.
-
-
-
-
-
-
-
-
-
-
-
- Crabb JW et al, Protein Sci. 2002;11: 831
- PubMed PMID
-
-
- Michael addition adduct of 4-hydroxynonenal with histidine, cystein and lysine residues stabilized by reduction with NaBH4
-
-
-
-
-
-
-
-
-
-
-
- http://www.piercenet.com/Proteomics/browse.cfm?fldID=84EBE112-F871-4CA5-807F-47327153CFCB
- Misc. URL
-
-
-
- Yoo, Byoung-Sam; Regnier, Fred E. Electrophoresis (2004), 25(9), 1334-1341
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
- Rapid Commun. Mass Spectrom. 2002; 16: 999-1001
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Main; Mode of action of anticholinesterases. Pharmac Ther 6, 579-628 (1979)
- Journal
-
-
- A selective label for the active site serine of the serine esterase/protease family. It has also been shown to label tyrosine in serum albumin.
-
-
-
-
-
-
-
-
-
-
-
-
- Main; Mode of action of anticholnesterases. Pharmac Ther 6, 579-628 (1979)
- Journal
-
-
- Created by auto-catalytic dealkylation of the O-Diisopropylphosphate adduct.
-
-
-
- Use when labelling post-digest
-
-
- Use when labelling pre-digest
-
-
-
-
-
-
-
-
-
- Bruker Daltonics order reference
- Misc. URL
- http://www.bdal.de/life-science-tools/care-consumables-more/icpl-kit.html
-
-
- Schmidt A, Kellermann J, Lottspeich F (2005): A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5: 4-15
- Journal
-
-
- Attention: As the digest is typically applied AFTER ICPL_light/heavy labeling, only ProteinN-term labeling and Lys-specific labeling is applied.
-
-
-
- Use when labelling pre-digest
-
-
-
- Use when labelling post-digest
-
-
-
-
-
-
-
-
- Bruker Daltonics order reference
- Misc. URL
- http://www.bdal.de/life-science-tools/care-consumables-more/icpl-kit.html
-
-
- Schmidt A, Kellermann J, Lottspeich F (2005): A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5: 4-15.
- Journal
-
-
- Attention: As the digest is typically applied AFTER ICPL_light/heavy labeling, only ProteinN-term labeling and Lys-specific labeling is applied.
-
-
-
-
-
-
-
-
-
- Observed
-
-
-
-
-
-
-
-
-
- 15489230
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0025
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- AA0040
- RESID
-
-
-
- DIPH
- FindMod
-
-
-
-
-
-
-
-
-
-
-
- AA0103
- RESID
-
-
-
- FAR0
- FindMod
-
-
-
-
-
-
-
-
-
-
-
- AA0107
- RESID
-
-
-
- DIAC
- FindMod
-
-
-
-
-
-
-
-
-
-
-
- AA0115
- RESID
-
-
-
- CETH
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
- AA0116
- RESID
-
-
-
- HYPU
- FindMod
-
-
-
-
-
-
-
-
-
-
- AA0120
- RESID
-
-
-
-
-
-
-
-
-
-
-
- AA0122
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- AA0127
- RESID
-
-
-
- PYRUC
- FindMod
-
-
-
-
-
- Pyro-carbamidomethyl as a delta from Carbamidomethyl-Cys
-
-
-
-
- N-Succinimide
-
-
-
-
-
- oxobutanoic acid from N term Thr
- pyruvic acid from N-term ser
-
- AA0127
- RESID
-
-
-
- PYRUS
- FindMod
-
-
-
- AA0129
- RESID
-
-
-
- OXOB
- FindMod
-
-
-
-
-
-
-
-
-
-
-
- phycobiliviolin
-
- AA0258
- RESID
-
-
-
- AA0131
- RESID
-
-
- phycocyanobilin and phycobiliviolin have different structures but the same empirical formula
-
-
-
-
-
-
-
-
-
-
- AA0132
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- AA0133
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0329
- RESID
-
-
-
- AA0135
- RESID
-
-
-
- AA0276
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0142
- RESID
-
-
-
-
-
-
-
-
-
-
-
- AA0147
- RESID
-
-
-
- AA0148
- RESID
-
-
-
- TOPA
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0153
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0158
- RESID
-
-
-
- AA0159
- RESID
-
-
-
- AA0160
- RESID
-
-
-
- AA0161
- RESID
-
-
-
- AA0162
- RESID
-
-
-
- AA0163
- RESID
-
-
-
- AA0164
- RESID
-
-
-
- AA0165
- RESID
-
-
-
- AA0166
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0167
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0170
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- AA0177
- RESID
-
-
-
- THRN
- FindMod
-
-
-
-
-
-
-
-
-
-
-
- AA0178
- RESID
-
-
-
- THRX
- FindMod
-
-
-
-
-
-
-
-
-
-
-
- AA0181
- RESID
-
-
-
-
-
- oxoalanine formylglycine
-
-
-
-
- Lactone formation from C-terminal hydroxylysine
-
-
-
-
- oxoalanine
-
- AA0183
- RESID
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- AA0185
- RESID
-
-
-
- 9252331
- PubMed PMID
-
-
-
- AA0365
- RESID
-
-
-
- OXOAS
- FindMod
-
-
-
- DHY
- FindMod
-
-
-
- 15705169
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- formylglycine
-
- AA0185
- RESID
-
-
-
- OXOAC
- FindMod
-
-
-
- Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem. 1998; 273: 25 560
- Journal
-
-
-
-
-
-
-
-
-
-
- AA0186
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
- J. Biol. Chem., Vol. 277, Issue 48, 46140-46144, November 29, 2002
- Journal
-
-
-
- 12356754
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0371
- RESID
-
-
-
- AA0227
- RESID
-
-
-
- AA0203
- RESID
-
-
-
- AA0267
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
- 12356754
- PubMed PMID
-
-
-
- J. Biol. Chem., Vol. 277, Issue 48, 46140-46144, November 29, 2002
- Journal
-
-
-
-
-
-
-
-
-
-
-
- AA0207
- RESID
-
-
-
-
-
-
-
-
-
-
-
- AA0212
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0353
- RESID
-
-
-
- AA0220
- RESID
-
-
-
- AA0352
- RESID
-
-
-
- FMNH
- FindMod
-
-
-
-
-
-
-
-
-
-
-
- AA0223
- RESID
-
-
-
- ARCH
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0325
- RESID
-
-
-
- AA0228
- RESID
-
-
-
-
-
-
-
-
-
-
-
- AA0236
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0248
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- AA0252
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0256
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- AA0264
- RESID
-
-
-
-
-
-
-
-
-
-
- THIOG
- FindMod
-
-
-
- AA0265
- RESID
-
-
-
-
-
-
-
-
-
- CYSP
- FindMod
-
-
-
- AA0269
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0287
- RESID
-
-
-
- AA0274
- RESID
-
-
-
- AA0275
- RESID
-
-
-
-
-
-
-
-
-
- AA0277
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0281
- RESID
-
-
-
- AA0375
- RESID
-
-
-
-
-
- trihydroxyphenylalanine
-
-
- tryptophan oxidation to formylkynurenin
-
-
- phenylalanine oxidation to dihydroxyphenylalanine
-
-
- Sulphone
-
-
-
-
-
- sulfinic acid
-
-
-
-
-
- 12686488
- PubMed PMID
-
-
-
- AA0262
- RESID
-
-
-
- CSIA
- FindMod
-
-
-
- MSONE
- FindMod
-
-
-
- DIHYDR
- FindMod
-
-
-
- 9252331
- PubMed PMID
-
-
-
- AA0251
- RESID
-
-
-
- AA0370
- RESID
-
-
-
- Berlett, Barbara S.; Stadtman, Earl R. Journal of Biological Chemistry (1997), 272(33), 20313-20316.
- Journal
-
-
-
- AA0282
- RESID
-
-
-
- AA0369
- RESID
-
-
-
- AA0263
- RESID
-
-
-
- Hyun Ae Woo, et. al., Science Vol. 300. no. 5619, pp. 653 - 656
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
- AA0386
- RESID
-
-
-
- AA0290
- RESID
-
-
-
- OCTA
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0296
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- AA0297
- RESID
-
-
-
-
-
-
-
-
-
-
-
- AA0308
- RESID
-
-
-
- PALE
- FindMod
-
-
-
-
-
-
-
-
-
-
- AA0309
- RESID
-
-
-
- CHOL
- FindMod
-
-
-
-
-
-
-
-
-
-
- AA0312
- RESID
-
-
-
-
-
-
-
-
-
-
-
- AA0316
- RESID
-
-
-
- CHDH
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
- AA0321
- RESID
-
-
-
- PYRK
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0324
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0328
- RESID
-
-
-
-
-
-
-
-
-
-
-
- AA0333
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0334
- RESID
-
-
-
-
-
-
-
-
-
-
-
- AA0335
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0350
- RESID
-
-
-
- AA0349
- RESID
-
-
-
- FMN
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0351
- RESID
-
-
-
- FMNC
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- AA0355
- RESID
-
-
-
-
-
-
-
-
-
-
-
- AA0359
- RESID
-
-
-
- TRIMETK
- FindMod
-
-
-
-
-
- Beta elimination of O-glycosylation under alkaline conditions followed by reduction
-
-
-
- Beta elimination of O-glycosylation under alkaline conditions followed by reduction
-
-
-
-
- Serine to Alanine
- Threonine to a-aminobutyrate
-
- AA0191
- RESID
-
-
-
- 14235557
- PubMed PMID
-
-
-
- AA0373
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- AA0374
- RESID
-
-
-
-
-
-
-
-
-
-
-
-
- AA0387
- RESID
-
-
-
- AA0385
- RESID
-
-
-
- DECA
- FindMod
-
-
-
-
-
-
-
-
-
-
-
-
-
- 12356754
- PubMed PMID
-
-
-
- J. Biol. Chem., Vol. 277, Issue 48, 46140-46144, November 29, 2002
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
- J. Biol. Chem., Vol. 277, Issue 48, 46140-46144, November 29, 2002
- Journal
-
-
-
- 12356754
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Galactosamine
- Glucosamine
-
-
-
-
-
-
-
-
-
-
- Dimethyl pimelimidate
-
- Imidoester Cross-linkers
- Misc. URL
- http://www.piercenet.com/files/0668ss5.pdf
-
-
- Packman, L.C. and Perhan, R.N. (1982). Quaternary Structures the Pyruvate Dehydrogenase Multienzyme Complex of Bacillus Stearothermophilus Studies by a New Reversible Crosslinking Procedure with Bis(imidoesters). Biochem. 21, 5171-5175.
- Journal
-
-
-
- Hand, E.S., and Jencks, W.P. (1962). Mechanism of the reaction of imidoesters with amines. J. Am. Chem. Soc. 84, 3505-3514.
- Journal
-
-
-
-
-
- Dimethyl pimelimidate, reaction with both ends
-
-
- Dimethyl pimelimidate, reaction with both ends
-
-
-
-
-
-
- Dimethyl pimelimidate
-
- Imidoester Cross-linkers
- Misc. URL
- http://www.piercenet.com/files/0668ss5.pdf
-
-
- Hand, E.S., and Jencks, W.P. (1962). Mechanism of the reaction of imidoesters with amines. J. Am. Chem. Soc. 84, 3505-3514.
- Journal
-
-
-
- Packman, L.C. and Perhan, R.N. (1982). Quaternary Structures the Pyruvate Dehydrogenase Multienzyme Complex of Bacillus StearothermophilusStudies by a New Reversible Crosslinking Procedure with Bis(imidoesters). Biochem. 21, 5171-5175.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
- 2081203
- PubMed PMID
-
-
- fluorescent derivative
-
-
-
-
-
-
-
-
-
-
-
-
- N-terminal / lysine sulfonation
-
- 16526082
- PubMed PMID
-
-
-
- Lee et al, Rapid Commun Mass Spetrom 2004, 18, 3019-3027
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- J. Mass Spectrom. 2005; 40: 238-249
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- J. Mass Spectrom. 2005; 40: 238-249
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Ahn, B., Rhee, S.G., and Stadtmann, E. R. (1987) Anal. Biochem.
- Journal
-
-
-
-
-
- pT gives beta-methylaminoethylcysteine
-
-
- pS gives aminoethylcysteine
-
-
-
-
-
-
-
-
- beta-methylaminoethylcysteine
-
- Z. A. Knight et al, Nature Biotech., 21(9) 1047-1054 (2003)
- Journal
-
-
- Modification procedure used for phosphopeptide mapping
-
-
-
- found in canned food products
-
-
-
-
-
-
-
- Berger U, Oehme M, Girardin L., Fresenius J Anal Chem. 2001 Jan 2;369(2):115-23.
- Journal
-
-
- Found in canned food products
-
-
-
-
-
-
-
- K4
- For SILAC experiments
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Amersham (GE Healthcare) instruction leaflet 25800983PL Rev-B, 2003
- Other
-
-
-
- 12872219
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- Dehydroretronecine
-
- 16222722
- PubMed PMID
-
-
-
-
-
-
- primary adduct
-
-
-
-
-
-
-
- t-butyl hydroxylated BHT
-
- 16533022
- PubMed PMID
-
-
- BHTOH is formed upon metabolism of BHT with P450 enzymes. The BHTOH is further metabolized to its quinone methide (electrophile) which reacts with -SH and -NH2 groups
-
-
-
-
-
-
-
-
-
-
-
-
- Under construction
- Misc. URL
- http://www.targetdiscovery.com/index.php?topic=prod.idbe
-
-
- Target discovery , Inc. IDBEST IGBP user manual
- Other
-
-
-
-
-
-
-
-
-
-
-
-
- Chemistry of Protein Conjugation and Crosslinking by Shan S. Wong, 1991, pg.32
- Book
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Salomon RG. Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):185-201.
- Journal
-
-
-
- Salomon RG. Chem Phys Lipids. 2005 Mar;134(1):1-20.
- Journal
-
-
-
- 15650407
- PubMed PMID
-
-
-
- 15752459
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
- Pierce, A., Dewaal, E., Vanremmen, H., Richardson, A. & Chaudhuri, A. (2006). A Novel Approach for Screening the Proteome for Changes in Protein Conformation. Biochemistry 45, 3077-3085.
- Journal
-
-
-
-
-
-
-
-
-
-
-
- Jue-Liang Hsu, Sheng-Yu Huang, and Shu-Hui Chen. Stable-Isotope based Multiplex Labeling Coupled with LC-MS/MS, HUPO 3rd ANNUAL WORLD CONGRESS, Bejing (China) 2004
- Other
-
-
-
-
-
-
-
-
-
-
-
- J. Proteome Res. 2005, 4, 101-108.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
- Salomon RG. Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):185-201.
- Journal
-
-
-
- Salomon RG. Chem Phys Lipids. 2005 Mar;134(1):1-20.
- Journal
-
-
-
- 15650407
- PubMed PMID
-
-
-
- 15752459
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- 16335955
- PubMed PMID
-
-
-
- J Proteome Res. 2005 Nov-Dec;4(6):2099-108
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
- 16771548
- PubMed PMID
-
-
-
-
-
- Maillard reaction (first event)
-
-
- Maillard reaction (first event)
-
-
-
-
-
-
- lac
-
- ANALYTICAL BIOCHEMISTRY 259, 152-161 (1998)
- Journal
-
-
-
- BIOCHIMECAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 236, 413-417 (1997)
- Journal
-
-
- Lactosylation of bovine Beta-Lactoglobulin
-
-
-
-
-
-
-
-
-
-
- 15650407
- PubMed PMID
-
-
-
- 15752459
- PubMed PMID
-
-
-
- Salomon RG. Chem Phys Lipids. 2005 Mar;134(1):1-20.
- Journal
-
-
-
- Salomon RG. Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):185-201.
- Journal
-
-
-
-
-
-
-
- Side reaction, low abundance
-
-
-
-
-
-
-
- CLIP_TRAQ_single
- CLIP-TRAQ-1 H(17) C(11) N(3) O(4) is an in-house made compound that reacts with primary amines through a N-hydroxysuccinimide group leading to a 140.0949 Da mass shift (monoisotopic) in MS mode. The reporter ion in MS/MS mode is 113 m/z. (See also CLIP-TRAQ-2).
-
-
-
-
-
- Side reaction, low abundance
-
-
-
-
-
-
-
-
- CLIP_TRAQ_double
- CLIP-TRAQ-2 H(17) C(10) C13 N(3) O(4) is an in-house made compound that reacts with primary amines through a N-hydroxysuccinimide group leading to a 141.0983 Da mass shift (monoisotopic) in MS mode. The reporter ion in MS/MS mode can either be 113 or 114 m/z depending on the position of isotopic C13 in the molecule. (Fahlman, R. and Overall, C.M. in preparation).
-
-
-
-
-
-
-
-
-
-
- 15650407
- PubMed PMID
-
-
-
- 15752459
- PubMed PMID
-
-
-
- Salomon RG. Chem Phys Lipids. 2005 Mar;134(1):1-20.
- Journal
-
-
-
- Salomon RG. Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):185-201.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
- Maleimide-PEG-Biotin
-
- EZ-Link Maleimide PEOn-Biotin
- Misc. URL
- http://www.piercenet.com/Products/Browse.cfm?fldID=01031005
-
-
-
-
-
-
-
-
-
-
-
-
-
- EZ-Link Sulfo-NHS-Biotin Reagents
- Misc. URL
- http://www.piercenet.com/Products/Browse.cfm?fldID=8D38BA83-EFDC-421A-853F-E96EBA380612
-
-
-
-
- photosensitive
-
-
-
-
-
-
-
- fluorescein-NEM
-
- 9325338
- PubMed PMID
-
-
-
- 11665566
- PubMed PMID
-
-
-
- Thiol-Reactive Probes
- Misc. URL
- http://probes.invitrogen.com/media/pis/mp00003.pdf
-
-
-
-
-
-
-
-
-
-
-
-
- 15795231
- PubMed PMID
-
-
- In a recent publication (see reference), we have shown that family 84 glycoside hydrolases contain a deep pocket beneath the 2-acetamido group of its substrate (N-acetyl-glucosamine). With this strucual feature in mind, we have designed a specific inhibitor that contains a chloride group appended to the end of the propyl chain on a known inhibitor termed propyl-NAG-thiazoline. We have shown kinetically that this molecule is a potent suicide inhibitor of this enzyme famiy and now wish to know the precise residue which is acting as the nucleophile to dispace the choride atom. We have included all residues that are in the vacinity of the chloride atom that could potentially act in a nucleophilic manner.
-
-
-
-
-
-
-
-
-
- 9004526
- PubMed PMID
-
-
- More commonly seen as a neutral loss
-
-
-
- Low abundance
-
-
-
-
-
-
-
-
-
-
- Applied Biosystems iTRAQ(TM) multiplexed quantitation chemistry
-
- Applied Biosystems Chemistry Reference Guide
- Misc. URL
- http://docs.appliedbiosystems.com/pebiodocs/04351918.pdf
-
- Different channels have the same nominal mass but slightly different exact masses.
-
-
-
- Low abundance
-
-
-
-
-
-
-
-
-
-
-
- Applied Biosystems iTRAQ(TM) multiplexed quantitation chemistry
-
- Applied Biosystems Chemistry Reference Guide
- Misc. URL
- http://docs.appliedbiosystems.com/pebiodocs/04351918.pdf
-
- Different channels have the same nominal mass but slightly different exact masses.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Addition of LRGG
-
-
-
- Low abundance
-
-
-
-
-
-
-
-
-
-
- CLIP_TRAQ_3 (H(20) C(11) C13 N(3) O(4) is an in-house made compound that reacts with primary amines through a N-hydroxysuccinimide group leading to a 155.1 Da mass shift (monoisotopic) in MS mode. The reporter ion in MS/MS mode can either be 127 or 128 m/z depending on the position of isotopic C13 in the molecule. (Fahlman, R. and Overall, C.M. in preparation).
-
-
-
-
-
- Low abundance
-
-
-
-
-
-
-
-
- CLIP_TRAQ_4 is an in-house made compound that reacts with primary amines through a N-hydroxysuccinimide group leading to a 128.1 Da mass shift (monoisotopic) in MS mode. The reporter ion in MS/MS mode can either be 100 or 101 m/z depending on the position of isotopic C13 in the molecule. (Fahlman, R. and Overall, C.M. in preparation).
-
-
-
-
-
-
-
-
-
-
-
- Cayman Chemical data sheet
- Misc. URL
- http://www.caymanchem.com/pdfs/10141.pdf
-
-
-
-
-
-
-
-
-
-
-
-
- Cayman Chemical data sheet
- Misc. URL
- http://www.caymanchem.com/pdfs/10013.pdf
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Nature Biotechnology 22, 450 - 454 (2004)
- Journal
- http://www.nature.com/nbt/journal/v22/n4/abs/nbt947.html
-
-
- 15004565
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Nature Biotechnology 22, 450 - 454 (2004)
- Journal
- http://www.nature.com/nbt/journal/v22/n4/abs/nbt947.html
-
-
- 15004565
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Low efficiency
-
-
- Low efficiency
-
-
-
-
- Low efficiency
-
-
-
-
-
-
-
-
-
- Isotope-differentiated binding energy shift tags
- Misc. URL
- http://www.targetdiscovery.com/article.php?topic=crpc.prst&story=20060321132643690
-
-
-
-
-
-
-
-
-
-
-
- Michael addition of nitro-linoleic acid to Cys and His
-
- JBC 281(29):20450-63; 2006
- Journal
-
-
- Reversible post-translational modification of proteins by nitrated fatty acids
-
-
-
-
-
-
-
-
-
-
- Michael addition of nitro-oleic acid to Cys and His
-
- JBC 281(29):20450-63; 2006
- Journal
-
-
- Reversible post-translational modification of proteins by nitrated fatty acids
-
-
-
- Use when labelling post-digest
-
-
- Use when labelling pre-digest
-
-
-
-
-
-
-
-
-
-
- Bruker Daltonics order reference
- Misc. URL
- http://www.bdal.de/life-science-tools/care-consumables-more/icpl-kit.html
-
-
- Schmidt A, Kellermann J, Lottspeich F (2005): A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5: 4-15
- Journal
-
-
-
- 15602776
- PubMed PMID
-
-
- Attention: As the digest is typically applied AFTER ICPL_light/heavy labeling, only ProteinN-term labeling and Lys-specific labeling is applied.
-
-
-
- Low abundance
-
-
-
-
-
-
-
-
-
-
-
- AKA iTRAQ8plex:13C(7)15N(1)
- Applied Biosystems iTRAQ(TM) multiplexed quantitation chemistry
- Other 4 channels have the same nominal mass but slightly different exact mass. For quantitation purposes, use this entry for all channels
-
-
-
-
-
-
-
-
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- Ong, S-E, I. Kratchmarova, and M. Mann (2003). J Proteome Research 2: 173-181
- Journal
-
-
-
-
-
- Used in SILAC experiment
-
-
-
-
-
-
-
-
-
- heavy D9 lysine
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- CDNLM-6810
- Misc. URL
- http://www.isotope.com/cil/products/displayproduct.cfm?prod_id=8635
-
-
-
-
-
-
-
-
-
-
-
-
- Liu Z, Minkler P, and Sayre L. Chem. Res. Toxicology 2003 16 901-911
- Journal
-
-
- Mass Spectroscopic Characterization of Protein Modification by 4-Hydroxy-2-(E)-nonenal and 4-Oxo-2-(E)-nonenal.
-
-
-
-
-
-
-
-
-
-
-
- Chemico-Biological Interactions 143-144(2003) 93-100.
- Journal
-
-
- Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal
-
-
-
-
-
-
-
-
-
-
-
-
- Fidder, Hulst, Noort, Ruiter, van der Schans, Benschop and Langenberg; Retrospective detection of exposure to organophosphorus anti-cholinesterases: Mass spectrometric analysis of phosphylated human butyrylcholinestease. Chem. Res. Toxicol. 15, 582-590 (2002)
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Main; Mode of action of anticholnesterases. Pharmac Ther 6, 579-628 (1979)
- Journal
-
-
- Created by auto-catalytic dealkylation of the O-Dimethylphosphate adduct.
-
-
-
-
-
-
-
-
-
-
-
-
- Fidder, Hulst, Noort, Ruiter, van der Schans, Benschop and Langenberg; Retrospective detection of exposure to organophosphorus anti-cholinesterases: Mass spectrometric analysis of phosphylated human butyrylcholinestease. Chem. Res. Toxicol. 15, 582-590 (2002)
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Main; Mode of action of anticholnesterases. Pharmac Ther 6, 579-628 (1979)
- Journal
-
-
- Created by auto-catalytic dealkylation of the O-Diethylphosphate adduct.
-
-
-
-
-
-
-
-
-
-
-
-
- Fidder, Hulst, Noort, Ruiter, van der Schans, Benschop and Langenberg; Retrospective detection of exposure to organophosphorus anti-cholinesterases: Mass spectrometric analysis of phosphylated human butyrylcholinestease. Chem. Res. Toxicol. 15, 582-590 (2002)
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Main; Mode of action of anticholnesterases. Pharmac Ther 6, 579-628 (1979)
- Journal
-
-
- Created by auto-catalytic dealkylation of either the O-pinacolylmethylphosphonate adduct, or the O-isopropylmethylphosphonate adduct.
-
-
-
-
-
-
-
-
-
-
-
-
- Fidder, Hulst, Noort, Ruiter, van der Schans, Benschop and Langenberg; Retrospective detection of exposure to organophosphorus anti-cholinesterases: Mass spectrometric analysis of phosphylated human butyrylcholinestease. Chem. Res. Toxicol. 15, 582-590 (2002)
- Journal
-
-
-
-
-
- Low abundance
-
-
-
-
-
-
-
-
-
-
-
- Applied Biosystems iTRAQ(TM) multiplexed quantitation chemistry
- Other 4 channels have the same nominal mass but slightly different exact mass. For quantitation purposes, use iTRAQ8plex for all channels
-
-
-
- The addition of DTT adds 136.2 not 154.2 to Serine due to loss of water in reaction
-
-
- The addition of DTT adds 136.2 not 154.2 to Threonine due to loss of water in reaction
-
-
-
-
-
-
-
- threo-1,4-dimercaptobutane-2,3-diol
- Cleland's reagent
-
- Methods Enzymol. 2006;415:113-33. Links rnIdentification of O-GlcNAc sites on proteins.Whelan SA, Hart GW.
- PubMed PMID
- 17116471
-
-
- Mol Cell Proteomics. 2002 Oct;1(10):791-804. rnMapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications.Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW.
- PubMed PMID
- 12438562
-
-
- Proteomics. 2005 Feb;5(2):388-98. Links rnQuantitative analysis of both protein expression and serine / threonine post-translational modifications through stable isotope labeling with dithiothreitol.Vosseller K, Hansen KC, Chalkley RJ, Trinidad JC, Wells L, Hart GW, Burlingame AL.
- PubMed PMID
- 15648052
-
- Beta-elimination and Michael addition of dithiothreitol (DTT) to serine and threonine adds a weight of approximately 136.2.
-
-
-
-
-
-
-
-
-
-
- Carbodiimide mediated blocking of free carboxylic acids (Asp/Glu sidechains and C-termini) with ethanolamine; reaction yields an amide-bond between the carboxylic acid of the peptide/protein and the primary amine of ethanolamine; reaction irreversibly modifies carboxylic acids. Shown above is the composition of the mass adduct, after substraction of water.
-
-
-
-
-
-
-
-
-
-
-
-
- Tandem Mass Tag sixplex labelling kit Proteome Sciences
- Tandem Mass Tag® and TMT® are registered Trademarks of Proteome Sciences plc.
-
- Juergen.Schaefer@Proteomics.com
- Other
-
-
- Sixplex-TMT® reagents 6TMT-126, 6TMT-127, 6TMT-128, 6TMT-129, 6TMT-130, 6TMT-131 Masses of the TMT® fragment ions to be quantified:126.1283 127.1316 128.1350 129.1383 130.1417 131.1387
-
-
-
-
-
-
-
-
-
- Cleland's reagent
-
- Methods Enzymol. 2006;415:113-33. Links rnIdentification of O-GlcNAc sites on proteins.Whelan SA, Hart GW.
- PubMed PMID
- 17116471
-
-
- Mol Cell Proteomics. 2006 May;5(5):923-34. Epub 2006 Feb 1. Links rnO-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry.Vosseller K, Trinidad JC, Chalkley RJ, Specht CG, Thalhammer A, Lynn AJ, Snedecor JO, Guan S, Medzihradszky KF, Maltby DA, Schoepfer R, Burlingame AL.
- PubMed PMID
- 16452088
-
-
- Mol Cell Proteomics. 2002 Oct;1(10):791-804. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications.Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW.
- PubMed PMID
- 12438562
-
- When the beta-elimination and Michael addition of dithiothreitol (DTT) (BEMAD) reaction is used with alkylated cysteine a sulfur group is lost leaving the addition of approximately 120.2 in the chemical reaction.
-
-
-
-
-
-
-
-
-
-
-
- Tandem Mass Tag® and TMT® are registered Trademarks of Proteome Sciences plc.
- Tandem Mass Tag Duplex labelling kit Proteome Sciences
-
- Juergen.Schaefer@Proteomics.com
- Other
-
-
- Duplex-TMT® reagents 2TMT-126, 2TMT-127 Masses of the TMT® fragment ions to be quantified: 126.1283 127.1316
-
-
-
-
-
-
-
-
-
-
- Tandem Mass Tag® and TMT® are registered Trademarks of Proteome Sciences plc.
-
- Juergen.Schaefer@Proteomics.com
- Other
-
-
- This modification describes the \"native\" TMT Reagent without isotopic label.
-
-
-
-
-
-
-
-
-
-
-
- PerkinElmer ExacTag Thiol kit
-
- PerkinElmer ExacTag product page
- Misc. URL
- http://www.perkinelmer.com/exactag
-
- Accurate mass for Exactag Thiol labels
-
-
-
-
-
-
-
-
-
-
-
-
- PerkinElmer ExacTag Amine kit
-
- PerkinElmer ExacTag product page
- Misc. URL
- http://www.perkinelmer.com/exactag
-
- Accurate mass for Exactag Amine labels. Includes the mass of the conjugation reagent
-
-
-
-
-
-
-
-
-
-
-
- Naisbitt, D. J., O'Neill, P. M., Pirohamed, M., and Park, B. K. 1996. Bioorganic and Medicinal Chemistry Letters 6(13):1511-1516.
- Journal
-
-
- Synthesis and Reactions of Nitroso Sulphamethoxazole with Biological Nucleophiles: Implications for Immune Mediated Toxicity.
-
-
-
-
-
-
-
-
-
-
-
- Liu. Z., Minkler, P. E., and Sayre, L. M. Chem. Res. Toxico. 2003, 16, 901-911.
- Journal
-
-
- Mass Spectorscopic Characterization of Protein Modification by 4-hydroxy-2-(E)-nonenal and 4-oxo-2-(E)-nonenal
-
-
-
-
-
-
-
-
-
-
-
- Naisbitt, D. J., O'Neill, P. M., Pirohamed, M., and Park, B. K. 1996. Bioorganic and Medicinal Chemistry Letters 6(13):1511-1516.
- Journal
-
-
- Synthesis and Reactions of Nitroso Sulphamethoxazole with Biological Nucleophiles: Implications for Immune Mediated Toxicity.
-
-
-
-
-
-
-
-
-
-
-
- Naisbitt, D. J., O'Neill, P. M., Pirohamed, M., and Park, B. K. 1996. Bioorganic and Medicinal Chemistry Letters 6(13):1511-1516.
- Journal
-
-
- Synthesis and Reactions of Nitroso Sulphamethoxazole with Biological Nucleophiles: Implications for Immune Mediated Toxicity.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 4-bromophenacyl bromide [99-73-0]
- CAS Registry
-
-
-
- 428399
- PubMed PMID
-
-
- phenacyl bromide conjugated with a linker and biotin tag, details not published yet
-
-
-
-
-
-
-
-
-
-
- Cleland's reagent
-
- Vosseller K, Hansen KC, Chalkley RJ, Trinidad JC, Wells L, Hart GW, Burlingame AL. Proteomics. 2005 5(2):388-98. Quantitative analysis of both protein expression and serine / threonine post-translational modifications through stable isotope labeling with dithiothreitol.
- Journal
-
-
-
- 15648052
- PubMed PMID
-
-
- Can be used for quantitative analysis of cysteine-containing peptides. Same reaction can be used for quantitative analysis of O-linked post-translational modifications to serines and threonines, but then the modification is 16 Da more in mass; i.e. isotopically labeled reagent adds 142 Da in mass.
-
-
-
- Simple cyclic compound C16H16O2 adds to cysteine forming fluorescent derivative.
-
-
-
-
-
-
-
- Biochemistry 2005 vol 44 pp 1833-1845
- Journal
- http://dx.doi.org/10.1021/bi048228c
-
-
-
-
- Result of Arg to Pro conversion of 13C(6) labelled Arg
-
-
-
-
-
-
- Ong, S-E, I. Kratchmarova, and M. Mann (2003). J Proteome Research 2: 173-181
- Journal
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- 12716131
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 2,4-dichlorobenzylcarbamidomethyl
-
- Analytical Chemistry (2000) 72 6 1112-1118
- Journal
-
-
-
- 10740847
- PubMed PMID
-
-
- Modified peptides identified by isotope pattern. Restriction to cysteine-containing peptides combined with high mass accuracy allows peptide identification.
-
-
-
-
-
-
-
-
-
-
-
- Cleland's reagent
-
- 15648052
- PubMed PMID
-
-
-
- Vosseller K, Hansen KC, Chalkley RJ, Trinidad JC, Wells L, Hart GW, Burlingame AL. Proteomics. 2005 5(2):388-98. Quantitative analysis of both protein expression and serine / threonine post-translational modifications through stable isotope labeling with dithiothreitol.
- Journal
-
-
- Can be used for quantitative analysis of O-linked post-translational modifications. Same reaction can be used for quantitative analysis of cysteine-containing peptides, but then the modification is 16 Da less in mass; i.e. isotopically labeled reagent adds 126 Da in mass.
-
-
-
-
-
-
-
-
-
-
-
- Biochemistry (1987) 26 8242-8246
- Journal
-
-
-
- 3327521
- PubMed PMID
-
-
- N-terminal initiator methionine is removed by a methionine aminopeptidase from proteins where the residue following the methionine is Ala, Cys, Gly, Pro, Ser, Thr or Val. This is generally the final N-terminal state for proteins where the following residue was a Cys, Pro or Val.
-
-
-
-
-
-
-
-
-
-
- 3327521
- PubMed PMID
-
-
-
- Biochemistry (1987) 26 8242-8246
- Journal
-
-
- The N-terminal initiator methionine is removed by a methionine aminopeptidase from proteins whose residue following the methionine is Ala, Cys, Gly, Pro, Ser, Thr or Val. Proteins whose following residue was Ala, Gly, Ser or Thr are then acetylated by an N(alpha)-acetyltransferase on the new N-terminus.
-
-
-
-
-
-
-
-
-
-
- 15939799
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- Carboxymethylation w/ 13C label
-
- B. Schilling, C.B. Yoo, C.J. Collins, B.W. Gibson, Determining Cysteine Oxidation Status Using Differential Alkylation, Int. J. Mass Spectrom., 2004, 236 (1-3), 117-121
- Journal
- http://dx.doi.org/10.1016/j.ijms.2004.06.004
-
-
-
-
-
-
-
-
-
-
-
- CysNEM D5
-
- reaction
- Misc. URL
- http://www.chemistry.ucsc.edu/~fink/231/Image118.gif
-
-
- 12777388
- PubMed PMID
-
-
-
- 11813307
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- Amidation requires presence of glycine at peptide terminus
-
- Bradbury, A.F. and D.G. Smyth, Peptide amidation. Trends Biochem Sci, 1991. 16(3): p. 112-5.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
- Weibin Chen et. al., Anal. Chem.2007, 79,1583-1590
- Journal
- http://dx.doi.org/10.1021/ac061670b
-
-
-
-
-
-
-
-
-
-
-
-
- Ong, S-E, I. Kratchmarova, and M. Mann (2003). J Proteome Research 2: 173-181
- PubMed PMID
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12716131&itool=pubmed_docsum
-
-
- Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP.
-
-Nat Biotechnol. 2003 Aug;21(8):921-6
- PubMed PMID
- http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12872131&itool=pubmed_docsum
-
- The two glycine residues left on SILAC labeled ubiquitinylated lysine after tryptic digestion
-
-
-
-
-
-
-
-
-
-
- JBC 258(1) 203-207 1983
- Journal
- http://www.jbc.org/cgi/reprint/258/1/203.pdf
-
-
-
-
- Both isotopiclabel and post translational mod
-
-
-
-
-
-
-
- Acetyl_K4
- For SILAC experiments, + PTM
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Pierce EZ-Link Pentylamine-Biotin
- Misc. URL
- http://www.piercenet.com/Products/Browse.cfm?fldID=01031206
-
-
-
-
-
-
-
-
-
-
- J. Mass. Spectrom. 2007; 42:89-100.
- Journal
- http://dx.doi.org/10.1002/jms.1144
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Chen, X., et al. (1999). Anal. Biochem. 273, 192-203.
- Other
- http://www.piercenet.com/products/browse.cfm?fldID=02030220
-
-
- Kornblatt, J.A. and Lake, D.F. (1980). Crosslinking of cytochrome oxidase subunits with difluorodinitrobenzene. Can J. Biochem. 58, 219-224.
- Other
- http://www.piercenet.com/products/browse.cfm?fldID=02030220
-
-
-
-
-
-
-
-
-
-
-
-
- Cy3b meleimide reacted with Cysteine
-
- Article describing design of Cy3B
- Journal
- http://www.springerlink.com/content/q3u3271467573733/
-
-
- Amersham website for chemical
- Other
- http://www1.gelifesciences.com/APTRIX/upp01077.nsf/Content/Products?OpenDocument&parentid=658513&moduleid=166300
-
-
-
-
-
-
-
-
-
-
-
-
- Saito T., Itoh T.; Journal of dairy Science, 75 (1992). p1768.
- Journal
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Chen, L.L., Rosa, J.J., Turner, S. and Pepinsky, R.B. (1991). Production of multimeric forms of CD4 through a sugar-based crosslinking strategy. J. Biol. Chem. 266(27), 18237-18243
- Other
- http://www.piercenet.com/Products/Browse.cfm?fldID=02030208
-
-
-
-
- hydrazide reacts at any activated carboxyl group
-
-
-
-
-
-
-
-
-
- Pierce product page
- Misc. URL
- http://www.piercenet.com/products/browse.cfm?fldID=C4FE82D4-DD06-493C-8EC4-9C1D7F83211B
-
-
-
-
- SILAC and PTM
-
-
-
-
-
-
-
-
- Ong, S-E, I. Kratchmarova, and M. Mann (2003). J Proteome Research 2: 173-181
- Journal
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- 12716131
- PubMed PMID
-
-
-
-
-
- Used in SILAC experiment
-
-
-
-
-
-
-
-
-
- Acetyl_heavy lysine
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
- 12716131
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
-
- Sumoylation
-
- Wohlschlegel, J. A. et al., J Proteome Res. 5 761 2006
- Journal
- http://dx.doi.org/10.1021/pr050451o
-
-
-
-
-
-
-
-
-
-
-
-
- Nat Chem Biol. 3: 727-735, 2007
- Journal
-
-
-
- 17906641
- PubMed PMID
-
-
- Protein which is posttranslationally modified by the attachment of cGMP on the sulfur atom of one or more cysteine residues.
-
-
-
-
-
-
-
-
-
-
- 17906641
- PubMed PMID
-
-
-
- Nat Chem Biol. 3: 727-735, 2007
- Journal
-
-
- Protein which is posttranslationally modified by the attachment of cGMP that has lost ribose 3\',5\'-cyclic monophosphate moiety on the sulfur atom of one or more cysteine residues.
-
-
-
- The reaction product of Arg with phenylglyoxal has been shown to be a 2:1 adduct
-
-
-
-
-
-
-
- PMID 11698400rnLigand-selective modulation of the permeability transition pore by arginine modification. Opposing effects of p-hydroxyphenylglyoxal and phenylglyoxal.
- PubMed PMID
- http://www.ncbi.nlm.nih.gov/pubmed/11698400?ordinalpos=39&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
-
-
- PMID 5723461rnThe reaction of phenylglyoxal with arginine residues in proteins.
- PubMed PMID
- http://www.ncbi.nlm.nih.gov/pubmed/5723461?ordinalpos=517&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
-
-
- PMID 11945751rnReaction of arginine residues in basic pancreatic trypsin inhibitor with phenylglyoxal.
- PubMed PMID
- http://www.ncbi.nlm.nih.gov/pubmed/11945751?ordinalpos=514&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Isotopic labeled methionine SILAC
-
-
-
-
-
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Created for Commercial use by ZDye. Being utilized in proteomic and peptidomic research soon to be published
- Misc. URL
- http://www.zdye.com/
-
-
-
-
-
-
-
-
-
-
- 15377717
- PubMed PMID
-
-
-
-
-
-
-
-
-
-
- 17143934
- PubMed PMID
-
-
-
-
-
- Used in SILAC PTM (glygly) experiment
-
-
-
-
-
-
-
-
- heavy glygly lysine
-
- 12716131
- PubMed PMID
-
-
-
- Silac introduction
- Misc. URL
- http://www.pil.sdu.dk/silac_intro.htm
-
-
-
-
- Use when labelling post-digest
-
-
-
- Use when labelling pre-digest
-
-
-
-
-
-
-
-
- ICPL_10
-
- Schmidt A, Kellermann J, Lottspeich F (2005): A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5: 4-15.
- Journal
-
-
-
- Bruker Daltonics order reference
- Misc. URL
- http://www.bdal.de/life-science-tools/care-consumables-more/icpl-kit.html
-
- Attention: As the digest is typically applied AFTER ICPL labeling, only ProteinN-term labeling and Lys-specific labeling is applied.
-
-
-
- This peptide is generated from a trypsin/chymotrypsin dual digest
-
-
-
-
-
-
-
- GlnGlnGlnThrGlyGly
-
-
-
- This peptide is generated from a trypsin/chymotrypsin dual digest.
-
-
-
-
-
-
-
- GlnGluGlnThrGlyGly
-
-
-
-
-
-
-
-
-
-
-
- Which one?
-
- Invitrogen BODIPY Handbook
- Misc. URL
- http://probes.invitrogen.com/handbook/sections/0104.html
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff -r d4b6c9eae635 -r 8bac3cc5c5de update.sh
--- a/update.sh Fri May 10 17:22:51 2013 -0400
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,35 +0,0 @@
-#!/bin/bash
-
-LICENSE_FILE=LICENSE
-# Ensure repository contains license file.
-if [ ! -e "$LICENSE_FILE" ];
-then
- wget http://www.apache.org/licenses/LICENSE-2.0.txt -O "$LICENSE_FILE"
-fi
-
-# Run repository specific update actions.
-if [ -f update_repo.sh ];
-then
- ./update_repo.sh
-fi
-
-wget https://raw.github.com/gist/3749747/README_GALAXYP.md -O README_GALAXYP.md
-
-# Create repository README
-if [ ! -e README_REPO.md ];
-then
- echo "TODO: Document this tool repository." > README_REPO.md
-fi
-cat README_REPO.md README_GALAXYP.md > README.md
-
-
-# If version file exists, update all tools to this version
-VERSION_FILE=version
-if [ -e "$VERSION_FILE" ];
-then
- VERSION=`cat $VERSION_FILE`
-
- # Replace tool version in each tool XML file `
- find -iname "*xml" -exec sed -i'' -e '0,/version="\(.\+\)"/s/version="\(.\+\)"/version="'$VERSION'"/1g' {} \;
-
-fi