Mercurial > repos > galaxyp > mqppep_anova
view mqppep_anova.R @ 5:514afed1f40d draft default tip
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/mqppep commit aa5f4a19e76ec636812865293b8ee9b196122121
author | galaxyp |
---|---|
date | Fri, 17 Feb 2023 22:38:51 +0000 |
parents | dda27b9273a8 |
children |
line wrap: on
line source
#!/usr/bin/env Rscript # libraries library(optparse) library(stringr) library(tinytex) # ref for parameterizing Rmd document: https://stackoverflow.com/a/37940285 # parse options option_list <- list( # files make_option( c("-a", "--alphaFile"), action = "store", default = NA, type = "character", help = paste0("List of alpha cutoff values for significance testing;", " path to text file having one column and no header") ), make_option( c("-M", "--anova_ksea_metadata"), action = "store", default = "anova_ksea_metadata.tsv", type = "character", help = "Phosphopeptide metadata, ANOVA FDR, and KSEA enribhments" ), make_option( c("-o", "--imputedDataFile"), action = "store", default = "output_imputed.tsv", type = "character", help = "Imputed Phosphopeptide Intensities output file path" ), make_option( c("-n", "--imputedQNLTDataFile"), action = "store", default = "output_imp_qn_lt.tsv", type = "character", help = paste( "Imputed, Quantile-Normalized Log-Transformed Phosphopeptide", "Intensities output file path" ) ), make_option( c("-i", "--inputFile"), action = "store", default = NA, type = "character", help = "Phosphopeptide Intensities sparse input file path" ), make_option( c("-K", "--ksea_sqlite"), action = "store", default = NA, type = "character", help = "Path to 'ksea_sqlite' output produced by this tool" ), make_option( c("-S", "--preproc_sqlite"), action = "store", default = NA, type = "character", help = "Path to 'preproc_sqlite' produced by `mqppep_mrgfltr.py`" ), make_option( c("-r", "--reportFile"), action = "store", default = "mqppep_anova.pdf", type = "character", help = "PDF report file path" ), # parameters make_option( c("-f", "--firstDataColumn"), action = "store", default = "^Intensity[^_]", type = "character", help = "First column of intensity values" ), make_option( c("-m", "--imputationMethod"), action = "store", default = "random", type = "character", help = paste0("Method for missing-value imputation,", " one of c('group-median','median','mean','random')") ), make_option( c("-C", "--intensityMinValuesPerClass"), action = "store", default = "0", type = "integer", help = "Minimum number of observed values per class" ), make_option( c("-k", "--ksea_cutoff_statistic"), action = "store", default = "FDR", type = "character", help = paste0("Method for missing-value imputation,", " one of c('FDR','p.value'), but don't expect 'p.value' to work well.") ), make_option( c("-t", "--ksea_cutoff_threshold"), action = "store", default = 0.05, type = "double", help = paste0( "Maximum score to be used to score a kinase enrichment as significant") ), make_option( c("-c", "--kseaMinSubstrateCount"), action = "store", default = "1", type = "integer", help = "Minimum number of substrates to consider any kinase for KSEA" ), make_option( c("--kseaUseAbsoluteLog2FC"), action = "store_true", default = "FALSE", type = "logical", help = paste0("Should abs(log2(fold-change)) be used for KSEA?", " (TRUE may alter number of hits.)") ), make_option( c("-p", "--meanPercentile"), action = "store", default = 3, type = "integer", help = paste0("Mean percentile for randomly generated imputed values;", ", range [1,99]") ), make_option( c("--minQuality"), action = "store", default = 0, type = "integer", help = paste0("Minimum quality (higher value reduces number of substrates", " accepted; you may want to keep below 100), range [0,infinity]") ), make_option( c("--oneWayManyCategories"), action = "store", default = "aov", type = "character", help = "Name of R function for one-way tests among more than two categories" ), make_option( c("--oneWayTwoCategories"), action = "store", default = "two.way", type = "character", help = "Name of R function for one-way tests between two categories" ), make_option( c("-s", "--regexSampleNames"), action = "store", default = "\\.(\\d+)[A-Z]$", type = "character", help = "Regular expression extracting sample-names" ), make_option( c("-g", "--regexSampleGrouping"), action = "store", default = "(\\d+)", type = "character", help = paste0("Regular expression extracting sample-group", " from an extracted sample-name") ), make_option( c("-d", "--sdPercentile"), action = "store", default = 3, type = "double", help = paste0("Adjustment value for standard deviation of", " randomly generated imputed values; real") ), make_option( c("-F", "--sampleGroupFilter"), action = "store", default = "none", type = "character", help = paste0("Should no filter be applied to sample group names (none)", " or should the filter specify samples to include or exclude?") ), make_option( c("--sampleGroupFilterMode"), action = "store", default = "r", type = "character", help = paste0("First character ('f', 'p', or 'r') indicating regular", "expression matching mode ('fixed', 'perl', or 'grep'; ", "see https://rdrr.io/r/base/grep.html). Second character may be 'i;", "to make search ignore case.") ), make_option( c("-G", "--sampleGroupFilterPatterns"), action = "store", default = ".*", type = "character", help = paste0("Regular expression extracting sample-group", " from an extracted sample-name") ) ) tryCatch( args <- parse_args( OptionParser( option_list = option_list, add_help_option = TRUE ), print_help_and_exit = TRUE ), error = function(e) { parse_args( OptionParser( option_list = option_list, add_help_option = TRUE ), print_help_and_exit = TRUE ) stop(as.character(e)) } ) print("args is:") cat(str(args)) # Check parameter values if (! file.exists(args$inputFile)) { stop((paste("Input file", args$inputFile, "does not exist"))) } # files alpha_file <- args$alphaFile anova_ksea_metadata_file <- args$anova_ksea_metadata imp_qn_lt_data_file <- args$imputedQNLTDataFile imputed_data_file <- args$imputedDataFile input_file <- args$inputFile ksea_sqlite_file <- args$ksea_sqlite preproc_sqlite_file <- args$preproc_sqlite report_file_name <- args$reportFile # parameters # firstDataColumn - see below group_filter <- args$sampleGroupFilter group_filter_mode <- args$sampleGroupFilterMode # imputationMethod - see below intensity_min_values_per_class <- args$intensityMinValuesPerClass ksea_cutoff_statistic <- args$ksea_cutoff_statistic ksea_cutoff_threshold <- args$ksea_cutoff_threshold ksea_min_substrate_count <- args$kseaMinSubstrateCount ksea_use_absolute_log2_fc <- args$kseaUseAbsoluteLog2FC # mean_percentile - see below min_quality <- args$minQuality # regexSampleNames - see below # regexSampleGrouping - see below # sampleGroupFilterPatterns - see below (becomes group_filter_patterns) # sd_percentile - see below if ( sum( grepl( pattern = ksea_cutoff_statistic, x = c("FDR", "p.value") ) ) < 1 ) { print(sprintf( "bad ksea_cutoff_statistic argument: %s", ksea_cutoff_statistic)) return(-1) } imputation_method <- args$imputationMethod if ( sum( grepl( pattern = imputation_method, x = c("group-median", "median", "mean", "random") ) ) < 1 ) { print(sprintf("bad imputationMethod argument: %s", imputation_method)) return(-1) } # read with default values, when applicable mean_percentile <- args$meanPercentile sd_percentile <- args$sdPercentile # in the case of 'random" these values are ignored by the client script if (imputation_method == "random") { print("mean_percentile is:") cat(str(mean_percentile)) print("sd_percentile is:") cat(str(mean_percentile)) } # convert string parameters that are passed in via config files: # - firstDataColumn # - regexSampleNames # - regexSampleGrouping read_config_file_string <- function(fname, limit) { cat(sprintf("read_config_file_string: fname = '%s'\n", fname)) cat(sprintf("length(fname) = '%s'\n", length(fname))) result <- if (file.exists(fname)) { cat(sprintf("reading '%s' ...\n", fname)) readChar(fname, limit) } else { cat(sprintf("not a file: '%s'\n", fname)) fname } # eliminate any leading whitespace result <- gsub("^[ \t\n]*", "", result) # eliminate any trailing whitespace result <- gsub("[ \t\n]*$", "", result) # substitute characters escaped by Galaxy sanitizer result <- gsub("__lt__", "<", result) result <- gsub("__le__", "<=", result) result <- gsub("__eq__", "==", result) result <- gsub("__ne__", "!=", result) result <- gsub("__gt__", ">", result) result <- gsub("__ge__", ">=", result) result <- gsub("__sq__", "'", result) result <- gsub("__dq__", '"', result) result <- gsub("__ob__", "[", result) result <- gsub("__cb__", "]", result) } nc <- 1000 sink(stderr()) cat(paste0("first_data_column file: ", args$firstDataColumn, "\n")) first_data_column <- read_config_file_string(args$firstDataColumn, nc) cat(paste0("first_data_column: ", first_data_column, "\n")) cat(paste0("regex_sample_grouping file: ", args$regexSampleGrouping, "\n")) regex_sample_grouping <- read_config_file_string(args$regexSampleGrouping, nc) cat(paste0("regex_sample_grouping: ", regex_sample_grouping, "\n")) cat(paste0("regex_sample_names file: ", args$regexSampleNames, "\n")) regex_sample_names <- read_config_file_string(args$regexSampleNames, nc) cat(paste0("regex_sample_names: ", regex_sample_names, "\n")) if (group_filter != "none") { cat(paste0("group_filter_patterns file: '", args$sampleGroupFilterPatterns, "'\n")) group_filter_patterns <- read_config_file_string(args$sampleGroupFilterPatterns, nc) } else { group_filter_patterns <- ".*" } cat(paste0("group_filter_patterns: ", group_filter_patterns, "\n")) sink() # from: https://github.com/molgenis/molgenis-pipelines/wiki/ # How-to-source-another_file.R-from-within-your-R-script # Function location_of_this_script returns the location of this .R script # (may be needed to source other files in same dir) location_of_this_script <- function() { this_file <- NULL # This file may be 'sourced' for (i in - (1:sys.nframe())) { if (identical(sys.function(i), base::source)) { this_file <- (normalizePath(sys.frame(i)$ofile)) } } if (!is.null(this_file)) return(dirname(this_file)) # But it may also be called from the command line cmd_args <- commandArgs(trailingOnly = FALSE) cmd_args_trailing <- commandArgs(trailingOnly = TRUE) cmd_args <- cmd_args[ seq.int( from = 1, length.out = length(cmd_args) - length(cmd_args_trailing) ) ] res <- gsub("^(?:--file=(.*)|.*)$", "\\1", cmd_args) # If multiple --file arguments are given, R uses the last one res <- tail(res[res != ""], 1) if (0 < length(res)) return(dirname(res)) # Both are not the case. Maybe we are in an R GUI? return(NULL) } # validation of input parameters is complete; it is now justifiable to # install LaTeX tools to render markdown as PDF; this involves a big # download from GitHub if (!tinytex::is_tinytex()) tinytex::install_tinytex() rmarkdown_params <- list( # files alphaFile = alpha_file , anovaKseaMetadata = anova_ksea_metadata_file , imputedDataFilename = imputed_data_file , imputedQNLTDataFile = imp_qn_lt_data_file , inputFile = input_file , kseaAppPrepDb = ksea_sqlite_file , preprocDb = preproc_sqlite_file # parameters , firstDataColumn = first_data_column , groupFilter = group_filter , groupFilterMode = group_filter_mode # arg sampleGroupFilterMode , groupFilterPatterns = group_filter_patterns # arg sampleGroupFilterPatterns , imputationMethod = imputation_method , intensityMinValuesPerGroup = intensity_min_values_per_class , kseaCutoffStatistic = ksea_cutoff_statistic , kseaCutoffThreshold = ksea_cutoff_threshold , kseaMinSubstrateCount = ksea_min_substrate_count , kseaUseAbsoluteLog2FC = ksea_use_absolute_log2_fc # add , meanPercentile = mean_percentile , minQuality = min_quality # add , regexSampleGrouping = regex_sample_grouping , regexSampleNames = regex_sample_names , sdPercentile = sd_percentile ) print("rmarkdown_params") print(rmarkdown_params) print( lapply( X = rmarkdown_params, FUN = function(x) { paste0( nchar(as.character(x)), ": '", as.character(x), "'" ) } ) ) # freeze the random number generator so the same results will be produced # from run to run set.seed(28571) script_dir <- location_of_this_script() rmarkdown::render( input = paste(script_dir, "mqppep_anova_script.Rmd", sep = "/") , output_file = report_file_name , params = rmarkdown_params , output_format = rmarkdown::pdf_document( includes = rmarkdown::includes(in_header = "mqppep_anova_preamble.tex") , dev = "pdf" , toc = TRUE , toc_depth = 2 , number_sections = FALSE ) )