# HG changeset patch # User galaxyp # Date 1530900771 14400 # Node ID f0b415eb3bcf2feefe03ff9c3c38f792aa6754f0 planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/msi_classification commit 8087490eb4dcaf4ead0f03eae4126780d21e5503 diff -r 000000000000 -r f0b415eb3bcf msi_classification.xml --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/msi_classification.xml Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,1079 @@ + + spatial classification of mass spectrometry imaging data + + bioconductor-cardinal + r-gridextra + r-lattice + r-ggplot2 + + + + + + 0 +npeaks= sum(spectra(msidata)[]>0) +## Spectra multiplied with mz (potential number of peaks) +numpeaks = ncol(spectra(msidata)[])*nrow(spectra(msidata)[]) +## Percentage of intensities > 0 +percpeaks = round(npeaks/numpeaks*100, digits=2) +## Number of empty TICs +TICs = colSums(spectra(msidata)[]) +NumemptyTIC = sum(TICs == 0) + + +## Processing informations +processinginfo = processingData(msidata) +centroidedinfo = processinginfo@centroided # TRUE or FALSE + +## if TRUE write processinginfo if no write FALSE + +## normalization +if (length(processinginfo@normalization) == 0) { + normalizationinfo='FALSE' +} else { + normalizationinfo=processinginfo@normalization +} +## smoothing +if (length(processinginfo@smoothing) == 0) { + smoothinginfo='FALSE' +} else { + smoothinginfo=processinginfo@smoothing +} +## baseline +if (length(processinginfo@baselineReduction) == 0) { + baselinereductioninfo='FALSE' +} else { + baselinereductioninfo=processinginfo@baselineReduction +} +## peak picking +if (length(processinginfo@peakPicking) == 0) { + peakpickinginfo='FALSE' +} else { + peakpickinginfo=processinginfo@peakPicking +} + +############################################################################# + +properties = c("Number of mz features", + "Range of mz values", + "Number of pixels", + "Range of x coordinates", + "Range of y coordinates", + "Range of intensities", + "Median of intensities", + "Intensities > 0", + "Number of empty spectra", + "Preprocessing", + "Normalization", + "Smoothing", + "Baseline reduction", + "Peak picking", + "Centroided") + +values = c(paste0(maxfeatures), + paste0(minmz, " - ", maxmz), + paste0(pixelcount), + paste0(minimumx, " - ", maximumx), + paste0(minimumy, " - ", maximumy), + paste0(minint, " - ", maxint), + paste0(medint), + paste0(percpeaks, " %"), + paste0(NumemptyTIC), + paste0(" "), + paste0(normalizationinfo), + paste0(smoothinginfo), + paste0(baselinereductioninfo), + paste0(peakpickinginfo), + paste0(centroidedinfo)) + +property_df = data.frame(properties, values) + + +######################################## PDF ################################### +################################################################################ +################################################################################ + +Title = "Prediction" + +#if str( $type_cond.type_method) == "training": + #if str( $type_cond.method_cond.class_method) == "PLS": + Title = "PLS" + #elif str( $type_cond.method_cond.class_method) == "OPLS": + Title = "OPLS" + #elif str( $type_cond.method_cond.class_method) == "spatialShrunkenCentroids": + Title = "SSC" + #end if +#end if + +pdf("classificationpdf.pdf", fonts = "Times", pointsize = 12) +plot(0,type='n',axes=FALSE,ann=FALSE) + + +title(main=paste0(Title," for file: \n\n", "$infile.display_name")) + + + +##################### I) numbers and control plots ############################# +############################################################################### + +## table with values +grid.table(property_df, rows= NULL) + +if (npeaks > 0){ + +opar <- par() + + ######################## II) Training ############################# + ############################################################################# + #if str( $type_cond.type_method) == "training": + print("training") + + + ## load y response (will be needed in every training scenario) + + #if str($type_cond.y_cond.y_vector) == "y_internal": + y_vector = msidata\$$type_cond.y_cond.y_name + #elif str($type_cond.y_cond.y_vector) == "y_external": + y_tabular = read.delim("$type_cond.y_cond.y_data", header = FALSE, stringsAsFactors = FALSE) + y_vector = as.factor(y_tabular[,$type_cond.y_cond.y_column]) + number_pixels = length(y_vector) ## should be same as in data + #end if + + ## plot of y vector + + position_df = cbind(coord(msidata)[,1:2], y_vector) + y_plot = ggplot(position_df, aes(x=x, y=y, fill=y_vector))+ + geom_tile() + + coord_fixed()+ + ggtitle("Distribution of the response variable y")+ + theme_bw()+ + theme(text=element_text(family="ArialMT", face="bold", size=15))+ + theme(legend.position="bottom",legend.direction="vertical")+ + guides(fill=guide_legend(ncol=4,byrow=TRUE)) + coord_labels = aggregate(cbind(x,y)~y_vector, data=position_df, mean, na.rm=TRUE, na.action="na.pass") + coord_labels\$file_number = gsub( "_.*$", "", coord_labels\$y_vector) + print(y_plot) + + + ######################## PLS ############################# + #if str( $type_cond.method_cond.class_method) == "PLS": + print("PLS") + + ######################## PLS - CV ############################# + #if str( $type_cond.method_cond.analysis_cond.PLS_method) == "cvapply": + print("PLS cv") + + ## folds + #if str($type_cond.method_cond.analysis_cond.fold_cond.fold_vector) == "fold_internal": + + fold_vector = msidata\$$type_cond.method_cond.analysis_cond.fold_cond.fold_name + #elif str($type_cond.method_cond.analysis_cond.fold_cond.fold_vector) == "fold_external": + fold_tabular = read.delim("$type_cond.method_cond.analysis_cond.fold_cond.fold_data", header = FALSE, stringsAsFactors = FALSE) + fold_vector = as.factor(fold_tabular[,$type_cond.method_cond.analysis_cond.fold_cond.fold_column]) + number_pixels = length(fold_vector) ## should be same as in data + #end if + + ## plot of folds + + position_df = cbind(coord(msidata)[,1:2], fold_vector) + fold_plot = ggplot(position_df, aes(x=x, y=y, fill=fold_vector))+ + geom_tile() + + coord_fixed()+ + ggtitle("Distribution of the fold variable")+ + theme_bw()+ + theme(text=element_text(family="ArialMT", face="bold", size=15))+ + theme(legend.position="bottom",legend.direction="vertical")+ + guides(fill=guide_legend(ncol=4,byrow=TRUE)) + coord_labels = aggregate(cbind(x,y)~fold_vector, data=position_df, mean, na.rm=TRUE, na.action="na.pass") + coord_labels\$file_number = gsub( "_.*$", "", coord_labels\$fold_vector) + print(fold_plot) + + ## number of components + components = c($type_cond.method_cond.analysis_cond.plscv_comp) + + ## PLS-cvApply: + msidata.cv.pls <- cvApply(msidata, .y = y_vector, .fold = fold_vector, .fun = "PLS", ncomp = components) + + ## create table with summary + count = 1 + summary_plscv = list() + accuracy_vector = numeric() + for (iteration in components){ + + summary_iteration = summary(msidata.cv.pls)\$accuracy[[paste0("ncomp = ", iteration)]] + summary_iteration = cbind(rownames(summary_iteration), summary_iteration) ## include rownames in table + accuracy_vector[count] = summary_iteration[1,2] ## vector with accuracies to find later maximum for plot + empty_row = c(paste0("ncomp = ", iteration), rep( "", length(levels(y_vector)))) ## add line with ncomp for each iteration + ##rownames(labeled_iteration)[1] = paste0("ncomp = ", iteration) + ##labeled_iteration = cbind(rownames(labeled_iteration), labeled_iteration) + labeled_iteration = rbind(empty_row, summary_iteration) + + summary_plscv[[count]] = labeled_iteration + count = count+1} ## create list with summary table for each component + ## create dataframe from list + summary_plscv = do.call(rbind, summary_plscv) + summary_df = as.data.frame(summary_plscv) + rownames(summary_df) = NULL + + ## plots + ## plot to find ncomp with highest accuracy + plot(summary(msidata.cv.pls), main="Accuracy of PLS classification") + ncomp_max = components[which.max(accuracy_vector)] ## find ncomp with max. accuracy + ## one image for each sample/fold, 4 images per page + image(msidata.cv.pls, model = list(ncomp = ncomp_max), layout = c(2, 2)) + + par(opar) + ## print table with summary in pdf + plot(0,type='n',axes=FALSE,ann=FALSE) + title(main="Summary for the different components\n", adj=0.5) + ## summary for 4 components (20 rows) fits in one page: + if (length(components)<5){ + grid.table(summary_df, rows= NULL) + }else{ + grid.table(summary_df[1:20,], rows= NULL) + mincount = 21 + maxcount = 40 + for (count20 in 1:(ceiling(nrow(summary_df)/20)-1)){ + plot(0,type='n',axes=FALSE,ann=FALSE) + if (maxcount <= nrow(summary_df)){ + grid.table(summary_df[mincount:maxcount,], rows= NULL) + mincount = mincount+20 + maxcount = maxcount+20 + }else{### stop last page with last sample otherwise NA in table + grid.table(summary_df[mincount:nrow(summary_df),], rows= NULL)} + } + } + + ## optional output as .RData + #if $output_rdata: + save(msidata.cv.pls, file="$classification_rdata") + #end if + ######################## PLS - analysis ########################### + #elif str( $type_cond.method_cond.analysis_cond.PLS_method) == "PLS_analysis": + print("PLS analysis") + + ## number of components + component = c($type_cond.method_cond.analysis_cond.pls_comp) + + ### pls analysis + msidata.pls <- PLS(msidata, y = y_vector, ncomp = component, scale=$type_cond.method_cond.analysis_cond.pls_scale) + + ### plot of PLS coefficients + plot(msidata.pls, main="PLS coefficients per m/z") + + ### summary table of PLS + summary_table = summary(msidata.pls)\$accuracy[[paste0("ncomp = ",component)]] + summary_table = cbind(rownames(summary_table), data.frame(summary_table)) + rownames(summary_table) = NULL +print(summary_table) + ###plot(0,type='n',axes=FALSE,ann=FALSE) + ###grid.table(test, rows= TRUE) + + ### image of the best m/z + print(image(msidata, mz = topLabels(msidata.pls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", main="best m/z heatmap")) + + ## m/z and pixel information output + pls_classes = data.frame(msidata.pls\$classes[[1]]) + rownames(pls_classes) = names(pixels(msidata)) + colnames(pls_classes) = "predicted diagnosis" + pls_toplabels = topLabels(msidata.pls, n=$type_cond.method_cond.analysis_cond.pls_toplabels) + + write.table(pls_toplabels, file="$mzfeatures", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") + write.table(pls_classes, file="$pixeloutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") + + ## optional output as .RData + #if $output_rdata: + save(msidata.pls, file="$classification_rdata") + #end if + + #end if + + + ######################## OPLS ############################# + #elif str( $type_cond.method_cond.class_method) == "OPLS": + print("OPLS") + + ######################## OPLS -CV ############################# + #if str( $type_cond.method_cond.opls_analysis_cond.opls_method) == "opls_cvapply": + print("OPLS cv") + + ## folds + #if str($type_cond.method_cond.opls_analysis_cond.opls_fold_cond.opls_fold_vector) == "opls_fold_internal": + fold_vector = msidata\$$type_cond.method_cond.opls_analysis_cond.opls_fold_cond.opls_fold_name + #elif str($type_cond.method_cond.opls_analysis_cond.opls_fold_cond.opls_fold_vector) == "opls_fold_external": + fold_tabular = read.delim("$type_cond.method_cond.opls_analysis_cond.opls_fold_cond.opls_fold_data", header = FALSE, stringsAsFactors = FALSE) + fold_vector = as.factor(fold_tabular[,$type_cond.method_cond.opls_analysis_cond.opls_fold_cond.opls_fold_column]) + number_pixels = length(fold_vector) ## should be same as in data + #end if + + ## plot of folds + + position_df = cbind(coord(msidata)[,1:2], fold_vector) + fold_plot = ggplot(position_df, aes(x=x, y=y, fill=fold_vector))+ + geom_tile() + + coord_fixed()+ + ggtitle("Distribution of the fold variable")+ + theme_bw()+ + theme(text=element_text(family="ArialMT", face="bold", size=15))+ + theme(legend.position="bottom",legend.direction="vertical")+ + guides(fill=guide_legend(ncol=4,byrow=TRUE)) + coord_labels = aggregate(cbind(x,y)~fold_vector, data=position_df, mean, na.rm=TRUE, na.action="na.pass") + coord_labels\$file_number = gsub( "_.*$", "", coord_labels\$fold_vector) + print(fold_plot) + + ## number of components + components = c($type_cond.method_cond.opls_analysis_cond.opls_cvcomp) + + ## OPLS-cvApply: + msidata.cv.opls <- cvApply(msidata, .y = y_vector, .fold = fold_vector, .fun = "OPLS", ncomp = components, keep.Xnew = $type_cond.method_cond.opls_analysis_cond.xnew_cv) + + ## create table with summary + count = 1 + summary_oplscv = list() + accuracy_vector = numeric() + for (iteration in components){ + summary_iteration = summary(msidata.cv.opls)\$accuracy[[paste0("ncomp = ", iteration)]] + summary_iteration = cbind(rownames(summary_iteration), summary_iteration) ## include rownames in table + accuracy_vector[count] = summary_iteration[1,2] ## vector with accuracies to find later maximum for plot + empty_row = c(paste0("ncomp = ", iteration), rep( "", length(levels(y_vector)))) ## add line with ncomp for each iteration + ##rownames(labeled_iteration)[1] = paste0("ncomp = ", iteration) + ##labeled_iteration = cbind(rownames(labeled_iteration), labeled_iteration) + labeled_iteration = rbind(empty_row, summary_iteration) + summary_oplscv[[count]] = labeled_iteration ## create list with summary table for each component + count = count+1} + ## create dataframe from list + summary_oplscv = do.call(rbind, summary_oplscv) + summary_df = as.data.frame(summary_oplscv) + rownames(summary_df) = NULL + + ## plots + ## plot to find ncomp with highest accuracy + plot(summary(msidata.cv.opls), main="Accuracy of OPLS classification") + ncomp_max = components[which.max(accuracy_vector)] ## find ncomp with max. accuracy + ## one image for each sample/fold, 4 images per page + image(msidata.cv.opls, model = list(ncomp = ncomp_max), layout = c(2, 2)) + + par(opar) + ## print table with summary in pdf + plot(0,type='n',axes=FALSE,ann=FALSE) + title(main="Summary for the different components\n", adj=0.5) + ## summary for 4 components (20 rows) fits in one page: + if (length(components)<5){ + grid.table(summary_df, rows= NULL) + }else{ + grid.table(summary_df[1:20,], rows= NULL) + mincount = 21 + maxcount = 40 + for (count20 in 1:(ceiling(nrow(summary_df)/20)-1)){ + plot(0,type='n',axes=FALSE,ann=FALSE) + if (maxcount <= nrow(summary_df)){ + grid.table(summary_df[mincount:maxcount,], rows= NULL) + mincount = mincount+20 + maxcount = maxcount+20 + }else{### stop last page with last sample otherwise NA in table + grid.table(summary_df[mincount:nrow(summary_df),], rows= NULL)} + } + } + + ## optional output as .RData + #if $output_rdata: + save(msidata.cv.opls, file="$classification_rdata") + #end if + + ######################## OPLS -analysis ########################### + #elif str( $type_cond.method_cond.opls_analysis_cond.opls_method) == "opls_analysis": + print("OPLS analysis") + + ## number of components + component = c($type_cond.method_cond.opls_analysis_cond.opls_comp) + + ### opls analysis + msidata.opls <- PLS(msidata, y = y_vector, ncomp = component, scale=$type_cond.method_cond.opls_analysis_cond.opls_scale, keep.Xnew = $type_cond.method_cond.opls_analysis_cond.xnew) + + ### plot of OPLS coefficients + plot(msidata.opls, main="OPLS coefficients per m/z") + + ### summary table of OPLS + summary_table = summary(msidata.opls)\$accuracy[[paste0("ncomp = ",component)]] + summary_table = cbind(rownames(summary_table), summary_table) + rownames(summary_table) = NULL + summary_table = data.frame(summary_table) + print(summary_table) + ###plot(0,type='n',axes=FALSE,ann=FALSE) + ###grid.table(test, rows= TRUE) + + ### image of the best m/z + print(image(msidata, mz = topLabels(msidata.opls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", main="best m/z heatmap")) + + ## m/z and pixel information output + opls_classes = data.frame(msidata.opls\$classes[[1]]) + rownames(opls_classes) = names(pixels(msidata)) + colnames(opls_classes) = "predicted diagnosis" + opls_toplabels = topLabels(msidata.opls, n=$type_cond.method_cond.opls_analysis_cond.opls_toplabels) + + write.table(opls_toplabels, file="$mzfeatures", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") + write.table(opls_classes, file="$pixeloutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") + + ## optional output as .RData + #if $output_rdata: + save(msidata.opls, file="$classification_rdata") + #end if + + #end if + + ######################## SSC ############################# + #elif str( $type_cond.method_cond.class_method) == "spatialShrunkenCentroids": + print("SSC") + + ######################## SSC - CV ############################# + #if str( $type_cond.method_cond.ssc_analysis_cond.ssc_method) == "ssc_cvapply": + print("SSC cv") + + ## folds + #if str($type_cond.method_cond.ssc_analysis_cond.ssc_fold_cond.ssc_fold_vector) == "ssc_fold_internal": + fold_vector = msidata\$$type_cond.method_cond.ssc_analysis_cond.ssc_fold_cond.ssc_fold_name + + #elif str($type_cond.method_cond.ssc_analysis_cond.ssc_fold_cond.ssc_fold_vector) == "ssc_fold_external": + fold_tabular = read.delim("$type_cond.method_cond.ssc_analysis_cond.ssc_fold_cond.ssc_fold_data", header = FALSE, stringsAsFactors = FALSE) + fold_vector = as.factor(fold_tabular[,$type_cond.method_cond.ssc_analysis_cond.ssc_fold_cond.ssc_fold_column]) + number_pixels = length(fold_vector) ## should be same as in data + #end if + + ## plot of folds + position_df = cbind(coord(msidata)[,1:2], fold_vector) + fold_plot = ggplot(position_df, aes(x=x, y=y, fill=fold_vector))+ + geom_tile() + + coord_fixed()+ + ggtitle("Distribution of the fold variable")+ + theme_bw()+ + theme(text=element_text(family="ArialMT", face="bold", size=15))+ + theme(legend.position="bottom",legend.direction="vertical")+ + guides(fill=guide_legend(ncol=4,byrow=TRUE)) + coord_labels = aggregate(cbind(x,y)~fold_vector, data=position_df, mean, na.rm=TRUE, na.action="na.pass") + coord_labels\$file_number = gsub( "_.*$", "", coord_labels\$fold_vector) + print(fold_plot) + + ## SSC-cvApply: + msidata.cv.ssc <- cvApply(msidata, .y = y_vector,.fold = fold_vector,.fun = "spatialShrunkenCentroids", r = c($type_cond.method_cond.ssc_r), s = c($type_cond.method_cond.ssc_s), method = "$type_cond.method_cond.ssc_kernel_method") + + ## create table with summary + count = 1 + summary_ssccv = list() + accuracy_vector = numeric() + + for (iteration in names(msidata.cv.ssc@resultData[[1]][,1])){ + summary_iteration = summary(msidata.cv.ssc)\$accuracy[[iteration]] + summary_iteration = cbind(rownames(summary_iteration), summary_iteration) ## include rownames in table + accuracy_vector[count] = summary_iteration[1,2] ## vector with accuracies to find later maximum for plot + empty_row = c(iteration, rep( "", length(levels(y_vector)))) ## add line with ncomp for each iteration + labeled_iteration = rbind(empty_row, summary_iteration) + summary_ssccv[[count]] = labeled_iteration ## create list with summary table for each component + count = count+1 + } + + ##create dataframe from list + summary_ssccv = do.call(rbind, summary_ssccv) + summary_df = as.data.frame(summary_ssccv) + rownames(summary_df) = NULL + + ## plot to find parameters with highest accuracy + plot(summary(msidata.cv.ssc), main="Accuracy of SSC classification") + best_params = names(msidata.cv.ssc@resultData[[1]][,1])[which.max(accuracy_vector)] ## find parameters with max. accuracy + r_value = as.numeric(substring(unlist(strsplit(best_params, ","))[1], 4)) + s_value = as.numeric(substring(unlist(strsplit(best_params, ","))[3], 5)) ## remove space + + image(msidata.cv.ssc, model = list( r = r_value, s = s_value ), layout=c(2,2)) + + par(opar) + ## print table with summary in pdf + plot(0,type='n',axes=FALSE,ann=FALSE) + title(main="Summary for the different parameters\n", adj=0.5) + ## summary for 4 parameters (20 rows) fits in one page: + if (length(names(msidata.cv.ssc@resultData[[1]][,1]))<5){ + grid.table(summary_df, rows= NULL) + }else{ + grid.table(summary_df[1:20,], rows= NULL) + mincount = 21 + maxcount = 40 + for (count20 in 1:(ceiling(nrow(summary_df)/20)-1)){ + plot(0,type='n',axes=FALSE,ann=FALSE) + if (maxcount <= nrow(summary_df)){ + grid.table(summary_df[mincount:maxcount,], rows= NULL) + mincount = mincount+20 + maxcount = maxcount+20 + }else{### stop last page with last sample otherwise NA in table + grid.table(summary_df[mincount:nrow(summary_df),], rows= NULL)} + } + } + + ## optional output as .RData + #if $output_rdata: + save(msidata.cv.opls, file="$classification_rdata") + #end if + + ######################## SSC -analysis ########################### + #elif str( $type_cond.method_cond.ssc_analysis_cond.ssc_method) == "ssc_analysis": + print("SSC analysis") + + ## SSC analysis + msidata.ssc <- spatialShrunkenCentroids(msidata, y = y_vector, .fold = fold_vector, +r = c($type_cond.method_cond.ssc_r), s = c($type_cond.method_cond.ssc_s), method = "$type_cond.method_cond.ssc_kernel_method") + + plot(msidata.ssc, mode = "tstatistics", model = list("r" = c($type_cond.method_cond.ssc_r), "s" = c($type_cond.method_cond.ssc_s))) + + ### summary table SSC + + ##summary(msidata.ssc)\$accuracy[[names(msidata.ssc@resultData)]] + summary_table = summary(msidata.ssc) +print(summary_table) + ##summary_table = cbind(rownames(summary_table), summary_table) + ##rownames(summary_table) = NULL + + ###plot(0,type='n',axes=FALSE,ann=FALSE) + ###grid.table(summary_table, rows= TRUE) + + ### image of the best m/z + print(image(msidata, mz = topLabels(msidata.ssc)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", main="best m/z heatmap")) + + ## m/z and pixel information output + ssc_classes = data.frame(msidata.ssc\$classes[[1]]) + rownames(ssc_classes) = names(pixels(msidata)) + colnames(ssc_classes) = "predicted diagnosis" + ssc_toplabels = topLabels(msidata.ssc) + + write.table(ssc_toplabels, file="$mzfeatures", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") + write.table(ssc_classes, file="$pixeloutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") + + ## optional output as .RData + #if $output_rdata: + save(msidata.ssc, file="$classification_rdata") + #end if + + #end if + #end if + + + ######################## II) Prediction ############################# + ############################################################################# + #elif str( $type_cond.type_method) == "prediction": + print("prediction") + + #if str($type_cond.new_y.new_y_values) == "no_new_y": + new_y_vector = FALSE + #elif str($type_cond.new_y.new_y_values) == "new_y_internal": + new_y_vector = msidata\$$type_cond.new_y.new_y_name + #elif str($type_cond.new_y.new_y_values) == "new_y_external": + + new_y_tabular = read.delim("$type_cond.new_y.new_y_data", header = FALSE, stringsAsFactors = FALSE) + new_y_vector = new_y_tabular[,$type_cond.new_y.new_y_column] + number_pixels = length(new_y_vector) ## should be same as in data + #end if + + training_data = loadRData("$type_cond.training_result") + prediction = predict(training_data,msidata, newy = new_y_vector) + + ## optional output as .RData + #if $output_rdata: + msidata = prediction + save(msidata, file="$classification_rdata") + #end if + #end if + + dev.off() +}else{ + print("Inputfile has no intensities > 0") + dev.off() +} + + ]]> + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + output_rdata + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + `_ + +This tool provides three different Cardinal functions for supervised classification of mass-spectrometry imaging data. + +Input data: 3 types of input data can be used: + +- imzml file (upload imzml and ibd file via the "composite" function) `Introduction to the imzml format `_ +- Analyze7.5 (upload hdr, img and t2m file via the "composite" function) +- Cardinal "MSImageSet" data (with variable name "msidata", saved as .RData) + +Options: + +- PLS(-DA): partial least square (discriminant analysis) +- O-PLS(-DA): Orthogonal partial least squares (discriminant analysis) +- Spatial shrunken centroids + +Output: + +- Pdf with the heatmaps and plots for the classification +- Tabular file with information on masses and pixels: toplabels/classes (PLS, spatial shrunken centroids) +- optional RData output to further explore the results with Cardinal in R + + ]]> + + + 10.1093/bioinformatics/btv146 + + diff -r 000000000000 -r f0b415eb3bcf test-data/features_test1.tabular diff -r 000000000000 -r f0b415eb3bcf test-data/features_test2.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/features_test2.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,101 @@ + mz ncomp column coefficients loadings weights +1 938.823120117188 2 1 0.00557062672565914 0.0521481794011343 0.0618954239030616 +2 938.859741210938 2 1 0.00542130109915229 0.0573197814782043 0.0556644462038001 +3 952.817016601562 2 1 0.00540658997062797 0.0541785607809472 0.0556957101293819 +4 980.9658203125 2 1 0.00530572666388636 0.0640830071706491 0.0596133867741965 +5 948.876525878906 2 1 0.00513396526933383 0.0580901569940297 0.0501389238916535 +6 926.022705078125 2 1 0.00495042111443777 0.0562851962915777 0.0443394574239625 +7 964.835876464844 2 1 0.00488062440395858 0.0565204963990886 0.0549598184884737 +8 982.013427734375 2 1 0.00485621047514792 0.048802383602383 0.0509744856714613 +9 995.19384765625 2 1 0.00481790774594767 0.0605795860610914 0.0530033855827968 +10 980.591796875 2 1 0.00471855619365328 0.0571816843146788 0.0534415807414751 +11 907.976257324219 2 1 0.00469109890013257 0.0610286466128535 0.0524345088122848 +12 907.0048828125 2 1 0.0046524995163741 0.0496389045323984 0.0487703720171644 +13 950.238220214844 2 3 0.00463861915222127 -0.0340558630529817 -0.0306112282051999 +14 995.985229492188 2 1 0.00462557611263778 0.0467967955160554 0.0558164362558804 +15 921.521667480469 2 1 0.00462412758928141 0.0492116848139342 0.0499849768568264 +16 915.04345703125 2 1 0.00454006262432388 0.0462339924711474 0.0425994231878204 +17 929.514953613281 2 1 0.00453623375772606 0.0563841702252104 0.045238258655595 +18 958.31787109375 2 1 0.00450679164876951 0.0459566089567639 0.0423653141505111 +19 962.870727539062 2 3 0.00448138616027361 -0.0581767564414316 -0.0599267135196269 +20 942.412719726562 2 1 0.00446754249696574 0.0526251413421558 0.0499585152758468 +21 922.065551757812 2 1 0.00446641275611493 0.0495906378625035 0.049953814799021 +22 918.261596679688 2 3 0.00445234724107087 -0.0158931585724287 -0.014157529428659 +23 973.64794921875 2 1 0.00445110339749622 0.0395696753622873 0.0372883597985613 +24 991.993957519531 2 1 0.00443336829341509 0.0440255653751743 0.0502927465261473 +25 976.332946777344 2 1 0.00437993281099959 0.0492604074600163 0.0448822073186939 +26 979.582275390625 2 3 0.00437918390295013 -0.0344798097888197 -0.03253979930277 +27 913.41845703125 2 3 0.00437503486499096 -0.00387925008074657 -0.00438981731141592 +28 948.619018554688 2 1 0.00426105794044819 0.0371821841057357 0.0429237139078889 +29 901.330810546875 2 1 0.00425328221665412 0.0552699147993945 0.0482509891289382 +30 960.278381347656 2 3 0.00423132265179973 -0.0433340796542259 -0.0409361343266309 +31 992.294921875 2 3 0.00418576359850056 -0.0391910598190591 -0.0342798229241432 +32 994.967834472656 2 1 0.00417817188823829 0.0383119007479891 0.0476486709797929 +33 948.471862792969 2 1 0.00417161016294321 0.0380099525316105 0.0408760564074696 +34 904.237426757812 2 1 0.00417080429266561 0.0475165460962433 0.0430960180049384 +35 942.852722167969 2 2 0.0041438458930486 -0.0468558588772594 -0.049716939342293 +36 918.442565917969 2 1 0.00413331124379944 0.0423300908408027 0.0458013372312651 +37 943.109436035156 2 2 0.00412811549109012 -0.0413767608692901 -0.0472745376109769 +38 936.5556640625 2 1 0.00411371014807382 0.0407060654246003 0.0414790745602655 +39 945.054321289062 2 1 0.00408474594381495 0.0481061599030778 0.0422885605529943 +40 992.595886230469 2 1 0.00408223122742656 0.0369204499600823 0.0410564204257673 +41 913.310180664062 2 1 0.00407879803557168 0.0498424674382356 0.040014655663535 +42 910.965698242188 2 3 0.00405962992021169 -0.0382641079076008 -0.0379558138613928 +43 950.606384277344 2 3 0.00405907592689352 -0.0503005800552258 -0.0564684538983107 +44 974.020629882812 2 1 0.00404970841392063 0.0453076176593101 0.0358031960147686 +45 903.770629882812 2 3 0.00403337646658259 -0.0308928430941287 -0.035800455446528 +46 993.197998046875 2 3 0.00402476056402085 -0.022740013818147 -0.0229211765138961 +47 955.140930175781 2 1 0.00400392811033344 0.0545303511096986 0.0430366824723547 +48 923.734497070312 2 1 0.00396875769656089 0.0489283101050371 0.0446083164881897 +49 943.292846679688 2 3 0.00396229091310485 -0.00589037926949604 -0.0081255927937416 +50 927.768005371094 2 1 0.00396212785702182 0.0446744368922679 0.0419935555431609 +51 965.540893554688 2 3 0.00395776036645286 -0.0622321071450148 -0.0629368131896196 +52 907.508483886719 2 1 0.00394876742672506 0.0338904158180818 0.0315098966370126 +53 960.019287109375 2 1 0.0039403473862032 0.050776397569013 0.03873623640836 +54 925.041748046875 2 3 0.0039362983069634 0.00547894918105684 0.00648384039698146 +55 922.863586425781 2 1 0.00393043741778826 0.0404768313565869 0.0320371152599393 +56 918.985595703125 2 3 0.00392990559936248 -0.0241976051228088 -0.0173907002587976 +57 938.054809570312 2 1 0.00392283092987214 0.0433932714795145 0.0415656785679352 +58 952.300964355469 2 1 0.00391807330597071 0.0539847824089577 0.0526900756993094 +59 938.896301269531 2 1 0.00390920544867313 0.0432075299467666 0.040884460919137 +60 918.62353515625 2 1 0.00390598520310851 0.0405436877403175 0.0394150273697351 +61 940.653686523438 2 1 0.00388205579523716 0.0325670207445315 0.0376845331490984 +62 918.587341308594 2 1 0.00386025843595639 0.0420256786308284 0.0473925689610602 +63 944.063293457031 2 3 0.00384447645727029 -0.0108918102769628 -0.00500447372654549 +64 980.479553222656 2 3 0.00383412917234354 -0.0262635632207469 -0.0305873497852977 +65 905.854248046875 2 3 0.00382809625193645 -0.0509229481136295 -0.0545129795504416 +66 942.082763671875 2 1 0.00381273797189762 0.0444743475872274 0.0435604050553623 +67 934.656066894531 2 3 0.00378297587449155 -0.0394312931297934 -0.0485932573378814 +68 906.89697265625 2 1 0.00374570932202412 0.0339271553171168 0.0282809191934174 +69 905.890197753906 2 3 0.00373151556865197 -0.024218298123225 -0.0186657492773445 +70 948.655822753906 2 3 0.00372441631900937 -0.017476081747813 -0.0110316891494553 +71 959.908325195312 2 1 0.00371442848581406 0.0342932290876843 0.0310906799107696 +72 946.192810058594 2 2 0.00369361746355479 -0.038238592789904 -0.0417491451554952 +73 933.524536132812 2 1 0.00368140176962546 0.0376205271222568 0.0348149137052689 +74 999.531311035156 2 1 0.0036708372022316 0.0419178472824249 0.0360426545514402 +75 905.602661132812 2 1 0.00366188804899887 0.0371789230194049 0.0403042300562272 +76 904.560729980469 2 1 0.00366151022492225 0.0483872255903629 0.0393416043647449 +77 967.02587890625 2 1 0.00364664009773375 0.0358270208382791 0.0367448112342897 +78 961.833374023438 2 1 0.00364124181915343 0.0500921543232852 0.0471568448381178 +79 945.71533203125 2 1 0.00362363829859195 0.038772747366622 0.038929243234765 +80 994.026245117188 2 2 0.00362302096270583 -0.0278102959641648 -0.035044986078868 +81 922.138061523438 2 1 0.0036165759251259 0.0396894571745094 0.0338599942728403 +82 921.920471191406 2 3 0.00361497501678999 -0.0109725715482311 -0.00817330765900041 +83 996.512939453125 2 3 0.00361344604654759 -0.0240208863758058 -0.0216798334099216 +84 925.586669921875 2 3 0.00360019116631399 -0.000201285421933851 -0.00370132703005591 +85 927.076965332031 2 1 0.00359739327950109 0.0402217752115896 0.0381187534803433 +86 946.266296386719 2 1 0.00359027149639919 0.0350158580852316 0.0345803953604497 +87 997.644348144531 2 3 0.00358755032912394 -0.0386413413940509 -0.0374227165960138 +88 986.959838867188 2 3 0.00356886986009821 -0.00770354721402719 -0.0073488017929185 +89 956.544067382812 2 2 0.00356755616082941 -0.0263554430477736 -0.0341563371597065 +90 981.826293945312 2 1 0.0035614851177778 0.0318618564397332 0.0359368988957353 +91 995.683715820312 2 1 0.0035606803581847 0.0326251406575274 0.0326734264590619 +92 949.575622558594 2 1 0.00354754516564472 0.0399068842159591 0.0381317579086198 +93 990.565063476562 2 3 0.00354075441437422 -0.00252469837204454 -0.00790021238532976 +94 970.222473144531 2 1 0.00353702890647679 0.033894961483528 0.0342653656238723 +95 926.277160644531 2 3 0.00352995388417487 -0.00403664201467942 -0.00483641570245392 +96 981.15283203125 2 1 0.00352226894457903 0.0343450789571067 0.0416777456263345 +97 927.222412109375 2 1 0.00350510856591621 0.0346202558912905 0.033535024774141 +98 946.450012207031 2 1 0.00349425060263787 0.0428865972028226 0.0325784624960938 +99 979.395385742188 2 3 0.00349405845239093 -0.00985834384583178 -0.00848238004662365 +100 902.083984375 2 1 0.00349155533954646 0.0283241643148307 0.0297190584575691 diff -r 000000000000 -r f0b415eb3bcf test-data/features_test3.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/features_test3.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,101 @@ + mz ncomp column coefficients loadings weights +1 912.877136230469 5 B 0.00573560886985861 0.0278792843758433 0.0174625794014248 +2 928.859680175781 5 B 0.00511152861154612 0.080582202226706 0.0449791444906335 +3 928.8232421875 5 A 0.00394682983157522 -0.131114121516169 -0.120797995367842 +4 906.357543945312 5 B 0.00379761201569002 0.000218842770286919 0.0108192536553647 +5 929.806274414062 5 A 0.00329046667460749 -0.0793506800849298 -0.0567540713469838 +6 928.786865234375 5 A 0.00281536345205098 -0.137119317627185 -0.108094620314052 +7 928.350158691406 5 B 0.0027716009167843 0.0470202531672182 0.0412017517047867 +8 912.913208007812 5 B 0.00262003702349645 0.0194552925882558 -0.0195302890148169 +9 928.313781738281 5 B 0.00243736200183622 0.0805212535990385 0.0705990727896206 +10 913.887756347656 5 B 0.00221323695668804 -0.00317834456228842 -0.0111644037765951 +11 958.354858398438 5 C 0.00218611357632804 -0.0868225233010098 -0.0776158593166818 +12 900.3271484375 5 A 0.00202270233336513 0.0218864157743357 0.0249665710844463 +13 922.355712890625 5 A 0.00194994698799459 -0.00519863672214228 -0.0143720726000853 +14 906.932922363281 5 C 0.00194723366167703 -0.0312828380589129 -0.0442717730733137 +15 960.315368652344 5 A 0.00187947702290302 0.0253736974493193 0.018753441810068 +16 900.398864746094 5 A 0.00187742938790966 0.0897368447678527 0.0384134014466115 +17 908.372192382812 5 C 0.00184669840048874 -0.0869349456361487 -0.0829960247477007 +18 964.353698730469 5 A 0.00184476269063658 0.011548554180564 -0.000153032997962692 +19 907.400573730469 5 A 0.00181328146613277 -0.13964152975894 -0.111315217793746 +20 944.3935546875 5 C 0.00180114670650244 -0.112514036816282 -0.0967817030565024 +21 930.862670898438 5 B 0.00178101260222112 0.0431711794522195 0.0423828276766716 +22 917.320922851562 5 B 0.0017324863274476 -0.0018308853147361 0.0181840711680666 +23 913.923889160156 5 B 0.00169680931924337 0.00751826276561152 0.00426019175481283 +24 964.316589355469 5 A 0.00167574782378486 -0.00511819820771596 -0.0177629600432386 +25 922.391967773438 5 A 0.00165663869710544 0.0269772557383697 0.0200569702205186 +26 928.386535644531 5 C 0.00163839286482865 -0.128723542255192 -0.14365649834442 +27 917.24853515625 5 C 0.00163799346185425 -0.0686989934192134 -0.0644324391138345 +28 907.0048828125 5 C 0.00163651612048907 -0.0423460760837113 -0.042858627938677 +29 929.879089355469 5 B 0.00161854460685115 0.0107180493542772 -0.0165330274858425 +30 962.31494140625 5 A 0.0015577110978032 0.0101662280797979 0.00906297179159906 +31 928.896057128906 5 B 0.00155211020829067 -0.0227597962344375 -0.0376328151696402 +32 907.508483886719 5 A 0.00152231359874351 -0.00501023440503865 0.00411608821605429 +33 906.321594238281 5 B 0.00150232100198243 0.169628931631569 0.0833347494460195 +34 928.422912597656 5 C 0.00149862519425526 -0.0988092407586723 -0.0980124527103979 +35 915.33251953125 5 A 0.00149670046094414 0.0167810951263842 0.00799770543739007 +36 933.451599121094 5 A 0.00149559366742044 -0.0101282950093928 -0.00868888146166574 +37 938.310852050781 5 A 0.00148518024454743 -0.0190905089132087 -0.021963712310515 +38 900.398864746094 5 B 0.00144309164565263 0.0897368447678527 0.0384134014466115 +39 914.393310546875 5 A 0.00143814553766404 0.0431939959878263 0.0391694434542682 +40 923.37158203125 5 A 0.00143349164672113 0.0309748953597018 0.0265723936963444 +41 909.380310058594 5 C 0.00142631034364181 -0.0769318389091112 -0.0693117294136355 +42 922.319458007812 5 A 0.00142630323399233 0.00788744010733054 0.00410195880119904 +43 988.423706054688 5 C 0.00142458825835235 -0.0544530771113024 -0.0561690158460763 +44 945.825500488281 5 A 0.00141849722280284 -0.00410006824736187 0.00464038907760734 +45 906.968933105469 5 C 0.00141821227423597 -0.0281467969817215 -0.0346221161148836 +46 984.41015625 5 A 0.00141422568838638 0.00180288115822474 -0.00575025152945066 +47 914.429443359375 5 A 0.00140667815589665 0.00844912072512714 0.000927993780216452 +48 906.825073242188 5 C 0.00139689814365544 -0.0186626483901896 -0.0139964738169331 +49 974.356140136719 5 A 0.00139511899978669 0.00771417003944002 0.00732798200952366 +50 990.339538574219 5 A 0.00139335470274239 0.0145249159048392 0.00747421578232434 +51 906.3935546875 5 A 0.00138004860874631 -0.312550300134348 -0.247786642569732 +52 922.42822265625 5 A 0.00136676358204094 0.0165625882192442 0.0152871768674149 +53 908.300170898438 5 B 0.00135991283529091 0.0718420081273004 0.0713307284663223 +54 901.402526855469 5 A 0.00134718725931476 -0.0256078636203243 -0.0356154758922099 +55 910.352966308594 5 A 0.00134419794589414 -0.0499712979282595 -0.0256436042538601 +56 931.263549804688 5 C 0.00134117597601552 -0.0620247580251951 -0.0607020324076145 +57 985.047302246094 5 C 0.00133584639523509 -0.0384397290535222 -0.0408673780723547 +58 914.321105957031 5 A 0.00130608979486391 0.0290501975094118 0.0275420313894548 +59 945.348083496094 5 A 0.00130140516695858 0.0253060910242657 0.0119029358846208 +60 913.310180664062 5 A 0.00129896103824685 0.00742346758138673 0.0157924784190528 +61 933.70703125 5 C 0.00129763361619735 -0.0407418908691755 -0.0388860566536824 +62 921.956787109375 5 C 0.00129612551320273 -0.0483921057193139 -0.0488383464831586 +63 939.335510253906 5 A 0.00129428218404129 0.00600800789030359 0.0131879607302309 +64 987.41015625 5 A 0.00128665107590485 -0.00636134472352142 -0.00730763252053051 +65 943.549621582031 5 C 0.00128617292004578 -0.0395067636606405 -0.0475612954644227 +66 906.89697265625 5 C 0.00128388845744427 -0.0810017098053887 -0.0590661747185278 +67 943.843139648438 5 A 0.00128163928100432 0.0223636395901339 0.0171960698891111 +68 967.322998046875 5 A 0.00127943666463007 0.0314895243330321 0.0315023839724848 +69 939.079284667969 5 A 0.00126568352817391 0.00393555672515739 0.00746820029282455 +70 977.490112304688 5 C 0.00125443608196423 -0.0380384702294876 -0.0403034709131318 +71 907.32861328125 5 B 0.00125253984496166 0.110383167737652 0.0704562955022436 +72 944.283447265625 5 C 0.00124603304578717 -0.0491052600513046 -0.0727841765184862 +73 930.27978515625 5 A 0.00124326358170705 -0.00215312648559036 -0.00579722722612751 +74 949.244445800781 5 A 0.00123689874596268 0.0219656572867447 0.0137749437071788 +75 913.851684570312 5 C 0.00123370404912094 -0.108870738599701 -0.116843827740323 +76 975.362915039062 5 C 0.00123247898907694 -0.044591237647127 -0.0456858984984175 +77 900.470520019531 5 C 0.00122678197442627 -0.127593325669853 -0.123819224377232 +78 940.397277832031 5 A 0.00122354729668265 0.00648441625422437 0.00152355799263006 +79 908.876159667969 5 B 0.00121463454522318 0.061564970973976 0.0580665441987194 +80 913.346313476562 5 A 0.00120436661249893 -0.0131206347760455 -0.018390772792573 +81 916.236083984375 5 B 0.00119954624470656 0.032430870334859 0.035219768767109 +82 944.320190429688 5 C 0.00118708863739913 -0.055803354733614 -0.0761728728759915 +83 945.458251953125 5 B 0.0011857554546481 0.0368567664791091 0.0388966752148608 +84 961.388977050781 5 A 0.00118457289993589 -0.0169330554562843 -0.0263480507383981 +85 990.302001953125 5 A 0.00117366922561996 0.0268817088254416 0.02256998797909 +86 901.474243164062 5 C 0.00117008160572052 -0.0595293465828576 -0.0761088232808644 +87 964.427856445312 5 A 0.0011666327455814 0.00165239954667202 -0.00309276740861809 +88 929.442138671875 5 A 0.0011637277717203 -0.0157825629843663 -0.0212823327979183 +89 978.34912109375 5 A 0.00116221405397043 0.0177230636109089 0.013528455022467 +90 907.904296875 5 C 0.00116106463394485 -0.0368668797130259 -0.0316104275660823 +91 934.364013671875 5 A 0.00115988059659708 -0.0494769062493358 -0.042494498580377 +92 945.788757324219 5 A 0.0011595624454717 -0.0521758846817815 -0.0526870771132401 +93 902.9091796875 5 A 0.00115576472542512 0.0137482609386539 0.0127692632724736 +94 916.308349609375 5 B 0.00115492032248105 0.0430197453137873 0.0222454244793768 +95 930.899108886719 5 B 0.00115375696294478 0.0229589147612749 0.0175390324427165 +96 994.252197265625 5 A 0.00114858716830324 -0.0115164421162656 -0.0129501099310508 +97 953.517578125 5 C 0.00114667766575531 -0.0313375380866859 -0.0343808078073923 +98 927.33154296875 5 B 0.00114653967537263 0.045177958607566 0.0584684273035106 +99 909.632446289062 5 C 0.00114285552390805 -0.0421291133184035 -0.0442392582481364 +100 902.550354003906 5 A 0.00113776304703523 0.0106679460632866 0.00541877194927921 diff -r 000000000000 -r f0b415eb3bcf test-data/features_test4.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/features_test4.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,101 @@ + mz ncomp column coefficients loadings weights +1 912.877136230469 3 B 0.00402511569666969 -0.246308032464734 -0.0998747661753797 +2 928.8232421875 3 A 0.00355204006388532 0.273286934815558 0.288081987978036 +3 928.859680175781 3 B 0.00304099166534859 -0.180023925015396 -0.0975882865489913 +4 929.806274414062 3 A 0.00301867966492034 0.20461792386307 0.204104875190971 +5 928.786865234375 3 A 0.00294246516676733 0.279365597419633 0.24012019090174 +6 912.913208007812 3 B 0.00221421341476842 -0.25734495461644 -0.123924205177262 +7 906.357543945312 3 B 0.0017751956946221 0.0660711931225974 -0.167734534471784 +8 913.887756347656 3 B 0.00169164545723661 -0.0797847981582402 -0.0542158398194389 +9 907.400573730469 3 A 0.00168976824209188 -0.0553409573032757 -0.0310185392575794 +10 900.3271484375 3 A 0.0016850771109767 0.0635456830152988 0.0623351620915374 +11 928.896057128906 3 B 0.00168450000766379 -0.182486440635111 -0.0950023449824687 +12 922.355712890625 3 A 0.00167096941795371 0.0529977859368994 0.0679949938623556 +13 900.398864746094 3 A 0.00166100096018687 0.0406827592981194 -0.010027514312194 +14 960.315368652344 3 A 0.00164686513200881 0.0692239228029656 0.0559857485267436 +15 964.353698730469 3 A 0.0016007991522707 0.0487859885763137 0.049315043939497 +16 906.3935546875 3 A 0.00157421991835154 -0.184824638462265 -0.161519730620847 +17 964.316589355469 3 A 0.00143180642589214 0.0309764043652652 0.0453653991628429 +18 962.31494140625 3 A 0.00141328760599612 0.0642563963154312 0.0454439922528048 +19 929.879089355469 3 B 0.00137108902531006 -0.147152863346693 -0.0787919913569194 +20 900.434692382812 3 B 0.00131488882358473 -0.20214180256976 -0.173026933354479 +21 901.402526855469 3 A 0.00131071912036092 0.0193425453272541 0.00416556425120399 +22 922.391967773438 3 A 0.00128195781418033 0.0250080230991378 0.0401690309084914 +23 915.33251953125 3 A 0.00127720082168308 0.0472700250545067 0.0476142683041524 +24 938.310852050781 3 A 0.00126979651175339 0.0258332330864995 0.0395551945184375 +25 913.923889160156 3 B 0.00125913909333928 -0.116366449217641 -0.0823808975691949 +26 907.508483886719 3 A 0.00123463128203684 0.0286834379044553 0.0416260189187914 +27 974.356140136719 3 A 0.00122974867070485 0.0426004370460666 0.0327898050985416 +28 933.451599121094 3 A 0.00122075781571264 0.0189293266454833 0.0363946273679358 +29 910.352966308594 3 A 0.00121465945239948 0.0212318588989688 0.0191774558940735 +30 990.339538574219 3 A 0.00120033930835288 0.0471035220902788 0.0441020126132822 +31 984.41015625 3 A 0.00117709585424916 0.0256612782877473 0.0364785894847815 +32 922.319458007812 3 A 0.00116343926435404 0.0350575504771194 0.049003566656031 +33 945.825500488281 3 A 0.00116281366134625 0.0358386234196617 0.039941557361758 +34 914.429443359375 3 A 0.00114751581370748 0.0214325420152595 0.0322577162355903 +35 934.364013671875 3 A 0.00111966105461266 0.0261184955739278 0.0277902861913678 +36 945.788757324219 3 A 0.0011140971316516 0.0602657244502292 0.0678490003014779 +37 930.27978515625 3 A 0.00111107830564362 0.0548573050563774 0.0541864639681832 +38 987.41015625 3 A 0.00109109627880292 0.0259022291567729 0.0348827329301489 +39 917.320922851562 3 B 0.00108811988692458 -0.0380939775497376 -0.0859734761406655 +40 961.388977050781 3 A 0.00108270610537361 0.0208991144261707 0.0235951714502884 +41 949.244445800781 3 A 0.00108094226185502 0.0553461544724562 0.0473287208302763 +42 914.393310546875 3 A 0.00107937289161071 0.0186407876697643 0.0213451871968151 +43 923.37158203125 3 A 0.00107406087109902 0.0174157121297602 0.0300927241546599 +44 967.322998046875 3 A 0.00106160501633174 0.0413827618597132 0.0291509896006055 +45 961.314880371094 3 A 0.00105652394646208 0.0429555520663857 0.0345573512639803 +46 994.252197265625 3 A 0.00105259315733988 0.0465400676246555 0.0444177569572566 +47 945.348083496094 3 A 0.00104820825219221 0.00490478080758506 0.00553720261210505 +48 913.346313476562 3 A 0.00103460925930171 0.0189564108870971 0.026732642281156 +49 914.321105957031 3 A 0.00103017762730726 0.0282931942786005 0.0284256699648362 +50 929.442138671875 3 A 0.00102404971565295 0.0229046222354404 0.0276260524235887 +51 922.42822265625 3 A 0.0010201655110503 0.00439147989742666 0.022483171550914 +52 978.386474609375 3 A 0.00101071432463861 0.0477124446667881 0.0315232247977375 +53 939.335510253906 3 A 0.00100997005380696 0.0115288494115123 0.0213424433245233 +54 929.478515625 3 A 0.00100973338976312 0.0376043223441187 0.0393591980443549 +55 939.079284667969 3 A 0.00100844892647231 0.031219827705917 0.0442017366717789 +56 943.843139648438 3 A 0.000998522723296839 0.0267299053728509 0.036566368840497 +57 929.842712402344 3 A 0.000985861500832982 0.0831947546006432 0.10803783679681 +58 940.397277832031 3 A 0.000981083898431389 0.0151431322576335 0.0277538495060947 +59 990.302001953125 3 A 0.000975080019411607 0.0394636635241222 0.0357960840702764 +60 913.310180664062 3 A 0.000968769911918236 0.0107823038071007 0.0262423379384436 +61 912.3359375 3 A 0.000967109425146236 0.0334299345844847 0.0262269905676808 +62 934.327514648438 3 A 0.000965358942233967 0.0380560763121743 0.0247830327164836 +63 978.34912109375 3 A 0.000951696141507144 0.0246378024631849 0.0263610910562008 +64 964.427856445312 3 A 0.000949632779126584 0.0206276476766682 0.0323633524966416 +65 905.135498046875 3 A 0.000938890795440174 0.0358363374682948 0.0462758721204666 +66 902.9091796875 3 A 0.000928200839226985 0.0270476983876206 0.0331256977422899 +67 970.296875 3 A 0.000917937154598045 0.0412888009110875 0.0371046212107984 +68 900.291320800781 3 A 0.000915554291393151 0.036900837325731 0.0299428712446064 +69 936.372924804688 3 A 0.00091425261278822 0.0304697260564217 0.0172307486843934 +70 902.550354003906 3 A 0.000913173677427114 0.0206873082762993 0.0314356257688807 +71 969.329895019531 3 A 0.00090861890412644 0.0381404597757337 0.0290496620448507 +72 928.350158691406 3 B 0.000900790180107579 -0.0354285882483893 -0.0781235087794192 +73 906.465454101562 3 A 0.000894886810510601 0.0278152115913203 0.00415630972695765 +74 951.195617675781 3 A 0.00088960840060638 0.0213781455200748 0.0390510024922428 +75 929.296508789062 3 A 0.00088945452659998 0.0574166486840185 0.0407909727744226 +76 910.389038085938 3 A 0.000888660624855818 0.00883285913101179 0.024080334566073 +77 900.362976074219 3 A 0.000883637632569096 0.0601212422828572 0.020862039569661 +78 938.274291992188 3 A 0.000883070665782107 0.0420871600944523 0.0280462808036272 +79 978.423828125 3 A 0.000872970230052765 0.0296257238522422 0.0297815743118744 +80 911.326171875 3 A 0.00086789849916482 0.0394187876318227 0.0290756595311376 +81 931.700927734375 3 A 0.000861266010686886 0.0280254327018276 0.0337516683459626 +82 974.393371582031 3 A 0.00086077059179462 0.0419836959861716 0.0289479495170414 +83 948.251220703125 3 A 0.000851477547904384 0.0586205266644055 0.0458040438736673 +84 930.862670898438 3 B 0.000847409031672241 -0.0301586503036759 -0.0413625782185381 +85 916.923034667969 3 A 0.000845064368244676 0.0201331942543559 0.0318311721846992 +86 949.318054199219 3 A 0.000844949051475147 0.0315506908752857 0.0279475612749433 +87 985.459655761719 3 A 0.000842609316199747 0.0291683495191316 0.0295586583634342 +88 907.4365234375 3 A 0.000842558751196136 0.0249644273710741 0.0174278577017741 +89 925.18701171875 3 A 0.000838340515097191 0.0229497739599204 0.0228814357718886 +90 929.332885742188 3 B 0.000836809726794182 -0.0293672010070615 -0.0547646716148819 +91 937.506225585938 3 A 0.000833507239635534 0.0178457519825421 0.0278222013471842 +92 987.335083007812 3 A 0.000833440336912753 0.0308912024371622 0.0275278913639686 +93 987.372619628906 3 A 0.000826015704761948 0.0386304306725754 0.0226104858957154 +94 991.392211914062 3 A 0.000822495593430933 0.0301123283528462 0.0258405716069016 +95 986.359619140625 3 A 0.00081725052418651 0.0222459076819841 0.0214131889306635 +96 995.608337402344 3 A 0.000815403977582455 0.0244745957678714 0.0372521871817605 +97 901.438415527344 3 B 0.000811802591576616 -0.14481476191689 -0.105509238222151 +98 927.295166015625 3 A 0.000809570499146196 0.0324202661433909 0.0195781537578164 +99 957.467712402344 3 A 0.000805168267772138 0.0349607008493259 0.0294205742236357 +100 982.387756347656 3 A 0.000802321450704626 0.0296134673806074 0.0240390222467118 diff -r 000000000000 -r f0b415eb3bcf test-data/features_test5.tabular diff -r 000000000000 -r f0b415eb3bcf test-data/features_test6.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/features_test6.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,7 @@ + mz r k s classes centers tstatistics p.values adj.p.values +1 928.859680175781 2 3 2 B 43.9516959905118 0.541814677313986 0.607464263577403 1 +2 912.877136230469 2 3 2 B 55.419364071664 0.437808238568372 0.676846169835776 1 +3 913.887756347656 2 3 2 B 24.9140214890445 0.393340199810185 0.70766449744142 1 +4 930.862670898438 2 3 2 B 9.28583084091344 0.29858210475084 0.775329712997245 1 +5 913.923889160156 2 3 2 B 12.1491837287613 0.0960056413112618 0.926642424678888 1 +6 900.004699707031 2 3 2 A 2.29166666666667 0 1 1 diff -r 000000000000 -r f0b415eb3bcf test-data/features_test7.tabular diff -r 000000000000 -r f0b415eb3bcf test-data/pixel_annotation_file1.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/pixel_annotation_file1.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,24 @@ +Fold1 1 +Fold1 1 +Fold1 1 +Fold1 1 +Fold1 2 +Fold1 2 +Fold1 2 +Fold1 2 +Fold1 3 +Fold1 3 +Fold1 3 +Fold1 3 +Fold2 1 +Fold2 1 +Fold2 1 +Fold2 1 +Fold2 2 +Fold2 2 +Fold2 2 +Fold2 2 +Fold2 3 +Fold2 3 +Fold2 3 +Fold2 3 diff -r 000000000000 -r f0b415eb3bcf test-data/pixels_test1.tabular diff -r 000000000000 -r f0b415eb3bcf test-data/pixels_test2.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/pixels_test2.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,25 @@ + predicted diagnosis +x = 1, y = 1 1 +x = 2, y = 1 1 +x = 3, y = 1 1 +x = 4, y = 1 1 +x = 1, y = 2 2 +x = 2, y = 2 2 +x = 3, y = 2 2 +x = 4, y = 2 2 +x = 1, y = 3 3 +x = 2, y = 3 3 +x = 3, y = 3 3 +x = 4, y = 3 3 +x = 10, y = 1 1 +x = 11, y = 1 1 +x = 12, y = 1 1 +x = 13, y = 1 1 +x = 10, y = 2 2 +x = 11, y = 2 2 +x = 12, y = 2 2 +x = 13, y = 2 2 +x = 10, y = 3 2 +x = 11, y = 3 3 +x = 12, y = 3 3 +x = 13, y = 3 3 diff -r 000000000000 -r f0b415eb3bcf test-data/pixels_test3.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/pixels_test3.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,25 @@ + predicted diagnosis +x = 1, y = 1 A +x = 2, y = 1 A +x = 3, y = 1 B +x = 4, y = 1 C +x = 1, y = 2 C +x = 2, y = 2 C +x = 3, y = 2 B +x = 4, y = 2 A +x = 1, y = 3 A +x = 2, y = 3 B +x = 3, y = 3 C +x = 4, y = 3 A +x = 10, y = 1 A +x = 11, y = 1 C +x = 12, y = 1 B +x = 13, y = 1 B +x = 10, y = 2 B +x = 11, y = 2 A +x = 12, y = 2 C +x = 13, y = 2 A +x = 10, y = 3 C +x = 11, y = 3 B +x = 12, y = 3 B +x = 13, y = 3 C diff -r 000000000000 -r f0b415eb3bcf test-data/pixels_test4.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/pixels_test4.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,25 @@ + predicted diagnosis +x = 1, y = 1 A +x = 2, y = 1 C +x = 3, y = 1 B +x = 4, y = 1 C +x = 1, y = 2 C +x = 2, y = 2 C +x = 3, y = 2 B +x = 4, y = 2 A +x = 1, y = 3 A +x = 2, y = 3 B +x = 3, y = 3 C +x = 4, y = 3 A +x = 10, y = 1 A +x = 11, y = 1 C +x = 12, y = 1 C +x = 13, y = 1 B +x = 10, y = 2 B +x = 11, y = 2 A +x = 12, y = 2 C +x = 13, y = 2 A +x = 10, y = 3 C +x = 11, y = 3 B +x = 12, y = 3 B +x = 13, y = 3 C diff -r 000000000000 -r f0b415eb3bcf test-data/pixels_test5.tabular diff -r 000000000000 -r f0b415eb3bcf test-data/pixels_test6.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/pixels_test6.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,25 @@ + predicted diagnosis +x = 1, y = 1 A +x = 2, y = 1 A +x = 3, y = 1 B +x = 4, y = 1 A +x = 1, y = 2 A +x = 2, y = 2 A +x = 3, y = 2 A +x = 4, y = 2 A +x = 1, y = 3 A +x = 2, y = 3 B +x = 3, y = 3 A +x = 4, y = 3 A +x = 10, y = 1 A +x = 11, y = 1 A +x = 12, y = 1 A +x = 13, y = 1 B +x = 10, y = 2 B +x = 11, y = 2 B +x = 12, y = 2 A +x = 13, y = 2 B +x = 10, y = 3 A +x = 11, y = 3 A +x = 12, y = 3 B +x = 13, y = 3 A diff -r 000000000000 -r f0b415eb3bcf test-data/pixels_test7.tabular diff -r 000000000000 -r f0b415eb3bcf test-data/random_factors.tabular --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test-data/random_factors.tabular Fri Jul 06 14:12:51 2018 -0400 @@ -0,0 +1,24 @@ +1 A +1 A +2 B +1 C +2 C +2 C +2 B +2 A +2 A +1 B +2 C +1 A +1 A +2 C +1 B +1 B +1 B +1 A +2 C +2 A +1 C +2 B +1 B +2 C diff -r 000000000000 -r f0b415eb3bcf test-data/test1.pdf Binary file test-data/test1.pdf has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test2.pdf Binary file test-data/test2.pdf has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test2.rdata Binary file test-data/test2.rdata has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test3.pdf Binary file test-data/test3.pdf has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test4.pdf Binary file test-data/test4.pdf has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test4.rdata Binary file test-data/test4.rdata has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test5.pdf Binary file test-data/test5.pdf has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test6.pdf Binary file test-data/test6.pdf has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test6.rdata Binary file test-data/test6.rdata has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test7.pdf Binary file test-data/test7.pdf has changed diff -r 000000000000 -r f0b415eb3bcf test-data/test7.rdata Binary file test-data/test7.rdata has changed diff -r 000000000000 -r f0b415eb3bcf test-data/testfile_squares.rdata Binary file test-data/testfile_squares.rdata has changed