Mercurial > repos > galaxyp > msi_preprocessing
view msi_preprocessing.xml @ 4:42580292d381 draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/msi_preprocessing commit a7be47698f53eb4f00961192327d93e8989276a7
author | galaxyp |
---|---|
date | Mon, 11 Jun 2018 17:34:07 -0400 |
parents | b9523950e79d |
children | 2fccfd11360d |
line wrap: on
line source
<tool id="mass_spectrometry_imaging_preprocessing" name="MSI preprocessing" version="1.10.0.1"> <description> mass spectrometry imaging preprocessing </description> <requirements> <requirement type="package" version="1.10.0">bioconductor-cardinal</requirement> <requirement type="package" version="2.2.1">r-gridextra</requirement> <requirement type="package" version="0.20-35">r-lattice</requirement> <requirement type="package" version="3.34.9">bioconductor-limma</requirement> </requirements> <command detect_errors="exit_code"> <![CDATA[ #if $infile.ext == 'imzml' ln -s '${infile.extra_files_path}/imzml' infile.imzML && ln -s '${infile.extra_files_path}/ibd' infile.ibd && #elif $infile.ext == 'analyze75' ln -s '${infile.extra_files_path}/hdr' infile.hdr && ln -s '${infile.extra_files_path}/img' infile.img && ln -s '${infile.extra_files_path}/t2m' infile.t2m && #else ln -s '$infile' infile.RData && #end if cat '${cardinal_preprocessing}' && Rscript '${cardinal_preprocessing}' ]]> </command> <configfiles> <configfile name="cardinal_preprocessing"><![CDATA[ ################################# load libraries and read file ################# library(Cardinal) library(gridExtra) library(lattice) library(limma) #if $infile.ext == 'imzml' msidata = readImzML('infile') #elif $infile.ext == 'analyze75' msidata = readAnalyze('infile') #else load('infile.RData') #end if ## function to later read RData reference files in loadRData <- function(fileName){ #loads an RData file, and returns it load(fileName) get(ls()[ls() != "fileName"]) } ######################### preparations for optional QC report ################# #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0)) medint = round(median(spectra(msidata)[]), digits=2) TICs = round(mean(colSums(spectra(msidata)[])), digits=1) QC_numbers= data.frame(rawdata = c(maxfeatures, medianpeaks, medint, TICs)) vectorofactions = "rawdata" ### Read tabular file with calibrant m/z: calibrant_list = read.delim("$outputs.calibrant_file", header = FALSE, stringsAsFactors = FALSE) ### calculate how many input calibrant m/z are valid: inputcalibrants = calibrant_list[calibrant_list[,$outputs.calibrants_column]>min(mz(msidata)) & calibrant_list[,$outputs.calibrants_column]<max(mz(msidata)),$outputs.calibrants_column] number_calibrants_in = length(calibrant_list[,$outputs.calibrants_column]) number_calibrants_valid = length(inputcalibrants) ### Quality control report pdf("Preprocessing.pdf", fonts = "Times", pointsize = 12) plot(0,type='n',axes=FALSE,ann=FALSE) title(main=paste("Quality control during preprocessing \n", "Filename:", "$infile.display_name")) title(main=paste0("\n\n\n\n Number valid m/z in ", "$outputs.calibrant_file.display_name",": ", number_calibrants_valid, "/", number_calibrants_in)) for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="raw") assign(paste("rawdata",calibrant, sep="_"), currentimage)} current_plot_raw = vector(length(inputcalibrants), mode='list') #end if ############################### Preprocessing steps ########################### ############################################################################### #for $method in $methods: ############################### Normalization ########################### #if str( $method.methods_conditional.preprocessing_method ) == 'Normalization': print('Normalization') ##normalization msidata = normalize(msidata, method="tic") ############################### optional QC ########################### #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0)) medint = round(median(spectra(msidata)[]), digits=2) TICs = round(mean(colSums(spectra(msidata)[])), digits=1) normalized = c(maxfeatures, medianpeaks, medint, TICs) QC_numbers= cbind(QC_numbers, normalized) ### preparation for QC plots vectorofactions = append(vectorofactions, "normalized") for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="normalized") assign(paste("normalized",calibrant, sep="_"), currentimage)} #end if ############################### Baseline reduction ########################### #elif str( $method.methods_conditional.preprocessing_method ) == 'Baseline_reduction': print('Baseline_reduction') ##baseline reduction msidata = reduceBaseline(msidata, method="median", blocks=$method.methods_conditional.blocks_baseline) ############################### optional QC ########################### #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0)) medint = round(median(spectra(msidata)[]), digits=2) TICs = round(mean(colSums(spectra(msidata)[])), digits=1) baseline= c(maxfeatures, medianpeaks, medint, TICs) QC_numbers= cbind(QC_numbers, baseline) ### preparation for QC plots vectorofactions = append(vectorofactions, "baseline_rem") for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="baseline removed") assign(paste("baseline_rem",calibrant, sep="_"), currentimage)} #end if ############################### Smoothing ########################### #elif str( $method.methods_conditional.preprocessing_method ) == 'Smoothing': print('Smoothing') ## Smoothing #if str( $method.methods_conditional.methods_for_smoothing.smoothing_method) == 'gaussian': print('gaussian smoothing') msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, sd = $method.methods_conditional.methods_for_smoothing.sd_gaussian) #elif str( $method.methods_conditional.methods_for_smoothing.smoothing_method) == 'sgolay': print('sgolay smoothing') msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, order = $method.methods_conditional.methods_for_smoothing.order_of_filters) #elif str($method.methods_conditional.methods_for_smoothing.smoothing_method) == 'ma': print('sgolay smoothing') msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, coef = $method.methods_conditional.methods_for_smoothing.coefficients_ma_filter) #end if ############################### optional QC ########################### #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0)) medint = round(median(spectra(msidata)[]), digits=2) TICs = round(mean(colSums(spectra(msidata)[])), digits=1) smoothed= c(maxfeatures, medianpeaks, medint, TICs) QC_numbers= cbind(QC_numbers, smoothed) ### preparation for QC plots vectorofactions = append(vectorofactions, "smoothed") for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="smoothed") assign(paste("smoothed",calibrant, sep="_"), currentimage)} #end if ############################### Peak picking ########################### #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_picking': print('Peak_picking') ## Peakpicking #if str( $method.methods_conditional.methods_for_picking.picking_method) == 'adaptive': print('adaptive peakpicking') msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method, spar=$method.methods_conditional.methods_for_picking.spar_picking) #elif str( $method.methods_conditional.methods_for_picking.picking_method) == 'limpic': print('limpic peakpicking') msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method, thresh=$method.methods_conditional.methods_for_picking.tresh_picking) #elif str( $method.methods_conditional.methods_for_picking.picking_method) == 'simple': print('simple peakpicking') msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method) #end if ############################### optional QC ########################### #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0)) medint = round(median(spectra(msidata)[]), digits=2) TICs = round(mean(colSums(spectra(msidata)[])), digits=1) picked= c(maxfeatures, medianpeaks, medint, TICs) QC_numbers= cbind(QC_numbers, picked) ### preparation for QC plots vectorofactions = append(vectorofactions, "picked") for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="picked") assign(paste("picked",calibrant, sep="_"), currentimage)} #end if ############################### Peak alignment ########################### #elif str( $method.methods_conditional.preprocessing_method ) == 'Peak_alignment': print('Peak_alignment') ## Peakalignment #if str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_noref': align_peak_reference = msidata #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_table': align_reference_table = read.delim("$method.methods_conditional.align_ref_type.align_peaks_table", header = FALSE, stringsAsFactors = FALSE) align_reference_column = align_reference_table[,$method.methods_conditional.align_ref_type.align_mass_column] align_peak_reference = align_reference_column[align_reference_column>=min(mz(msidata)) & align_reference_column<=max(mz(msidata))] if (length(align_peak_reference) == 0) {align_peak_reference = 0} #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_msidata_ref': align_peak_reference = loadRData('$method.methods_conditional.align_ref_type.align_peaks_msidata') #end if #if str( $method.methods_conditional.methods_for_alignment.alignment_method) == 'diff': print('diff peakalignment') msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',diff.max =$method.methods_conditional.methods_for_alignment.value_diffalignment, units = "$method.methods_conditional.methods_for_alignment.units_diffalignment", ref=align_peak_reference) #elif str( $method.methods_conditional.methods_for_alignment.alignment_method) == 'DP': print('DPpeakalignment') msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',gap = $method.methods_conditional.methods_for_alignment.gap_DPalignment, ref=align_peak_reference) #end if ############################### optional QC ########################### #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0)) medint = round(median(spectra(msidata)[]), digits=2) TICs = round(mean(colSums(spectra(msidata)[])), digits=1) aligned= c(maxfeatures, medianpeaks, medint, TICs) QC_numbers= cbind(QC_numbers, aligned) ### preparation for QC plots vectorofactions = append(vectorofactions, "aligned") for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="aligned") assign(paste("aligned",calibrant, sep="_"), currentimage)} #end if ############################### Peak filtering ########################### #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_filtering': print('Peak_filtering') msidata = peakFilter(msidata, method='freq', freq.min = $method.methods_conditional.frequ_filtering) ############################### optional QC ########################### #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0)) medint = round(median(spectra(msidata)[]), digits=2) TICs = round(mean(colSums(spectra(msidata)[])), digits=1) filtered= c(maxfeatures, medianpeaks, medint, TICs) QC_numbers= cbind(QC_numbers, filtered) ### preparation for QC plots vectorofactions = append(vectorofactions, "filtered") for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="filtered") assign(paste("filtered",calibrant, sep="_"), currentimage)} #end if ############################### Data reduction ########################### #elif str( $method.methods_conditional.preprocessing_method) == 'Data_reduction': print('Data_reduction') #if str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'bin': print('bin reduction') msidata = reduceDimension(msidata, method="bin", width=$method.methods_conditional.methods_for_reduction.bin_width, units="$method.methods_conditional.methods_for_reduction.bin_units", fun=$method.methods_conditional.methods_for_reduction.bin_fun) #elif str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'resample': print('resample reduction') msidata = reduceDimension(msidata, method="resample", step=$method.methods_conditional.methods_for_reduction.resample_step) #elif str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'peaks': print('peaks reduction') #if str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'table': reference_table = read.delim("$method.methods_conditional.methods_for_reduction.ref_type.peaks_table", header = FALSE, stringsAsFactors = FALSE) reference_column = reference_table[,$method.methods_conditional.methods_for_reduction.ref_type.mass_column] peak_reference = reference_column[reference_column>min(mz(msidata)) & reference_column<max(mz(msidata))] #elif str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'msidata_ref': peak_reference = loadRData('$method.methods_conditional.methods_for_reduction.ref_type.peaks_msidata') #end if msidata = reduceDimension(msidata, method="peaks", ref=peak_reference, type="$method.methods_conditional.methods_for_reduction.peaks_type") #end if ############################### optional QC ########################### #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0)) medint = round(median(spectra(msidata)[]), digits=2) TICs = round(mean(colSums(spectra(msidata)[])), digits=1) reduced= c(maxfeatures, medianpeaks, medint, TICs) QC_numbers= cbind(QC_numbers, reduced) ### preparation for QC plots vectorofactions = append(vectorofactions, "reduced") for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="reduced") assign(paste("reduced",calibrant, sep="_"), currentimage)} #end if ############################### Transformation ########################### ####elif str( $method.methods_conditional.preprocessing_method) == 'Transformation': ###print('Transformation') ####if str( $method.methods_conditional.transf_conditional.trans_type) == 'log2': ####print('log2 transformation') ###spectra(msidata)[spectra(msidata) ==0] = NA ###print(paste0("Number of 0 which were converted into NA:",sum(is.na(spectra(msidata))))) ###spectra(msidata) = log2(spectra(msidata)) ####elif str( $method.methods_conditional.transf_conditional.trans_type) == 'sqrt': ###print('squareroot transformation') ###spectra(msidata) = sqrt(spectra(msidata)) ###end if ############################### optional QC ########################### #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0), na.rm=TRUE) medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) TICs = round(mean(colSums(spectra(msidata)[]), na.rm=TRUE), digits=1) transformed= c(maxfeatures, medianpeaks, medint, TICs) QC_numbers= cbind(QC_numbers, transformed) ### preparation for QC plots vectorofactions = append(vectorofactions, "transformed") for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="transformed") assign(paste("transformed",calibrant, sep="_"), currentimage)} #end if ############################### optional QC ########################### #if $outputs.outputs_select == "quality_control": ### values for QC table: maxfeatures = length(features(msidata)) medianpeaks = median(colSums(spectra(msidata)[]>0)) medint = round(median(spectra(msidata)[]), digits=2) TICs = round(mean(colSums(spectra(msidata)[])), digits=1) sample_norm= c(maxfeatures, medianpeaks, medint, TICs) QC_numbers= cbind(QC_numbers, sample_norm) ### preparation for QC plots vectorofactions = append(vectorofactions, "sample_norm") for (calibrant in inputcalibrants) {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),lattice=TRUE, scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="sample normalized") assign(paste("sample_norm",calibrant, sep="_"), currentimage)} #end if #end if #end for ###################### Outputs: RData, tabular and QC report ################### ############################################################################### ## save as (.RData) save(msidata, file="$msidata_preprocessed") print(paste0("Number of NAs in intensity matrix: ", sum(is.na(spectra(msidata))))) ## save output matrix #if $output_matrix: if (length(features(msidata))> 0) { ## save as intensity matrix spectramatrix = spectra(msidata) rownames(spectramatrix) = mz(msidata) newmatrix = rbind(pixels(msidata), spectramatrix) write.table(newmatrix[2:nrow(newmatrix),], file="$matrixasoutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") }else{ print("file has no features left") write.table(matrix(rownames(coord(msidata)), ncol=ncol(msidata), nrow=1), file="$matrixasoutput", quote = FALSE, row.names = FALSE, col.names=FALSE, sep = "\t") } #end if ## save QC report #if $outputs.outputs_select == "quality_control": rownames(QC_numbers) = c("# features", "median # peaks", "median intensity", "median TIC") grid.table(t(QC_numbers)) for (calibrant in inputcalibrants) {imagelist = list() for (numberprepro in 1:length(vectorofactions)){ imagelist[[numberprepro]] = get(paste(vectorofactions[numberprepro],calibrant, sep="_"))} do.call(grid.arrange,imagelist)} dev.off() #end if ]]></configfile> </configfiles> <inputs> <param name="infile" type="data" format="imzml,rdata,danalyze75" label="MSI rawdata as imzml, analyze7.5 or Cardinal MSImageSet saved as RData" help="load imzml and ibd file by uploading composite datatype imzml"/> <repeat name="methods" title="Preprocessing" min="1" max="50"> <conditional name="methods_conditional"> <param name="preprocessing_method" type="select" label="Select the preprocessing methods you want to apply"> <option value="Normalization" selected="True">Normalization to TIC</option> <option value="Baseline_reduction">Baseline Reduction</option> <option value="Smoothing">Peak smoothing</option> <option value="Peak_picking">Peak picking</option> <option value="Peak_alignment">Peak alignment</option> <option value="Peak_filtering">Peak filtering</option> <option value="Data_reduction">Data reduction</option> <!--option value="Transformation">Transformation</option--> </param> <when value="Normalization"/> <when value="Baseline_reduction"> <param name="blocks_baseline" type="integer" value="50" label="Blocks"/> </when> <when value="Smoothing"> <conditional name="methods_for_smoothing"> <param name="smoothing_method" type="select" label="Smoothing method"> <option value="gaussian" selected="True">gaussian</option> <option value="sgolay">Savitsky-Golay</option> <option value="ma">moving average</option> </param> <when value="gaussian"> <param name="sd_gaussian" type="float" value="4" label="The standard deviation for the Gaussian kernel (window/sd)"/> </when> <when value="sgolay"> <param name="order_of_filters" type="integer" value="3" label="The order of the smoothing filter"/> </when> <when value="ma"> <param name="coefficients_ma_filter" type="integer" value="1" label="The coefficients for the moving average filter"/> </when> </conditional> <param name="window_smoothing" type="integer" value="9" label="Window size"/> </when> <when value="Peak_picking"> <param name="SNR_picking_method" type="integer" value="3" label="Signal to noise ratio" help="The minimal signal to noise ratio for peaks to be considered as a valid peak."/> <param name="blocks_picking" type="integer" value="100" label = "Number of blocks" help="Number of blocks in which to divide mass spectrum to calculate noise"/> <param name="window_picking" type="integer" value="5" label= "Window size" help="Window width for seeking local maxima"/> <conditional name="methods_for_picking"> <param name="picking_method" type="select" label="Peak picking method" help="only simple works for processed imzML files"> <option value="adaptive" selected="True">adaptive</option> <option value="limpic">limpic</option> <option value="simple">simple</option> </param> <when value="adaptive"> <param name="spar_picking" type="float" value="1.0" label="Spar value" help = "Smoothing parameter for the spline smoothing applied to the spectrum in order to decide the cutoffs for throwing away false noise spikes that might occur inside peaks"/> </when> <when value="limpic"> <param name="tresh_picking" type="float" value="0.75" label="thresh value" help="The thresholding quantile to use when comparing slopes in order to throw away peaks that are too flat"/> </when> <when value="simple"/> </conditional> </when> <when value="Peak_alignment"> <conditional name="methods_for_alignment"> <param name="alignment_method" type="select" label="Alignment method"> <option value="diff" selected="True">diff</option> <option value="DP">DP</option> </param> <when value="diff"> <param name="value_diffalignment" type="integer" value="200" label="diff.max" help="Peaks that differ less than this value will be aligned together"/> <param name="units_diffalignment" type="select" display = "radio" optional = "False" label="units"> <option value="ppm" selected="True">ppm</option> <option value="Da">Da</option> </param> </when> <when value="DP"> <param name="gap_DPalignment" type="integer" value="0" label="Gap" help="The gap penalty for the dynamic programming sequence alignment"/> </when> </conditional> <conditional name="align_ref_type"> <param name="align_reference_datatype" type="select" label="Choose reference"> <option value="align_noref" selected="True">no reference</option> <option value="align_table" >tabular file as reference</option> <option value="align_msidata_ref">msidata file as reference</option> </param> <when value="align_noref"/> <when value="align_table"> <param name="align_peaks_table" type="data" format="tabular" label="Reference m/z values to use for alignment - only these will be kept" help="One column with m/z values (without empty cells or letters)"/> <param name="align_mass_column" data_ref="align_peaks_table" label="Column with reference m/z" type="data_column"/> </when> <when value="align_msidata_ref"> <param name="align_peaks_msidata" type="data" format="rdata," label="Picked and aligned Cardinal MSImageSet saved as RData"/> </when> </conditional> </when> <when value="Peak_filtering"> <param name="frequ_filtering" type="integer" value="1000" label="Freq.min" help="Peaks that occur in the dataset fewer times than this will be removed. Number should be between 1 (no filtering) and number of spectra (pixel)"/> </when> <when value="Data_reduction"> <conditional name="methods_for_reduction"> <param name="reduction_method" type="select" label="Reduction method"> <option value="bin" selected="True">bin</option> <option value="resample">resample</option> <option value="peaks">peaks</option> </param> <when value="bin"> <param name="bin_width" type="float" value="1" label="The width of a bin in m/z or ppm" help="Width must be greater than range of m/z values divided by number of m/z features"/> <param name="bin_units" type="select" display="radio" label="Unit for bin"> <option value="mz" selected="True">mz</option> <option value="ppm">ppm</option> </param> <param name="bin_fun" type="select" display="radio" label="Calculate sum or mean intensity for ions of the same bin"> <option value="mean" selected="True">mean</option> <option value="sum">sum</option> </param> </when> <when value="resample"> <param name="resample_step" type="float" value="1" label="The step size in m/z" help="Step size must be greater than range of m/z values divided by number of m/z features"/> </when> <when value="peaks"> <param name="peaks_type" type="select" display="radio" label="Should the peak height or area under the curve be taken as the intensity value?"> <option value="height" selected="True">height</option> <option value="area">area</option> </param> <conditional name="ref_type"> <param name="reference_datatype" type="select" label="Choose reference datatype"> <option value="table" selected="True">tabular file</option> <option value="msidata_ref">msidata file</option> </param> <when value="table"> <param name="peaks_table" type="data" format="tabular" label="Reference m/z values to use to reduce the dimension" help="One column with m/z values (without empty cells or letters, m/z outside m/z range are not used for filtering)"/> <param name="mass_column" data_ref="peaks_table" label="Column with reference m/z" type="data_column"/> </when> <when value="msidata_ref"> <param name="peaks_msidata" type="data" format="rdata," label="Picked and aligned Cardinal MSImageSet saved as RData"/> </when> </conditional> </when> </conditional> </when> <!--when value="Transformation"> <conditional name="transf_conditional"> <param name="trans_type" type="select" label="Choose which intensity transformation you want to apply" help="logarithm base 2 (log2) or squareroot (sqrt)"> <option value="log2" selected="True">log2</option> <option value="sqrt">sqrt</option> </param> <when value="log2"/> <when value="sqrt"/> </conditional> </when--> </conditional> </repeat> <conditional name="outputs"> <param name="outputs_select" type="select" label="Quality control output"> <option value="quality_control" selected="True">yes</option> <option value="no_quality_control">no</option> </param> <when value="quality_control"> <param name="calibrant_file" type="data" format="tabular" label="Provide a list of m/z, which will be plotted in the quality control report" help="Use internal calibrant m/z"/> <param name="calibrants_column" data_ref="calibrant_file" label="Column with m/z" type="data_column"/> <param name="plusminus_dalton" value="0.25" type="text" label="M/z range" help="Plusminus m/z window in Dalton"/> </when> <when value="no_quality_control"/> </conditional> <param name="output_matrix" type="boolean" display="radio" label="Intensity matrix output"/> </inputs> <outputs> <data format="rdata" name="msidata_preprocessed" label="$infile.display_name preprocessed"/> <data format="pdf" name="QC_plots" from_work_dir="Preprocessing.pdf" label = "$infile.display_name preprocessed_QC"> <filter>outputs["outputs_select"] == "quality_control"</filter> </data> <data format="tabular" name="matrixasoutput" label="$infile.display_name preprocessed_matrix"> <filter>output_matrix</filter> </data> </outputs> <tests> <test expect_num_outputs="2"> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML"/> <composite_data value="Example_Continuous.ibd"/> </param> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Normalization"/> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Smoothing"/> <conditional name="methods_for_smoothing"> <param name="smoothing_method" value="gaussian"/> </conditional> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_picking"/> <conditional name="methods_for_picking"> <param name="picking_method" value="adaptive"/> </conditional> <param name="blocks_picking" value="3"/> <param name="window_picking" value="3"/> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_alignment"/> <conditional name="methods_for_alignment"> <param name="alignment_method" value="diff"/> </conditional> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_filtering"/> <param name="frequ_filtering" value="2"/> </conditional> </repeat> <!--repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Transformation"/> <conditional name="transf_conditional"> <param name="trans_type" value="sqrt"/> </conditional> </conditional> </repeat--> <param name="outputs_select" value="no_quality_control"/> <param name="output_matrix" value="True"/> <output name="msidata_preprocessed" file="preprocessing_results1.RData" compare="sim_size"/> <output name="matrixasoutput" file="preprocessing_results1.txt"/> </test> <test expect_num_outputs="3"> <param name="infile" value="preprocessed.RData" ftype="rdata"/> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_picking"/> <param name="blocks_picking" value="3"/> <param name="window_picking" value="5"/> <param name="SNR_picking_method" value="2"/> <conditional name="methods_for_picking"> <param name="picking_method" value="adaptive"/> </conditional> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_alignment"/> <conditional name="methods_for_alignment"> <param name="alignment_method" value="DP"/> </conditional> </conditional> </repeat> <param name="outputs_select" value="quality_control"/> <param name="calibrant_file" ftype="tabular" value="inputcalibrantfile1.tabular"/> <param name="calibrants_column" value="1"/> <param name="plusminus_dalton" value="0.25"/> <param name="output_matrix" value="True"/> <output name="msidata_preprocessed" file="preprocessing_results2.RData" compare="sim_size"/> <output name="matrixasoutput" file="preprocessing_results2.txt" lines_diff="2"/> <output name="QC_plots" file="preprocessing_results2.pdf" compare="sim_size"/> </test> <test expect_num_outputs="2"> <param name="infile" value="" ftype="analyze75"> <composite_data value="Analyze75.hdr"/> <composite_data value="Analyze75.img"/> <composite_data value="Analyze75.t2m"/> </param> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Normalization"/> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_picking"/> <param name="blocks_picking" value="100"/> <param name="window_picking" value="5"/> <param name="picking_method" value="limpic"/> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_alignment"/> <conditional name="methods_for_alignment"> <param name="alignment_method" value="diff"/> </conditional> </conditional> </repeat> <param name="outputs_select" value="quality_control"/> <param name="calibrant_file" ftype="tabular" value="inputcalibrantfile2.tabular"/> <param name="calibrants_column" value="1"/> <param name="plusminus_dalton" value="0.25"/> <output name="msidata_preprocessed" file="preprocessing_results3.RData" compare="sim_size"/> <output name="QC_plots" file="preprocessing_results3.pdf" compare="sim_size"/> </test> <test expect_num_outputs="2"> <param name="infile" value="" ftype="analyze75"> <composite_data value="Analyze75.hdr"/> <composite_data value="Analyze75.img"/> <composite_data value="Analyze75.t2m"/> </param> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Normalization"/> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Data_reduction"/> <param name="bin_width" value="0.1"/> </conditional> </repeat> <param name="outputs_select" value="no_quality_control"/> <param name="output_matrix" value="True"/> <output name="msidata_preprocessed" file="preprocessing_results4.RData" compare="sim_size"/> <output name="matrixasoutput" file="preprocessing_results4.txt"/> </test> <test expect_num_outputs="3"> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML"/> <composite_data value="Example_Continuous.ibd"/> </param> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Data_reduction"/> <conditional name="methods_for_reduction"> <param name="reduction_method" value="resample"/> <param name="step_width" value="0.1"/> </conditional> </conditional> </repeat> <param name="outputs_select" value="quality_control"/> <param name="calibrant_file" ftype="tabular" value="inputcalibrantfile1.tabular"/> <param name="calibrants_column" value="1"/> <param name="plusminus_dalton" value="0.25"/> <param name="output_matrix" value="True"/> <output name="msidata_preprocessed" file="preprocessing_results5.RData" compare="sim_size"/> <output name="matrixasoutput" file="preprocessing_results5.txt"/> <output name="QC_plots" file="preprocessing_results5.pdf" compare="sim_size"/> </test> </tests> <help> <![CDATA[ Cardinal is an R package that implements statistical & computational tools for analyzing mass spectrometry imaging datasets. `More information on Cardinal <http://cardinalmsi.org//>`_ This tool provides provides multiple Cardinal functions to preprocess mass spectrometry imaging data. Input data: 3 types of input data can be used: - imzml file (upload imzml and ibd file via the "composite" function) `Introduction to the imzml format <https://ms-imaging.org/wp/imzml/>`_ - Analyze7.5 (upload hdr, img and t2m file via the "composite" function) - Cardinal "MSImageSet" data (with variable name "msidata", saved as .RData) Options: - Normalization: Normalization of intensities to total ion current (TIC) - Baseline reduction: Baseline reduction removes backgroundintensity generated by chemical noise (common in MALDI datasets) - Smoothening: Smoothing of the peaks reduces noise and improves peak detection - Peak picking: relevant peaks are picked while noise-peaks are removed (needs peak alignment afterwards) - Peak alignment: only possible after peak picking, m/z inaccuracies are removed by alignment of same peaks to a common m/z value - Peak filtering: works only on centroided data (after peak picking and alignment or data reduction with peak filtering), removes peaks that occur only in a small proportion of pixels. If not sure which cutoff to chose run qualitycontrol first and decide according to the zero value plot. - Data reduction: binning, resampling or peak filtering to reduce data Output: - imzML file, preprocessed - optional: pdf with heatmap of m/z of interest after each preprocessing step - optional: intensity matrix as tabular file (intensities for m/z in rows and pixel in columns) Tip: - Peak alignment works only after peak picking - Peak filtering works only on centroided data (peak picking and alignment or Data reduction peaks) ]]> </help> <citations> <citation type="doi">10.1093/bioinformatics/btv146</citation> </citations> </tool>