Mercurial > repos > galaxyp > msi_qualitycontrol
comparison msi_qualitycontrol.xml @ 10:3eee933c27cf draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/msi_qualitycontrol commit 37da74ed68228b16efbdbde776e7c38cc06eb5d5
author | galaxyp |
---|---|
date | Tue, 19 Jun 2018 18:08:15 -0400 |
parents | 963c7ec00141 |
children | 30d0aabb1b46 |
comparison
equal
deleted
inserted
replaced
9:963c7ec00141 | 10:3eee933c27cf |
---|---|
1 <tool id="mass_spectrometry_imaging_qc" name="MSI Qualitycontrol" version="1.10.0.1"> | 1 <tool id="mass_spectrometry_imaging_qc" name="MSI Qualitycontrol" version="1.10.0.2"> |
2 <description> | 2 <description> |
3 mass spectrometry imaging QC | 3 mass spectrometry imaging QC |
4 </description> | 4 </description> |
5 <requirements> | 5 <requirements> |
6 <requirement type="package" version="1.10.0">bioconductor-cardinal</requirement> | 6 <requirement type="package" version="1.10.0">bioconductor-cardinal</requirement> |
7 <requirement type="package" version="2.2.1">r-ggplot2</requirement> | 7 <requirement type="package" version="2.2.1">r-ggplot2</requirement> |
8 <requirement type="package" version="1.1_2">r-rcolorbrewer</requirement> | 8 <requirement type="package" version="1.1_2">r-rcolorbrewer</requirement> |
9 <requirement type="package" version="2.2.1">r-gridextra</requirement> | 9 <requirement type="package" version="2.2.1">r-gridextra</requirement> |
10 <requirement type="package" version="2.23_15">r-kernsmooth</requirement> | 10 <requirement type="package" version="2.23_15">r-kernsmooth</requirement> |
11 <requirement type="package" version="0.5.0">r-scales</requirement> | |
11 </requirements> | 12 </requirements> |
12 <command detect_errors="exit_code"> | 13 <command detect_errors="exit_code"> |
13 <![CDATA[ | 14 <![CDATA[ |
14 #if $infile.ext == 'imzml' | 15 #if $infile.ext == 'imzml' |
15 ln -s '${infile.extra_files_path}/imzml' infile.imzML && | 16 ln -s '${infile.extra_files_path}/imzml' infile.imzML && |
33 library(Cardinal) | 34 library(Cardinal) |
34 library(ggplot2) | 35 library(ggplot2) |
35 library(RColorBrewer) | 36 library(RColorBrewer) |
36 library(gridExtra) | 37 library(gridExtra) |
37 library(KernSmooth) | 38 library(KernSmooth) |
39 library(scales) | |
38 | 40 |
39 #if $infile.ext == 'imzml' | 41 #if $infile.ext == 'imzml' |
40 msidata = readImzML('infile') | 42 msidata <- readImzML('infile', mass.accuracy=$accuracy, units.accuracy = "$units") |
41 #elif $infile.ext == 'analyze75' | 43 #elif $infile.ext == 'analyze75' |
42 msidata = readAnalyze('infile') | 44 msidata = readAnalyze('infile') |
43 #else | 45 #else |
44 load('infile.RData') | 46 load('infile.RData') |
45 #end if | 47 #end if |
48 | |
49 ## create full matrix to make processed imzML files compatible with segmentation | |
50 iData(msidata) <- iData(msidata)[] | |
46 | 51 |
47 ###################################### file properties in numbers ###################### | 52 ###################################### file properties in numbers ###################### |
48 | 53 |
49 ## Number of features (m/z) | 54 ## Number of features (m/z) |
50 maxfeatures = length(features(msidata)) | 55 maxfeatures = length(features(msidata)) |
71 percpeaks = round(npeaks/numpeaks*100, digits=2) | 76 percpeaks = round(npeaks/numpeaks*100, digits=2) |
72 ## Number of empty TICs | 77 ## Number of empty TICs |
73 TICs = colSums(spectra(msidata)[]) | 78 TICs = colSums(spectra(msidata)[]) |
74 NumemptyTIC = sum(TICs == 0) | 79 NumemptyTIC = sum(TICs == 0) |
75 ## Median TIC | 80 ## Median TIC |
76 medTIC = median(TICs) | 81 medTIC = round(median(TICs), digits=2) |
77 ## Median peaks per spectrum | 82 ## Median peaks per spectrum |
78 medpeaks = median(colSums(spectra(msidata)[]>0)) | 83 medpeaks = median(colSums(spectra(msidata)[]>0)) |
79 print(cor(TICs,colSums(spectra(msidata)[]>0), method="pearson")) | 84 print(cor(TICs,colSums(spectra(msidata)[]>0), method="pearson")) |
80 | 85 |
81 ## Processing informations | 86 ## Processing informations |
107 peakpickinginfo='FALSE' | 112 peakpickinginfo='FALSE' |
108 } else { | 113 } else { |
109 peakpickinginfo=processinginfo@peakPicking | 114 peakpickinginfo=processinginfo@peakPicking |
110 } | 115 } |
111 | 116 |
112 | |
113 ############## Read and filter tabular file with m/z ########################### | 117 ############## Read and filter tabular file with m/z ########################### |
114 | 118 |
115 ### reading peptide file: | 119 ### reading peptide file: |
116 | 120 |
117 #if $peptide_file: | 121 #if $peptide_file: |
181 | 185 |
182 title(main=paste("$filename")) | 186 title(main=paste("$filename")) |
183 | 187 |
184 ################# I) file properties in numbers ################################ | 188 ################# I) file properties in numbers ################################ |
185 ################################################################################ | 189 ################################################################################ |
186 print("properties in numbers") | 190 print("properties in numbers") |
187 | 191 |
188 properties = c("Number of m/z features", | 192 properties = c("Number of m/z features", |
189 "Range of m/z values [Da]", | 193 "Range of m/z values", |
190 "Number of pixels", | 194 "Number of pixels", |
191 "Range of x coordinates", | 195 "Range of x coordinates", |
192 "Range of y coordinates", | 196 "Range of y coordinates", |
193 "Range of intensities", | 197 "Range of intensities", |
194 "Median of intensities", | 198 "Median of intensities", |
221 paste0(peakpickinginfo), | 225 paste0(peakpickinginfo), |
222 paste0(centroidedinfo), | 226 paste0(centroidedinfo), |
223 paste0(number_peptides_valid, " / " , number_peptides_in), | 227 paste0(number_peptides_valid, " / " , number_peptides_in), |
224 paste0(number_calibrants_valid, " / ", number_calibrants_in)) | 228 paste0(number_calibrants_valid, " / ", number_calibrants_in)) |
225 | 229 |
226 | |
227 property_df = data.frame(properties, values) | 230 property_df = data.frame(properties, values) |
228 | 231 |
229 grid.table(property_df, rows= NULL) | 232 grid.table(property_df, rows= NULL) |
230 | 233 |
231 ####################### II) images in x-y grid ############################### | 234 ####################### II) images in x-y grid ############################### |
232 ############################################################################## | 235 ############################################################################## |
233 print("x-y images") | 236 print("x-y images") |
237 | |
234 if (npeaks > 0){ | 238 if (npeaks > 0){ |
235 | |
236 ## function for density plots | 239 ## function for density plots |
237 plot_colorByDensity = function(x1,x2, | 240 plot_colorByDensity = function(x1,x2, |
238 ylim=c(min(x2),max(x2)), | 241 ylim=c(min(x2),max(x2)), |
239 xlim=c(min(x1),max(x1)), | 242 xlim=c(min(x1),max(x1)), |
240 xlab="",ylab="",main=""){ | 243 xlab="",ylab="",main=""){ |
246 plot(x2~x1, data=df[order(df\$dens),], ylim=ylim,xlim=xlim,pch=20,col=col, | 249 plot(x2~x1, data=df[order(df\$dens),], ylim=ylim,xlim=xlim,pch=20,col=col, |
247 cex=1,xlab=xlab,ylab=ylab,las=1, main=main)} | 250 cex=1,xlab=xlab,ylab=ylab,las=1, main=main)} |
248 | 251 |
249 abline_vector= -100000 ## will be filled for samples in case data is combined | 252 abline_vector= -100000 ## will be filled for samples in case data is combined |
250 | 253 |
254 ## start list for optional spectrum values output | |
255 spectrum_list = list() | |
256 list_count = 1 | |
257 | |
251 ################### 0) overview for combined data ########################### | 258 ################### 0) overview for combined data ########################### |
252 | 259 |
253 ### only for previously combined data, same plot as in combine QC pdf | 260 ### only for previously combined data, same plot as in combine QC pdf |
261 | |
254 if (!is.null(levels(msidata\$combined_sample))){ | 262 if (!is.null(levels(msidata\$combined_sample))){ |
263 number_combined = length(levels(msidata\$combined_sample)) | |
264 | |
265 ## the more combined_samples a file has the smaller will be the legend | |
266 if (number_combined<20){ | |
267 legend_size = 10 | |
268 cex_boxplot = 1 | |
269 }else if (number_combined>20 && number_combined<40){ | |
270 legend_size = 9 | |
271 cex_boxplot = 0.8 | |
272 }else if (number_combined>40 && number_combined<60){ | |
273 legend_size = 8 | |
274 cex_boxplot = 0.6 | |
275 }else if (number_combined>60 && number_combined<100){ | |
276 legend_size = 7 | |
277 cex_boxplot = 0.5 | |
278 }else{ | |
279 legend_size = 6 | |
280 cex_boxplot = 0.3 | |
281 } | |
282 | |
255 position_df = cbind(coord(msidata)[,1:2], msidata\$combined_sample) | 283 position_df = cbind(coord(msidata)[,1:2], msidata\$combined_sample) |
256 colnames(position_df)[3] = "sample_name" | 284 colnames(position_df)[3] = "sample_name" |
257 | 285 |
258 combine_plot = ggplot(position_df, aes(x=x, y=y, fill=sample_name))+ | 286 combine_plot = ggplot(position_df, aes(x=x, y=y, fill=sample_name))+ |
259 geom_tile() + | 287 geom_tile() + |
260 coord_fixed()+ | 288 coord_fixed()+ |
261 ggtitle("Spatial orientation of combined data")+ | 289 ggtitle("Spatial orientation of combined data")+ |
262 theme_bw()+ | 290 theme_bw()+ |
263 theme(text=element_text(family="ArialMT", face="bold", size=15))+ | 291 theme(plot.title = element_text(hjust = 0.5))+ |
292 theme(text=element_text(family="ArialMT", face="bold", size=12))+ | |
264 theme(legend.position="bottom",legend.direction="vertical")+ | 293 theme(legend.position="bottom",legend.direction="vertical")+ |
265 guides(fill=guide_legend(ncol=4,byrow=TRUE)) | 294 theme(legend.key.size = unit(0.2, "line"), legend.text = element_text(size = legend_size))+ |
295 guides(fill=guide_legend(ncol=5,byrow=TRUE)) | |
266 coord_labels = aggregate(cbind(x,y)~sample_name, data=position_df, mean) | 296 coord_labels = aggregate(cbind(x,y)~sample_name, data=position_df, mean) |
267 coord_labels\$file_number = gsub( "_.*$", "", coord_labels\$sample_name) | 297 coord_labels\$file_number = gsub( "_.*$", "", coord_labels\$sample_name) |
268 for(file_count in 1:nrow(coord_labels)) | 298 for(file_count in 1:nrow(coord_labels)) |
269 {combine_plot = combine_plot + annotate("text",x=coord_labels[file_count,"x"], | 299 {combine_plot = combine_plot + annotate("text",x=coord_labels[file_count,"x"], |
270 y=coord_labels[file_count,"y"],label=toString(coord_labels[file_count,4]))} | 300 y=coord_labels[file_count,"y"],label=toString(coord_labels[file_count,4]))} |
301 | |
271 print(combine_plot) | 302 print(combine_plot) |
272 | 303 |
273 ### find max pixelnumber per subsample to later draw ablines | 304 ### find max pixelnumber per subsample to later draw ablines |
274 pixel_name_df = data.frame(pixels(msidata), msidata\$combined_sample) | 305 pixel_name_df = data.frame(pixels(msidata), msidata\$combined_sample) |
275 colnames(pixel_name_df) = c("pixel_number", "pixel_name") | 306 colnames(pixel_name_df) = c("pixel_number", "pixel_name") |
276 last_pixel = aggregate(pixel_number~pixel_name, data = pixel_name_df, max) | 307 last_pixel = aggregate(pixel_number~pixel_name, data = pixel_name_df, max) |
277 pixel_vector = last_pixel[,2] | 308 pixel_vector = last_pixel[,2] |
278 abline_vector = pixel_vector[1:length(levels(msidata\$combined_sample))-1] | 309 abline_vector = pixel_vector[1:number_combined-1] |
279 print(abline_vector) | 310 print(abline_vector) |
280 } | 311 } |
281 | |
282 | 312 |
283 ################### 1) Pixel order image ################################### | 313 ################### 1) Pixel order image ################################### |
284 | 314 |
285 pixelnumber = 1:pixelcount | 315 pixelnumber = 1:pixelcount |
286 pixelxyarray=cbind(coord(msidata)[,1:2],pixelnumber) | 316 pixelxyarray=cbind(coord(msidata)[,1:2],pixelnumber) |
287 | 317 |
288 print(ggplot(pixelxyarray, aes(x=x, y=y, fill=pixelnumber)) | 318 print(ggplot(pixelxyarray, aes(x=x, y=y, fill=pixelnumber))+ |
289 + geom_tile() + coord_fixed() | 319 geom_tile() + coord_fixed()+ |
290 + ggtitle("Pixel order") | 320 ggtitle("Pixel order") + theme_bw()+ |
291 +theme_bw() | 321 theme(plot.title = element_text(hjust = 0.5))+ |
292 + scale_fill_gradientn(colours = c("blue", "purple" , "red","orange"), | 322 theme(text=element_text(family="ArialMT", face="bold", size=12))+ |
293 space = "Lab", na.value = "black", name = "Acq")) | 323 scale_fill_gradientn(colours = c("blue", "purple" , "red","orange"), |
324 space = "Lab", na.value = "black", name = "Pixel number")) | |
294 | 325 |
295 ################ 2) Number of calibrants per spectrum ###################### | 326 ################ 2) Number of calibrants per spectrum ###################### |
296 | 327 |
297 pixelmatrix = matrix(ncol=ncol(msidata), nrow=0) | 328 pixelmatrix = matrix(ncol=ncol(msidata), nrow=0) |
298 inputcalibrantmasses = inputcalibrants[,1] | 329 inputcalibrantmasses = inputcalibrants[,1] |
319 | 350 |
320 countvector= as.factor(colSums(pixelmatrix>0)) | 351 countvector= as.factor(colSums(pixelmatrix>0)) |
321 countdf= cbind(coord(msidata)[,1:2], countvector) | 352 countdf= cbind(coord(msidata)[,1:2], countvector) |
322 mycolours = c("black","grey", "darkblue", "blue", "green" , "red", "yellow", "magenta", "olivedrab1", "lightseagreen") | 353 mycolours = c("black","grey", "darkblue", "blue", "green" , "red", "yellow", "magenta", "olivedrab1", "lightseagreen") |
323 | 354 |
324 print(ggplot(countdf, aes(x=x, y=y, fill=countvector)) | 355 print(ggplot(countdf, aes(x=x, y=y, fill=countvector))+ |
325 + geom_tile() + coord_fixed() | 356 geom_tile() + coord_fixed() + |
326 + ggtitle("Number of calibrants per pixel") | 357 ggtitle("Number of calibrants per pixel") + |
327 + theme_bw() | 358 theme_bw() + |
328 + theme(text=element_text(family="ArialMT", face="bold", size=12)) | 359 theme(plot.title = element_text(hjust = 0.5))+ |
329 + scale_fill_manual(values = mycolours[1:length(countvector)], | 360 theme(text=element_text(family="ArialMT", face="bold", size=12))+ |
361 scale_fill_manual(values = mycolours[1:length(countvector)], | |
330 na.value = "black", name = "# calibrants")) | 362 na.value = "black", name = "# calibrants")) |
363 | |
364 ## append list for optional spectrum values output | |
365 colnames(countdf)[3] = "Number of Calibrants" | |
366 spectrum_list[[list_count]] = countdf | |
367 list_count = list_count+1 | |
368 | |
331 }else{print("2) The inputcalibrant m/z were not provided or outside the m/z range")} | 369 }else{print("2) The inputcalibrant m/z were not provided or outside the m/z range")} |
332 | 370 |
333 ########################## 3) fold change image ########################### | 371 ########################## 3) fold change image ########################### |
334 | 372 |
335 #if $calibrantratio: | 373 #if $calibrantratio: |
384 mass1vector = spectra(msidata)[features(msidata, mz = maxmass1),] | 422 mass1vector = spectra(msidata)[features(msidata, mz = maxmass1),] |
385 mass2vector = spectra(msidata)[features(msidata, mz = maxmass2),] | 423 mass2vector = spectra(msidata)[features(msidata, mz = maxmass2),] |
386 foldchange= log2(mass1vector/mass2vector) | 424 foldchange= log2(mass1vector/mass2vector) |
387 fcmatrix = cbind(foldchange, coord(msidata)[,1:2]) | 425 fcmatrix = cbind(foldchange, coord(msidata)[,1:2]) |
388 | 426 |
389 print(ggplot(fcmatrix, aes(x=x, y=y, fill=foldchange), colour=colo) | 427 print(ggplot(fcmatrix, aes(x=x, y=y, fill=foldchange), colour=colo)+ |
390 + geom_tile() + coord_fixed() | 428 geom_tile() + coord_fixed()+ |
391 + ggtitle("$label") | 429 ggtitle("$label")+ |
392 + theme_bw() | 430 theme_bw()+ |
393 + theme(text=element_text(family="ArialMT", face="bold", size=12)) | 431 theme(plot.title = element_text(hjust = 0.5))+ |
394 + scale_fill_gradientn(colours = c("blue", "purple" , "red","orange") | 432 theme(text=element_text(family="ArialMT", face="bold", size=12))+ |
433 scale_fill_gradientn(colours = c("blue", "purple" , "red","orange") | |
395 ,space = "Lab", na.value = "black", name ="FC")) | 434 ,space = "Lab", na.value = "black", name ="FC")) |
396 }else{ | 435 }else{ |
397 plot(0,type='n',axes=FALSE,ann=FALSE) | 436 plot(0,type='n',axes=FALSE,ann=FALSE) |
398 title(main=paste("At least one m/z range did not contain any intensity value > 0,\n therefore no foldchange plot could be drawn"))} | 437 title(main=paste("At least one m/z range did not contain any intensity value > 0,\n therefore no foldchange plot could be drawn"))} |
399 | 438 |
405 par(mfrow=c(1,1), mar=c(5.1, 4.1, 4.1, 2.1), mgp=c(3, 1, 0), las=0) | 444 par(mfrow=c(1,1), mar=c(5.1, 4.1, 4.1, 2.1), mgp=c(3, 1, 0), las=0) |
406 if (length(inputmasses) != 0){ | 445 if (length(inputmasses) != 0){ |
407 for (mass in 1:length(inputmasses)){ | 446 for (mass in 1:length(inputmasses)){ |
408 image(msidata, mz=inputmasses[mass], plusminus=$plusminus_dalton, | 447 image(msidata, mz=inputmasses[mass], plusminus=$plusminus_dalton, |
409 main= paste0(inputnames[mass], " (", round(inputmasses[mass], digits = 2)," ± ", $plusminus_dalton, " Da)"), | 448 main= paste0(inputnames[mass], " (", round(inputmasses[mass], digits = 2)," ± ", $plusminus_dalton, " Da)"), |
410 contrast.enhance = "histogram") | 449 contrast.enhance = "histogram", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy)) |
411 } | 450 } |
412 } else {print("4) The input peptide and calibrant m/z were not provided or outside the m/z range")} | 451 } else {print("4) The input peptide and calibrant m/z were not provided or outside the m/z range")} |
413 | 452 |
414 #################### 5) Number of peaks per pixel - image ################## | 453 #################### 5) Number of peaks per pixel - image ################## |
415 | 454 |
416 ## here every intensity value > 0 counts as pixel | 455 ## here every intensity value > 0 counts as pixel |
417 peaksperpixel = colSums(spectra(msidata)[]> 0) | 456 peaksperpixel = colSums(spectra(msidata)[]> 0) |
418 peakscoordarray=cbind(coord(msidata)[,1:2], peaksperpixel) | 457 peakscoordarray=cbind(coord(msidata)[,1:2], peaksperpixel) |
419 | 458 |
420 print(ggplot(peakscoordarray, aes(x=x, y=y, fill=peaksperpixel), colour=colo) | 459 print(ggplot(peakscoordarray, aes(x=x, y=y, fill=peaksperpixel), colour=colo)+ |
421 + geom_tile() + coord_fixed() | 460 geom_tile() + coord_fixed() + |
422 + ggtitle("Number of peaks per spectrum") | 461 ggtitle("Number of peaks per spectrum")+ |
423 + theme_bw() | 462 theme_bw() + |
424 + theme(text=element_text(family="ArialMT", face="bold", size=12)) | 463 theme(plot.title = element_text(hjust = 0.5))+ |
425 + scale_fill_gradientn(colours = c("blue", "purple" , "red","orange") | 464 theme(text=element_text(family="ArialMT", face="bold", size=12))+ |
465 scale_fill_gradientn(colours = c("blue", "purple" , "red","orange") | |
426 ,space = "Lab", na.value = "black", name = "# peaks")) | 466 ,space = "Lab", na.value = "black", name = "# peaks")) |
467 | |
468 ## append list for optional spectrum values output | |
469 colnames(peakscoordarray)[3] = "Number of Peaks" | |
470 spectrum_list[[list_count]] = peakscoordarray | |
471 list_count = list_count+1 | |
427 | 472 |
428 ############################### 6) TIC image ############################### | 473 ############################### 6) TIC image ############################### |
429 | 474 |
430 TICcoordarray=cbind(coord(msidata)[,1:2], TICs) | 475 TICcoordarray=cbind(coord(msidata)[,1:2], TICs) |
431 colo = colorRampPalette( | 476 colo = colorRampPalette( |
432 c("blue", "cyan", "green", "yellow","red")) | 477 c("blue", "cyan", "green", "yellow","red")) |
433 print(ggplot(TICcoordarray, aes(x=x, y=y, fill=TICs), colour=colo) | 478 print(ggplot(TICcoordarray, aes(x=x, y=y, fill=TICs), colour=colo)+ |
434 + geom_tile() + coord_fixed() | 479 geom_tile() + coord_fixed() + |
435 + ggtitle("Total Ion Chromatogram") | 480 ggtitle("Total Ion Chromatogram")+ |
436 + theme_bw() | 481 theme_bw() + |
437 + theme(text=element_text(family="ArialMT", face="bold", size=12)) | 482 theme(plot.title = element_text(hjust = 0.5))+ |
438 + scale_fill_gradientn(colours = c("blue", "purple" , "red","orange") | 483 theme(text=element_text(family="ArialMT", face="bold", size=12))+ |
484 scale_fill_gradientn(colours = c("blue", "purple" , "red","orange") | |
439 ,space = "Lab", na.value = "black", name = "TIC")) | 485 ,space = "Lab", na.value = "black", name = "TIC")) |
486 | |
487 ## append list for optional spectrum values output | |
488 colnames(TICcoordarray)[3] = "TIC per spectrum" | |
489 spectrum_list[[list_count]] = TICcoordarray | |
490 list_count = list_count+1 | |
440 | 491 |
441 ############################### 7) Most abundant m/z image ################# | 492 ############################### 7) Most abundant m/z image ################# |
442 | 493 |
443 highestmz = apply(spectra(msidata)[],2,which.max) | 494 highestmz = apply(spectra(msidata)[],2,which.max) |
444 highestmz_matrix = cbind(coord(msidata)[,1:2],mz(msidata)[highestmz]) | 495 highestmz_matrix = cbind(coord(msidata)[,1:2],mz(msidata)[highestmz]) |
445 colnames(highestmz_matrix)[3] = "highestmzinDa" | 496 colnames(highestmz_matrix)[3] = "highestmzinDa" |
446 | 497 |
447 print(ggplot(highestmz_matrix, aes(x=x, y=y, fill=highestmzinDa)) | 498 print(ggplot(highestmz_matrix, aes(x=x, y=y, fill=highestmzinDa))+ |
448 + geom_tile() + coord_fixed() | 499 geom_tile() + coord_fixed() + |
449 + ggtitle("Most abundant m/z in each spectrum") | 500 ggtitle("Most abundant m/z in each spectrum")+ |
450 + theme_bw() | 501 theme_bw() + |
451 + scale_fill_gradientn(colours = c("blue", "purple" , "red","orange"), space = "Lab", na.value = "black", name = "m/z", | 502 theme(plot.title = element_text(hjust = 0.5))+ |
503 scale_fill_gradientn(colours = c("blue", "purple" , "red","orange"), space = "Lab", na.value = "black", name = "m/z", | |
452 labels = as.character(pretty(highestmz_matrix\$highestmzinDa)[c(1,3,5,7)]), | 504 labels = as.character(pretty(highestmz_matrix\$highestmzinDa)[c(1,3,5,7)]), |
453 breaks = pretty(highestmz_matrix\$highestmzinDa)[c(1,3,5,7)], limits=c(min(highestmz_matrix\$highestmzinDa), max(highestmz_matrix\$highestmzinDa))) | 505 breaks = pretty(highestmz_matrix\$highestmzinDa)[c(1,3,5,7)], limits=c(min(highestmz_matrix\$highestmzinDa), max(highestmz_matrix\$highestmzinDa)))+ |
454 + theme(text=element_text(family="ArialMT", face="bold", size=12))) | 506 theme(text=element_text(family="ArialMT", face="bold", size=12))) |
455 | 507 |
456 ## which m/z are highest | 508 ## which m/z are highest |
457 highestmz_peptides = names(sort(table(round(highestmz_matrix\$highestmzinDa, digits=0)), decreasing=TRUE)[1]) | 509 highestmz_peptides = names(sort(table(round(highestmz_matrix\$highestmzinDa, digits=0)), decreasing=TRUE)[1]) |
458 highestmz_pixel = which(round(highestmz_matrix\$highestmzinDa, digits=0) == highestmz_peptides)[1] | 510 highestmz_pixel = which(round(highestmz_matrix\$highestmzinDa, digits=0) == highestmz_peptides)[1] |
459 | 511 |
460 secondhighestmz = names(sort(table(round(highestmz_matrix\$highestmzinDa, digits=0)), decreasing=TRUE)[2]) | 512 secondhighestmz = names(sort(table(round(highestmz_matrix\$highestmzinDa, digits=0)), decreasing=TRUE)[2]) |
461 secondhighestmz_pixel = which(round(highestmz_matrix\$highestmzinDa, digits=0) == secondhighestmz)[1] | 513 secondhighestmz_pixel = which(round(highestmz_matrix\$highestmzinDa, digits=0) == secondhighestmz)[1] |
462 | 514 |
463 print(head(sort(table(round(highestmz_matrix\$highestmzinDa, digits=0)), decreasing=TRUE))) | 515 print(head(sort(table(round(highestmz_matrix\$highestmzinDa, digits=0)), decreasing=TRUE))) |
464 | 516 |
517 ## append list for optional spectrum values output | |
518 colnames(highestmz_matrix)[3] = "Most abundant m/z" | |
519 spectrum_list[[list_count]] = highestmz_matrix | |
520 | |
465 ########################## 8) pca image for two components ################# | 521 ########################## 8) pca image for two components ################# |
466 | 522 |
467 pca = PCA(msidata, ncomp=2) | 523 pca = PCA(msidata, ncomp=2) |
468 par(mfrow = c(2,1)) | 524 par(mfrow = c(2,1)) |
469 plot(pca, col=c("black", "darkgrey"), main="PCA for two components") | 525 plot(pca, col=c("black", "darkgrey"), main="PCA for two components") |
470 image(pca, col=c("black", "white"), strip=FALSE) | 526 image(pca, col=c("black", "white"), strip=FALSE, ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy)) |
471 | 527 |
472 ################## III) properties over spectra index ########## | 528 ################## III) properties over spectra index ########## |
473 ############################################################################## | 529 ############################################################################## |
474 print("properties over pixels") | 530 print("properties over pixels") |
475 par(mfrow = c(2,1), mar=c(5,6,4,2)) | 531 par(mfrow = c(2,1), mar=c(5,6,4,2)) |
496 colnames(df_9) = c("Npeaks", "sample_name") | 552 colnames(df_9) = c("Npeaks", "sample_name") |
497 | 553 |
498 hist_9 = ggplot(df_9, aes(x=Npeaks, fill=sample_name)) + | 554 hist_9 = ggplot(df_9, aes(x=Npeaks, fill=sample_name)) + |
499 geom_histogram()+ theme_bw()+ | 555 geom_histogram()+ theme_bw()+ |
500 theme(text=element_text(family="ArialMT", face="bold", size=12))+ | 556 theme(text=element_text(family="ArialMT", face="bold", size=12))+ |
557 theme(plot.title = element_text(hjust = 0.5))+ | |
558 theme(legend.key.size = unit(0.2, "line"), legend.text = element_text(size = legend_size))+ | |
559 theme(legend.position="bottom",legend.direction="vertical")+ | |
501 labs(title="Number of peaks per spectrum and sample", x="Number of peaks per spectrum", y = "Frequency = # spectra") + | 560 labs(title="Number of peaks per spectrum and sample", x="Number of peaks per spectrum", y = "Frequency = # spectra") + |
561 guides(fill=guide_legend(ncol=5,byrow=TRUE))+ | |
502 geom_vline(xintercept = median(peaksperpixel), size = 1, colour = "black",linetype = "dashed") | 562 geom_vline(xintercept = median(peaksperpixel), size = 1, colour = "black",linetype = "dashed") |
503 print(hist_9)} | 563 print(hist_9)} |
504 | 564 |
505 ########################## 10) TIC per spectrum ########################### | 565 ########################## 10) TIC per spectrum ########################### |
506 | 566 |
524 colnames(df_10) = c("TICs", "sample_name") | 584 colnames(df_10) = c("TICs", "sample_name") |
525 | 585 |
526 hist_10 = ggplot(df_10, aes(x=TICs, fill=sample_name)) + | 586 hist_10 = ggplot(df_10, aes(x=TICs, fill=sample_name)) + |
527 geom_histogram()+ theme_bw()+ | 587 geom_histogram()+ theme_bw()+ |
528 theme(text=element_text(family="ArialMT", face="bold", size=12))+ | 588 theme(text=element_text(family="ArialMT", face="bold", size=12))+ |
589 theme(plot.title = element_text(hjust = 0.5))+ | |
590 theme(legend.position="bottom",legend.direction="vertical")+ | |
591 theme(legend.key.size = unit(0.2, "line"), legend.text = element_text(size = legend_size))+ | |
529 labs(title="TIC per spectrum and sample", x="log(TIC per spectrum)", y = "Frequency = # spectra") + | 592 labs(title="TIC per spectrum and sample", x="log(TIC per spectrum)", y = "Frequency = # spectra") + |
593 guides(fill=guide_legend(ncol=5,byrow=TRUE))+ | |
530 geom_vline(xintercept = median(log(TICs[TICs>0])), size = 1, colour = "black",linetype = "dashed") | 594 geom_vline(xintercept = median(log(TICs[TICs>0])), size = 1, colour = "black",linetype = "dashed") |
531 print(hist_10)} | 595 print(hist_10)} |
532 | 596 |
533 ################################## IV) changes over m/z #################### | 597 ################################## IV) changes over m/z #################### |
534 ############################################################################ | 598 ############################################################################ |
604 | 668 |
605 hist_13 = ggplot(df_13, aes(x=logint, fill=sample_name)) + | 669 hist_13 = ggplot(df_13, aes(x=logint, fill=sample_name)) + |
606 geom_histogram()+ theme_bw()+ | 670 geom_histogram()+ theme_bw()+ |
607 theme(text=element_text(family="ArialMT", face="bold", size=12))+ | 671 theme(text=element_text(family="ArialMT", face="bold", size=12))+ |
608 labs(title="Log2-transformed intensities per sample", x="log2 intensities", y = "Frequency") + | 672 labs(title="Log2-transformed intensities per sample", x="log2 intensities", y = "Frequency") + |
673 theme(plot.title = element_text(hjust = 0.5))+ | |
674 theme(legend.position="bottom",legend.direction="vertical")+ | |
675 theme(legend.key.size = unit(0.2, "line"), legend.text = element_text(size = legend_size))+ | |
676 guides(fill=guide_legend(ncol=5,byrow=TRUE))+ | |
609 geom_vline(xintercept = median(log2(spectra(msidata)[(spectra(msidata)>0)])), size = 1, colour = "black",linetype = "dashed") | 677 geom_vline(xintercept = median(log2(spectra(msidata)[(spectra(msidata)>0)])), size = 1, colour = "black",linetype = "dashed") |
610 print(hist_13) | 678 print(hist_13) |
611 | 679 |
612 ## 13d) boxplots to visualize in a different way the intensity distributions | 680 ## 13d) boxplots to visualize in a different way the intensity distributions |
613 par(mfrow = c(1,1), cex.axis=1.3, cex.lab=1.3, mar=c(13.1,4.1,5.1,2.1)) | 681 par(mfrow = c(1,1), cex.axis=1.3, cex.lab=1.3, mar=c(13.1,4.1,5.1,2.1)) |
614 | 682 |
615 mean_matrix = matrix(,ncol=0, nrow = nrow(msidata)) | 683 mean_matrix = matrix(,ncol=0, nrow = nrow(msidata)) |
616 for (subsample in levels(msidata\$combined_sample)){ | 684 for (subsample in levels(msidata\$combined_sample)){ |
617 mean_mz_sample = colMeans(spectra(msidata)[,msidata\$combined_sample==subsample]) | 685 mean_mz_sample = rowMeans(spectra(msidata)[,msidata\$combined_sample==subsample]) |
618 mean_matrix = cbind(mean_matrix, mean_mz_sample)} | 686 mean_matrix = cbind(mean_matrix, mean_mz_sample)} |
619 boxplot(mean_matrix, ylab = "mean intensity per m/z", names=levels(msidata\$combined_sample), main="Mean intensities per m/z and sample", las=2) | 687 |
688 boxplot(log2(mean_matrix), ylab = "log2 mean intensity per m/z", main="Mean intensities per m/z and sample", xaxt = "n") | |
689 (axis(1, at = c(1:number_combined), labels=levels(msidata\$combined_sample), cex.axis=cex_boxplot, las=2)) | |
620 } | 690 } |
621 | 691 |
622 ########################## 14) Histogram on m/z values ##################### | 692 ########################## 14) Histogram on m/z values ##################### |
623 | 693 |
624 par(mfrow = c(1, 1), cex.axis=1, cex.lab=1, mar=c(5.1,4.1,4.1,2.1)) | 694 par(mfrow = c(1, 1), cex.axis=1, cex.lab=1, mar=c(5.1,4.1,4.1,2.1)) |
669 ppmdifference2 = mzdifference2/inputcalibrantmasses[mass]*1000000 | 739 ppmdifference2 = mzdifference2/inputcalibrantmasses[mass]*1000000 |
670 differencevector2[mass] = round(ppmdifference2, digits=2) | 740 differencevector2[mass] = round(ppmdifference2, digits=2) |
671 | 741 |
672 par(mfrow = c(2, 2), oma=c(0,0,2,0)) | 742 par(mfrow = c(2, 2), oma=c(0,0,2,0)) |
673 plot(msidata[minmasspixel:maxmasspixel,], pixel = 1:length(pixelnumber), main= "average spectrum") | 743 plot(msidata[minmasspixel:maxmasspixel,], pixel = 1:length(pixelnumber), main= "average spectrum") |
674 abline(v=c(inputcalibrantmasses[mass] -plusminusvalues[count], inputcalibrantmasses[mass] ,inputcalibrantmasses[mass] +plusminusvalues[count]), col="blue", lty=c(3,6,3)) | 744 abline(v=c(inputcalibrantmasses[mass] -plusminusvalues[count], inputcalibrantmasses[mass] ,inputcalibrantmasses[mass] +plusminusvalues[count]), col="blue", lty=c(3,1,3)) |
675 abline(v=c(maxvalue), col="red", lty=5) | 745 abline(v=c(maxvalue), col="red", lty=2) |
676 abline(v=c(mzvalue), col="green2", lty=5) | 746 abline(v=c(mzvalue), col="green2", lty=4) |
677 plot(msidata[minmasspixel:maxmasspixel,], pixel = pixels_for_plot[1], main=paste0("Spectrum at ", rownames(coord(msidata)[pixels_for_plot[1],1:2]))) | 747 plot(msidata[minmasspixel:maxmasspixel,], pixel = pixels_for_plot[1], main=paste0("Spectrum at ", rownames(coord(msidata)[pixels_for_plot[1],1:2]))) |
678 abline(v=c(inputcalibrantmasses[mass] -plusminusvalues[count], inputcalibrantmasses[mass] ,inputcalibrantmasses[mass] +plusminusvalues[count]), col="blue", lty=c(3,6,3)) | 748 abline(v=c(inputcalibrantmasses[mass] -plusminusvalues[count], inputcalibrantmasses[mass] ,inputcalibrantmasses[mass] +plusminusvalues[count]), col="blue", lty=c(3,1,3)) |
679 abline(v=c(maxvalue), col="red", lty=5) | 749 abline(v=c(maxvalue), col="red", lty=2) |
680 abline(v=c(mzvalue), col="green2", lty=5) | 750 abline(v=c(mzvalue), col="green2", lty=4) |
681 plot(msidata[minmasspixel:maxmasspixel,], pixel = pixels_for_plot[2], main= paste0("Spectrum at ", rownames(coord(msidata)[pixels_for_plot[2],1:2]))) | 751 plot(msidata[minmasspixel:maxmasspixel,], pixel = pixels_for_plot[2], main= paste0("Spectrum at ", rownames(coord(msidata)[pixels_for_plot[2],1:2]))) |
682 abline(v=c(inputcalibrantmasses[mass] -plusminusvalues[count], inputcalibrantmasses[mass] ,inputcalibrantmasses[mass] +plusminusvalues[count]), col="blue", lty=c(3,6,3)) | 752 abline(v=c(inputcalibrantmasses[mass] -plusminusvalues[count], inputcalibrantmasses[mass] ,inputcalibrantmasses[mass] +plusminusvalues[count]), col="blue", lty=c(3,1,3)) |
683 abline(v=c(maxvalue), col="red", lty=5) | 753 abline(v=c(maxvalue), col="red", lty=2) |
684 abline(v=c(mzvalue), col="green2", lty=5) | 754 abline(v=c(mzvalue), col="green2", lty=4) |
685 plot(msidata[minmasspixel:maxmasspixel,], pixel = pixels_for_plot[3], main= paste0("Spectrum at ", rownames(coord(msidata)[pixels_for_plot[3],1:2]))) | 755 plot(msidata[minmasspixel:maxmasspixel,], pixel = pixels_for_plot[3], main= paste0("Spectrum at ", rownames(coord(msidata)[pixels_for_plot[3],1:2]))) |
686 abline(v=c(inputcalibrantmasses[mass] -plusminusvalues[count], inputcalibrantmasses[mass] ,inputcalibrantmasses[mass] +plusminusvalues[count]), col="blue", lty=c(3,6,3)) | 756 abline(v=c(inputcalibrantmasses[mass] -plusminusvalues[count], inputcalibrantmasses[mass] ,inputcalibrantmasses[mass] +plusminusvalues[count]), col="blue", lty=c(3,1,3)) |
687 abline(v=c(maxvalue), col="red", lty=5) | 757 abline(v=c(maxvalue), col="red", lty=2) |
688 abline(v=c(mzvalue), col="green2", lty=5) | 758 abline(v=c(mzvalue), col="green2", lty=4) |
689 title(paste0("theor. m/z: ", inputcalibrants[count,1]), col.main="blue", outer=TRUE, line=0, adj=0.074) | 759 title(paste0("theor. m/z: ", inputcalibrants[count,1]), col.main="blue", outer=TRUE, line=0, adj=0.074) |
690 title(paste0("most abundant m/z: ", round(maxvalue, digits=4)), col.main="red", outer=TRUE, line=0, adj=0.49) | 760 title(paste0("most abundant m/z: ", round(maxvalue, digits=4)), col.main="red", outer=TRUE, line=0, adj=0.49) |
691 title(paste0("closest m/z: ", round(mzvalue, digits=4)), col.main="green2", outer=TRUE, line=0, adj=0.93) | 761 title(paste0("closest m/z: ", round(mzvalue, digits=4)), col.main="green2", outer=TRUE, line=0, adj=0.93) |
762 | |
763 ### 16b) one large extra plot with different colours for different samples (for combined_sample only) | |
764 | |
765 if (!is.null(levels(msidata\$combined_sample))){ | |
766 if (number_combined < 10){ | |
767 key_zoomed = TRUE | |
768 }else{key_zoomed = FALSE} | |
769 par(mfrow = c(1, 1)) | |
770 plot(msidata[minmasspixel:maxmasspixel,], pixel=1:ncol(msidata),main="average spectrum per sample", | |
771 pixel.groups=msidata\$combined_sample, key=key_zoomed, col=hue_pal()(number_combined),superpose=TRUE) | |
772 abline(v=c(inputcalibrantmasses[mass] -plusminusvalues[count], inputcalibrantmasses[mass] ,inputcalibrantmasses[mass] +plusminusvalues[count]), col="black", lty=c(3,1,3)) | |
692 count=count+1 | 773 count=count+1 |
774 } | |
693 } | 775 } |
694 | 776 |
695 ######### 17) ppm difference input calibrant m/z and m/z with max intensity in given m/z range######### | 777 ######### 17) ppm difference input calibrant m/z and m/z with max intensity in given m/z range######### |
696 | 778 |
697 par(mfrow = c(1, 1)) | 779 par(mfrow = c(1, 1)) |
704 if (sum(is.na(diff_df[,1])) == nrow(diff_df)){ | 786 if (sum(is.na(diff_df[,1])) == nrow(diff_df)){ |
705 print("plot 17: no peaks in the chosen region, repeat with higher ppm range") | 787 print("plot 17: no peaks in the chosen region, repeat with higher ppm range") |
706 }else{ | 788 }else{ |
707 | 789 |
708 diff_plot=ggplot(data=diff_df, aes(x=calibrant_names, y=differencevector)) + geom_bar(stat="identity", fill = "darkgray") + theme_minimal() + | 790 diff_plot=ggplot(data=diff_df, aes(x=calibrant_names, y=differencevector)) + geom_bar(stat="identity", fill = "darkgray") + theme_minimal() + |
709 labs(title="Difference m/z with max. average intensity vs. theoretical calibrant m/z", x="calibrants", y = "Difference in ppm")+ | 791 labs(title="Difference m/z with max. average intensity vs. theor. calibrant m/z", x="calibrants", y = "Difference in ppm")+ |
792 theme(plot.title = element_text(hjust = 0.5))+theme(text=element_text(family="ArialMT", face="bold", size=12))+ | |
710 geom_text(aes(label=differencevector), vjust=-0.3, size=3.5, col="blue") | 793 geom_text(aes(label=differencevector), vjust=-0.3, size=3.5, col="blue") |
711 | 794 |
712 print(diff_plot)} | 795 print(diff_plot)} |
713 | 796 |
714 ######### 18) ppm difference input calibrant m/z and closest m/z ########### | 797 ######### 18) ppm difference input calibrant m/z and closest m/z ########### |
718 differencevector2 = round(differencevector2, digits=2) | 801 differencevector2 = round(differencevector2, digits=2) |
719 calibrant_names = as.character(inputcalibrants[,2]) | 802 calibrant_names = as.character(inputcalibrants[,2]) |
720 diff_df = data.frame(differencevector2, calibrant_names) | 803 diff_df = data.frame(differencevector2, calibrant_names) |
721 | 804 |
722 diff_plot=ggplot(data=diff_df, aes(x=calibrant_names, y=differencevector2)) + geom_bar(stat="identity", fill = "darkgray") + theme_minimal() + | 805 diff_plot=ggplot(data=diff_df, aes(x=calibrant_names, y=differencevector2)) + geom_bar(stat="identity", fill = "darkgray") + theme_minimal() + |
723 labs(title="Difference closest measured m/z vs. theoretical calibrant m/z", x="calibrants", y = "Difference in ppm")+ | 806 labs(title="Difference closest measured m/z vs. theor. calibrant m/z", x="calibrants", y = "Difference in ppm")+ |
807 theme(plot.title = element_text(hjust = 0.5))+theme(text=element_text(family="ArialMT", face="bold", size=12))+ | |
724 geom_text(aes(label=differencevector2), vjust=-0.3, size=3.5, col="blue") | 808 geom_text(aes(label=differencevector2), vjust=-0.3, size=3.5, col="blue") |
725 | 809 |
726 print(diff_plot) | 810 print(diff_plot) |
727 | 811 |
728 #################### 19) ppm difference over pixels ##################### | 812 #################### 19) ppm difference over pixels ##################### |
757 }else{ | 841 }else{ |
758 | 842 |
759 ### plot ppm differences over pixels (spectra index) | 843 ### plot ppm differences over pixels (spectra index) |
760 | 844 |
761 par(mar=c(4.1, 4.1, 4.1, 7.5)) | 845 par(mar=c(4.1, 4.1, 4.1, 7.5)) |
762 plot(0,0,type="n", ylim=c(min(ppm_df, na.rm=TRUE),max(ppm_df, na.rm=TRUE)), xlim = c(1,ncol(filtered_data)),xlab = "Spectra index", ylab = "m/z difference in ppm", main="Difference m/z with max. average intensity vs. theoretical m/z\n(per spectrum)") | 846 plot(0,0,type="n", ylim=c(min(ppm_df, na.rm=TRUE),max(ppm_df, na.rm=TRUE)), xlim = c(1,ncol(filtered_data)),xlab = "Spectra index", ylab = "m/z difference in ppm", main="Difference m/z with max. average intensity vs. theor. m/z\n(per spectrum)") |
763 | 847 |
764 for (each_cal in 1:ncol(ppm_df)){ | 848 for (each_cal in 1:ncol(ppm_df)){ |
765 lines(ppm_df[,each_cal], col=mycolours[each_cal], type="p")} | 849 lines(ppm_df[,each_cal], col=mycolours[each_cal], type="p")} |
766 legend("topright", inset=c(-0.25,0), xpd = TRUE, bty="n", legend=inputcalibrantmasses, col=mycolours[1:ncol(ppm_df)],lty=1) | 850 legend("topright", inset=c(-0.25,0), xpd = TRUE, bty="n", legend=inputcalibrantmasses, col=mycolours[1:ncol(ppm_df)],lty=1) |
767 abline(v=abline_vector, lty = 3)} | 851 abline(v=abline_vector, lty = 3)} |
769 }else{print("16+17+18+19) The inputcalibrant m/z were not provided or outside the m/z range")} | 853 }else{print("16+17+18+19) The inputcalibrant m/z were not provided or outside the m/z range")} |
770 | 854 |
771 dev.off() | 855 dev.off() |
772 | 856 |
773 }else{ | 857 }else{ |
774 print("inputfile has no intensities > 0") | 858 print("inputfile has no intensities > 0") |
775 dev.off() | 859 dev.off() |
776 } | 860 } |
861 | |
862 ## tabular output of spectra values | |
863 | |
864 #if $pixel_output: | |
865 print("pixel list") | |
866 pixel_df = Reduce(function(...) merge(..., by=c("x", "y"), all=T), spectrum_list) | |
867 write.table(pixel_df, file="$pixel_tabular_output", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
868 #end if | |
869 | |
870 | |
777 | 871 |
778 ]]></configfile> | 872 ]]></configfile> |
779 </configfiles> | 873 </configfiles> |
780 <inputs> | 874 <inputs> |
781 <param name="infile" type="data" format="imzml,rdata,analyze75" label="Inputfile as imzML, Analyze7.5 or Cardinal MSImageSet saved as RData" | 875 <param name="infile" type="data" format="imzml,rdata,analyze75" label="Inputfile as imzML, Analyze7.5 or Cardinal MSImageSet saved as RData" |
782 help="Upload composite datatype imzml (ibd+imzML) or analyze75 (hdr+img+t2m) or regular upload .RData (Cardinal MSImageSet)"/> | 876 help="Upload composite datatype imzml (ibd+imzML) or analyze75 (hdr+img+t2m) or regular upload .RData (Cardinal MSImageSet)"/> |
877 <param name="accuracy" type="float" value="50" label="Only for processed imzML files: enter mass accuracy to which the m/z values will be binned" help="This should be set to the native accuracy of the mass spectrometer, if known"/> | |
878 <param name="units" display="radio" type="select" label="Only for processed imzML files: unit of the mass accuracy" help="either m/z or ppm"> | |
879 <option value="mz" >mz</option> | |
880 <option value="ppm" selected="True" >ppm</option> | |
881 </param> | |
783 <param name="filename" type="text" value="" optional="true" label="Title" help="will appear as header in the quality report, if nothing given input dataset name is used"/> | 882 <param name="filename" type="text" value="" optional="true" label="Title" help="will appear as header in the quality report, if nothing given input dataset name is used"/> |
784 <param name="calibrant_file" type="data" optional="true" format="tabular" | 883 <param name="calibrant_file" type="data" optional="true" format="tabular" |
785 label="File with internal calibrants" help="first column: m/z, second column: name (optional), tabular file"/> | 884 label="File with internal calibrants" help="first column: m/z, second column: name (optional), tabular file"/> |
786 <param name="peptide_file" type="data" optional="true" format="tabular" label="File with m/z of interest" | 885 <param name="peptide_file" type="data" optional="true" format="tabular" label="File with m/z of interest" |
787 help="first column: m/z, second column: name (optional), tabular file"/> | 886 help="first column: m/z, second column: name (optional), tabular file"/> |
791 <param name="mass1" value="1111" type="float" label="M/z 1" help="First m/z"/> | 890 <param name="mass1" value="1111" type="float" label="M/z 1" help="First m/z"/> |
792 <param name="mass2" value="2222" type="float" label="M/z 2" help="Second m/z"/> | 891 <param name="mass2" value="2222" type="float" label="M/z 2" help="Second m/z"/> |
793 <param name="distance" value="0.25" type="float" label="M/z range" help="Plusminus m/z window added to input m/z. In both m/z ranges the maximum intensity is used to calculate the fold change"/> | 892 <param name="distance" value="0.25" type="float" label="M/z range" help="Plusminus m/z window added to input m/z. In both m/z ranges the maximum intensity is used to calculate the fold change"/> |
794 <param name="filenameratioplot" type="text" optional="true" label="Title" help="Optional title for fold change plot."/> | 893 <param name="filenameratioplot" type="text" optional="true" label="Title" help="Optional title for fold change plot."/> |
795 </repeat> | 894 </repeat> |
895 <param name="pixel_output" type="boolean" display="radio" label="Tabular with spectra information" help="Values for each spectrum (pixel) in x-y grid images"/> | |
796 </inputs> | 896 </inputs> |
797 <outputs> | 897 <outputs> |
798 <data format="pdf" name="plots" from_work_dir="qualitycontrol.pdf" label = "$infile.display_name QC_report"/> | 898 <data format="pdf" name="plots" from_work_dir="qualitycontrol.pdf" label = "$infile.display_name QC_report"/> |
899 <data format="tabular" name="pixel_tabular_output" label="$infile.display_name spectra information"> | |
900 <filter>pixel_output</filter> | |
901 </data> | |
799 </outputs> | 902 </outputs> |
800 <tests> | 903 <tests> |
801 <test> | 904 <test expect_num_outputs="2"> |
802 <param name="infile" value="" ftype="imzml"> | 905 <param name="infile" value="" ftype="imzml"> |
803 <composite_data value="Example_Continuous.imzML" /> | 906 <composite_data value="Example_Processed.imzML"/> |
804 <composite_data value="Example_Continuous.ibd" /> | 907 <composite_data value="Example_Processed.ibd"/> |
805 </param> | 908 </param> |
909 <param name="accuracy" value="200"/> | |
910 <param name="units" value="ppm"/> | |
806 <param name="peptide_file" value="inputpeptides.txt"/> | 911 <param name="peptide_file" value="inputpeptides.txt"/> |
807 <param name="calibrant_file" value="inputcalibrantfile1.txt"/> | 912 <param name="calibrant_file" value="inputcalibrantfile1.txt"/> |
808 <param name="plusminus_dalton" value="0.25"/> | 913 <param name="plusminus_dalton" value="0.25"/> |
809 <param name="plusminus_ppm" value="100"/> | 914 <param name="plusminus_ppm" value="100"/> |
810 <param name="filename" value="Testfile_imzml"/> | 915 <param name="filename" value="Testfile_imzml"/> |
812 <param name="mass1" value="328.9"/> | 917 <param name="mass1" value="328.9"/> |
813 <param name="mass2" value="398.8"/> | 918 <param name="mass2" value="398.8"/> |
814 <param name="distance" value="0.25"/> | 919 <param name="distance" value="0.25"/> |
815 <param name="filenameratioplot" value = "Ratio of mass1 (328.9) / mass2 (398.8)"/> | 920 <param name="filenameratioplot" value = "Ratio of mass1 (328.9) / mass2 (398.8)"/> |
816 </repeat> | 921 </repeat> |
922 <param name="pixel_output" value="True"/> | |
923 <output name="pixel_tabular_output" file="spectra_info_imzml.txt"/> | |
817 <output name="plots" file="QC_imzml.pdf" compare="sim_size" delta="20000"/> | 924 <output name="plots" file="QC_imzml.pdf" compare="sim_size" delta="20000"/> |
818 </test> | 925 </test> |
819 <test> | 926 <test expect_num_outputs="1"> |
820 <param name="infile" value="" ftype="analyze75"> | 927 <param name="infile" value="" ftype="analyze75"> |
821 <composite_data value="Analyze75.hdr"/> | 928 <composite_data value="Analyze75.hdr"/> |
822 <composite_data value="Analyze75.img"/> | 929 <composite_data value="Analyze75.img"/> |
823 <composite_data value="Analyze75.t2m"/> | 930 <composite_data value="Analyze75.t2m"/> |
824 </param> | 931 </param> |
826 <param name="calibrant_file" value="inputcalibrantfile2.txt"/> | 933 <param name="calibrant_file" value="inputcalibrantfile2.txt"/> |
827 <param name="plusminus_dalton" value="0.5"/> | 934 <param name="plusminus_dalton" value="0.5"/> |
828 <param name="filename" value="Testfile_analyze75"/> | 935 <param name="filename" value="Testfile_analyze75"/> |
829 <output name="plots" file="QC_analyze75.pdf" compare="sim_size" delta="20000"/> | 936 <output name="plots" file="QC_analyze75.pdf" compare="sim_size" delta="20000"/> |
830 </test> | 937 </test> |
831 <test> | 938 <test expect_num_outputs="2"> |
832 <param name="infile" value="123_combined.RData" ftype="rdata"/> | 939 <param name="infile" value="123_combined.RData" ftype="rdata"/> |
833 <param name="plusminus_dalton" value="0.2"/> | 940 <param name="plusminus_dalton" value="0.2"/> |
834 <param name="filename" value="Testfile_rdata"/> | 941 <param name="filename" value="Testfile_rdata"/> |
942 <param name="pixel_output" value="True"/> | |
943 <output name="pixel_tabular_output" file="spectra_info_123_combi.txt"/> | |
835 <output name="plots" file="QC_rdata.pdf" compare="sim_size" delta="20000"/> | 944 <output name="plots" file="QC_rdata.pdf" compare="sim_size" delta="20000"/> |
836 </test> | 945 </test> |
837 <test> | 946 <test expect_num_outputs="1"> |
838 <param name="infile" value="empty_spectra.rdata" ftype="rdata"/> | 947 <param name="infile" value="empty_spectra.rdata" ftype="rdata"/> |
839 <param name="peptide_file" value="inputpeptides.txt"/> | 948 <param name="peptide_file" value="inputpeptides.txt"/> |
840 <param name="calibrant_file" value="inputcalibrantfile2.txt"/> | 949 <param name="calibrant_file" value="inputcalibrantfile2.txt"/> |
841 <param name="plusminus_dalton" value="0.1"/> | 950 <param name="plusminus_dalton" value="0.1"/> |
842 <param name="filename" value="Testfile_rdata"/> | 951 <param name="filename" value="Testfile_rdata"/> |
862 - optional fold change plot: draws a heatmap (x-y grid) for the fold change of two m/z (log2(intensity ratio)) | 971 - optional fold change plot: draws a heatmap (x-y grid) for the fold change of two m/z (log2(intensity ratio)) |
863 | 972 |
864 Output: | 973 Output: |
865 | 974 |
866 - quality control report as pdf with key numbers and descriptive plots describing the mass spectrometry imaging data | 975 - quality control report as pdf with key numbers and descriptive plots describing the mass spectrometry imaging data |
976 - optional spectra information as tabular file with numbers of calibrants (needs input calibrant file), numbers of peaks, TIC and most abundant m/z in each spectrum | |
867 | 977 |
868 Tip: | 978 Tip: |
869 | 979 |
870 - For additional m/z heatmaps use the MSI ion images tool and to plot more mass spectra use the MSI massspectra tool. | 980 - For additional m/z heatmaps use the MSI ion images tool and to plot more mass spectra use the MSI massspectra tool. |
871 | 981 |