comparison msstats.xml @ 5:28434abe6c5c draft

"planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/msstats commit 0e253b8114e2fe6f4e33edcc5f1a4602073064c3"
author galaxyp
date Fri, 06 Aug 2021 20:06:19 +0000
parents 593839e1f2c3
children b7034eff0db1
comparison
equal deleted inserted replaced
4:593839e1f2c3 5:28434abe6c5c
1 <tool id="msstats" name="MSstats" version="@VERSION@.1"> 1 <tool id="msstats" name="MSstats" version="@VERSION@.0">
2 <description>statistical relative protein significance analysis in DDA, SRM and DIA Mass Spectrometry</description> 2 <description>statistical relative protein significance analysis in DDA, SRM and DIA Mass Spectrometry</description>
3 <macros> 3 <macros>
4 <token name="@VERSION@">3.22.0</token> 4 <token name="@VERSION@">4.0.0</token>
5 <xml name="useUniquePeptide"> 5 <xml name="useUniquePeptide">
6 <param name="useUniquePeptide" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="true" label="Remove peptides that are assigned for more than one proteins"/> 6 <param name="useUniquePeptide" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="true" label="Remove peptides that are assigned for more than one proteins"/>
7 </xml> 7 </xml>
8 <xml name="summaryforMultipleRows"> 8 <xml name="summaryforMultipleRows">
9 <param name="summaryforMultipleRows" type="select" label="Summary for MultipleRows" help="When there are multiple measurements for certain feature and certain run, use highest or sum of all"> 9 <param name="summaryforMultipleRows" type="select" label="Summary for MultipleRows" help="When there are multiple measurements for certain feature and certain run, use highest or sum of all">
26 <requirement type="package" version="@VERSION@">bioconductor-msstats</requirement> 26 <requirement type="package" version="@VERSION@">bioconductor-msstats</requirement>
27 </requirements> 27 </requirements>
28 <command detect_errors="exit_code"><![CDATA[ 28 <command detect_errors="exit_code"><![CDATA[
29 cat '$msstats_script' > '$r_script' && 29 cat '$msstats_script' > '$r_script' &&
30 Rscript '$msstats_script' 30 Rscript '$msstats_script'
31 && cat msstats*.log > '$log'
32 ]]></command> 31 ]]></command>
33 <configfiles> 32 <configfiles>
34 <configfile name="msstats_script"><![CDATA[ 33 <configfile name="msstats_script"><![CDATA[
35 34
36 library('MSstats', warn.conflicts = F, quietly = T, verbose = F) 35 library('MSstats', warn.conflicts = F, quietly = T, verbose = F)
64 useUniquePeptide=$input.input_options.useUniquePeptide, 63 useUniquePeptide=$input.input_options.useUniquePeptide,
65 summaryforMultipleRows=$input.input_options.summaryforMultipleRows, 64 summaryforMultipleRows=$input.input_options.summaryforMultipleRows,
66 fewMeasurements="$input.input_options.fewMeasurements", 65 fewMeasurements="$input.input_options.fewMeasurements",
67 removeMpeptides=$input.input_options.removeMpeptides, 66 removeMpeptides=$input.input_options.removeMpeptides,
68 removeOxidationMpeptides=$input.input_options.removeOxidationMpeptides, 67 removeOxidationMpeptides=$input.input_options.removeOxidationMpeptides,
69 removeProtein_with1Peptide=$input.input_options.removeProtein_with1Peptide) 68 removeProtein_with1Peptide=$input.input_options.removeProtein_with1Peptide,
69 use_log_file = TRUE,
70 append = TRUE,
71 log_file_pat = "log.txt")
70 72
71 #elif $input.input_src == 'OpenMS' 73 #elif $input.input_src == 'OpenMS'
72 74
73 #if $input.openms_input.is_of_type('csv') 75 #if $input.openms_input.is_of_type('csv')
74 input <- read.csv("$input.openms_input", header=TRUE) 76 input <- read.csv("$input.openms_input", header=TRUE)
89 annotation=annot, 91 annotation=annot,
90 #end if 92 #end if
91 useUniquePeptide=$input.input_options.useUniquePeptide, 93 useUniquePeptide=$input.input_options.useUniquePeptide,
92 summaryforMultipleRows=$input.input_options.summaryforMultipleRows, 94 summaryforMultipleRows=$input.input_options.summaryforMultipleRows,
93 fewMeasurements="$input.input_options.fewMeasurements", 95 fewMeasurements="$input.input_options.fewMeasurements",
94 removeProtein_with1Feature=$input.input_options.removeProtein_with1Feature) 96 removeProtein_with1Feature=$input.input_options.removeProtein_with1Feature,
97 use_log_file = TRUE,
98 append = TRUE,
99 log_file_pat = "log.txt")
95 100
96 101
97 #elif $input.input_src == 'OpenSWATH' 102 #elif $input.input_src == 'OpenSWATH'
98 103
99 #if $input.openswath_input.is_of_type('csv') 104 #if $input.openswath_input.is_of_type('csv')
112 filter_with_mscore=$input.input_options.filter_with_mscore, 117 filter_with_mscore=$input.input_options.filter_with_mscore,
113 mscore_cutoff=$input.input_options.mscore_cutoff, 118 mscore_cutoff=$input.input_options.mscore_cutoff,
114 useUniquePeptide=$input.input_options.useUniquePeptide, 119 useUniquePeptide=$input.input_options.useUniquePeptide,
115 fewMeasurements="$input.input_options.fewMeasurements", 120 fewMeasurements="$input.input_options.fewMeasurements",
116 removeProtein_with1Feature=$input.input_options.removeProtein_with1Feature, 121 removeProtein_with1Feature=$input.input_options.removeProtein_with1Feature,
117 summaryforMultipleRows=$input.input_options.summaryforMultipleRows) 122 summaryforMultipleRows=$input.input_options.summaryforMultipleRows,
118 123 use_log_file = TRUE,
124 append = TRUE,
125 log_file_pat = "log.txt")
126
119 #elif $input.input_src == 'Skyline' 127 #elif $input.input_src == 'Skyline'
120 128
121 #if $input.skyline_input.is_of_type('csv') 129 #if $input.skyline_input.is_of_type('csv')
122 input <- read.csv("$input.skyline_input", header=TRUE) 130 input <- read.csv("$input.skyline_input", header=TRUE)
123 #else 131 #else
140 filter_with_Qvalue = $input.input_options.filter_with_Qvalue, 148 filter_with_Qvalue = $input.input_options.filter_with_Qvalue,
141 qvalue_cutoff = $input.input_options.qvalue_cutoff, 149 qvalue_cutoff = $input.input_options.qvalue_cutoff,
142 useUniquePeptide = $input.input_options.useUniquePeptide, 150 useUniquePeptide = $input.input_options.useUniquePeptide,
143 fewMeasurements="$input.input_options.fewMeasurements", 151 fewMeasurements="$input.input_options.fewMeasurements",
144 removeOxidationMpeptides = $input.input_options.removeOxidationMpeptides, 152 removeOxidationMpeptides = $input.input_options.removeOxidationMpeptides,
145 removeProtein_with1Feature = $input.input_options.removeProtein_with1Feature) 153 removeProtein_with1Feature = $input.input_options.removeProtein_with1Feature,
154 use_log_file = TRUE,
155 append = TRUE,
156 log_file_pat = "log.txt")
146 157
147 #end if 158 #end if
148 159
149 processed_data <- dataProcess(raw, 160 processed_data <- dataProcess(raw,
150 logTrans=$dp_options.logTrans, 161 logTrans=$dp_options.logTrans,
151 normalization="$dp_options.norm.normalization", 162 normalization="$dp_options.norm.normalization",
152 #if $dp_options.norm.normalization == 'globalStandards' 163 #if $dp_options.norm.normalization == 'globalStandards'
153 nameStandards=c($dp_options.norm.nameStandards), 164 nameStandards=c($dp_options.norm.nameStandards),
154 #end if 165 #end if
155 fillIncompleteRows=$dp_options.fillIncompleteRows,
156 featureSubset="$dp_options.features.featureSubset", 166 featureSubset="$dp_options.features.featureSubset",
157 #if $dp_options.features.featureSubset == 'topN' 167 #if $dp_options.features.featureSubset == 'topN'
158 n_top_feature=$dp_options.features.n_top_feature, 168 n_top_feature=$dp_options.features.n_top_feature,
159 #end if 169 #end if
160 #if $dp_options.features.featureSubset == 'highQuality' 170 #if $dp_options.features.featureSubset == 'highQuality'
171 #if $dp_options.censoredInt == 'NULL' 181 #if $dp_options.censoredInt == 'NULL'
172 censoredInt=NULL, 182 censoredInt=NULL,
173 #else 183 #else
174 censoredInt="$dp_options.censoredInt", 184 censoredInt="$dp_options.censoredInt",
175 #end if 185 #end if
176 cutoffCensored="$dp_options.cutoffCensored",
177 #if $dp_options.maxQuantileforCensored == '' 186 #if $dp_options.maxQuantileforCensored == ''
178 maxQuantileforCensored = NULL) 187 maxQuantileforCensored = NULL,
179 #else 188 #else
180 maxQuantileforCensored = $dp_options.maxQuantileforCensored) 189 maxQuantileforCensored = $dp_options.maxQuantileforCensored,
181 #end if 190 #end if
191 use_log_file = TRUE,
192 append = TRUE,
193 log_file_pat = "log.txt")
194
182 195
183 #if 'raw_data' in $dp_options.selected_outputs 196 #if 'raw_data' in $dp_options.selected_outputs
184 write.table(raw, "raw.tsv", sep = "\t", quote = F, row.names = F, dec = ".") 197 write.table(raw, "raw.tsv", sep = "\t", quote = F, row.names = F, dec = ".")
185 #end if 198 #end if
186 199
187 #if 'processed_data' in $dp_options.selected_outputs 200 #if 'featurelevel_data' in $dp_options.selected_outputs
188 write.table(processed_data\$ProcessedData, "ProcessedData.tsv", sep = "\t", quote = F, row.names = F, dec = ".") 201 write.table(processed_data\$FeatureLevelData, "featurelevelData.tsv", sep = "\t", quote = F, row.names = F, dec = ".")
189 #end if 202 #end if
190 203
191 #if 'runlevel_data' in $dp_options.selected_outputs 204 #if 'proteinlevel_data' in $dp_options.selected_outputs
192 write.table(processed_data\$RunlevelData, "RunlevelData.tsv", sep = "\t", quote = F, row.names = F, dec = ".") 205 write.table(processed_data\$ProteinLevelData, "proteinlevelData.tsv", sep = "\t", quote = F, row.names = F, dec = ".")
193 #end if 206 #end if
194 207
195 #for $plot_type in $dp_options.out_plots_opt.selected_vis_outputs 208 #for $plot_type in $dp_options.out_plots_opt.selected_vis_outputs
196 209
197 210
215 legend.size = $dp_options.out_plots_opt.proc_plots_advanced.legend_size, 228 legend.size = $dp_options.out_plots_opt.proc_plots_advanced.legend_size,
216 dot.size.profile = $dp_options.out_plots_opt.proc_plots_advanced.dot_size_profile, 229 dot.size.profile = $dp_options.out_plots_opt.proc_plots_advanced.dot_size_profile,
217 dot.size.condition = $dp_options.out_plots_opt.proc_plots_advanced.dot_size_condition, 230 dot.size.condition = $dp_options.out_plots_opt.proc_plots_advanced.dot_size_condition,
218 width = $dp_options.out_plots_opt.width, 231 width = $dp_options.out_plots_opt.width,
219 height = $dp_options.out_plots_opt.height, 232 height = $dp_options.out_plots_opt.height,
220 #if $dp_options.out_plots_opt.which_Protein.select != 'list' 233 #if $dp_options.out_plots_opt.which_Protein.select == 'list'
221 which.Protein = "$dp_options.out_plots_opt.which_Protein.select", 234 which.Protein = unlist(read.table("$dp_options.out_plots_opt.which_Protein.protein_list", sep = "\n", header = FALSE), use.names = FALSE),
235 #elif $dp_options.out_plots_opt.which_Protein.select == 'allonly'
236 #if $plot_type == "QCPlot"
237 which.Protein = "allonly",
238 #else
239 which.Protein = "all",
240 #end if
222 #else 241 #else
223 which.Protein = unlist(read.table("$dp_options.out_plots_opt.which_Protein.protein_list", sep = "\n", header = FALSE), use.names = FALSE), 242 which.Protein = "all",
224 #end if 243 #end if
225 remove_uninformative_feature_outlier = $dp_options.out_plots_opt.proc_plots_advanced.remove_uninformative_feature_outlier, 244 remove_uninformative_feature_outlier = $dp_options.out_plots_opt.proc_plots_advanced.remove_uninformative_feature_outlier,
226 address="MSStats_only_") 245 address="MSStats_only_")
227
228 #end if 246 #end if
229 #end for 247 #end for
230 248
231 ## Quantifiaction 249 ## Quantifiaction
232 #if 'quant_sample_matrix' in $dp_options.selected_outputs 250 #if 'quant_sample_matrix' in $dp_options.selected_outputs
233 sampleQuantMatrix <- quantification(processed_data, type="Sample") 251 sampleQuantMatrix <- quantification(processed_data, type="Sample", use_log_file = TRUE, append = TRUE, log_file_pat = "log.txt")
234 write.table(sampleQuantMatrix, "SampleQuantificationMatrix.tsv", sep = "\t", quote = F, row.names = F, dec = ".") 252 write.table(sampleQuantMatrix, "SampleQuantificationMatrix.tsv", sep = "\t", quote = F, row.names = F, dec = ".")
235 #end if 253 #end if
236 254
237 #if 'quant_sample_long' in $dp_options.selected_outputs 255 #if 'quant_sample_long' in $dp_options.selected_outputs
238 sampleQuantLong <- quantification(processed_data, type="Sample", format="long") 256 sampleQuantLong <- quantification(processed_data, type="Sample", format="long", use_log_file = TRUE, append = TRUE, log_file_pat = "log.txt")
239 write.table(sampleQuantLong, "SampleQuantificationLong.tsv", sep = "\t", quote = F, row.names = F, dec = ".") 257 write.table(sampleQuantLong, "SampleQuantificationLong.tsv", sep = "\t", quote = F, row.names = F, dec = ".")
240 #end if 258 #end if
241 259
242 #if 'quant_group_matrix' in $dp_options.selected_outputs 260 #if 'quant_group_matrix' in $dp_options.selected_outputs
243 groupQuantMatrix <- quantification(processed_data, type="Group") 261 groupQuantMatrix <- quantification(processed_data, type="Group", use_log_file = TRUE, append = TRUE, log_file_pat = "log.txt")
244 write.table(groupQuantMatrix, "GroupQuantificationMatrix.tsv", sep = "\t", quote = F, row.names = F, dec = ".") 262 write.table(groupQuantMatrix, "GroupQuantificationMatrix.tsv", sep = "\t", quote = F, row.names = F, dec = ".")
245 #end if 263 #end if
246 264
247 #if 'quant_group_long' in $dp_options.selected_outputs 265 #if 'quant_group_long' in $dp_options.selected_outputs
248 groupQuantLong <- quantification(processed_data, type="Group", format="long") 266 groupQuantLong <- quantification(processed_data, type="Group", format="long", use_log_file = TRUE, append = TRUE, log_file_pat = "log.txt")
249 write.table(groupQuantLong, "GroupQuantificationLong.tsv", sep = "\t", quote = F, row.names = F, dec = ".") 267 write.table(groupQuantLong, "GroupQuantificationLong.tsv", sep = "\t", quote = F, row.names = F, dec = ".")
250 #end if 268 #end if
251 269
252 ## Group Comparison 270 ## Group Comparison
253 #if $group.group_comparison == 'yes' 271 #if $group.group_comparison == 'yes'
259 #end if 277 #end if
260 278
261 ## first columns contains comparison names, use as row name 279 ## first columns contains comparison names, use as row name
262 comparison <- comp_matrix[,-1] 280 comparison <- comp_matrix[,-1]
263 row.names(comparison) <- as.character(comp_matrix[,1]) 281 row.names(comparison) <- as.character(comp_matrix[,1])
282
264 ## order of conditions has to be the same as they appear in the levels function 283 ## order of conditions has to be the same as they appear in the levels function
265 comparison <- as.matrix(comparison[levels(processed_data\$ProcessedData\$GROUP_ORIGINAL)]) 284 comparison <- as.matrix(comparison[levels(processed_data\$FeatureLevelData\$GROUP)])
266 285
267 ## perform group comparison 286 ## perform group comparison
268 comparisons <- groupComparison(contrast.matrix = comparison, data = processed_data) 287 comparisons <- groupComparison(contrast.matrix = comparison, data = processed_data, use_log_file = TRUE, append = TRUE, log_file_pat = "log.txt")
269 288
270 print(comparisons\$fittedmodel) 289 #if 'fittedmodel' in $group.select_outputs
271 #if 'fittedmodel' in $group.select_outputs 290 capture.output(print(comparisons\$FittedModel), file="ComparisonFittedModel.txt")
272 capture.output(print(comparisons\$fittedmodel), file="ComparisonFittedModel.txt") 291 #end if
273 #end if
274 292
275 293
276 #if 'comparison_result' in $group.select_outputs 294 #if 'comparison_result' in $group.select_outputs
277 write.table(comparisons\$ComparisonResult, "ComparisonResult.tsv", sep = "\t", quote = F, row.names = F, dec = ".") 295 write.table(comparisons\$ComparisonResult, "ComparisonResult.tsv", sep = "\t", quote = F, row.names = F, dec = ".")
278 #end if 296 #end if
290 308
291 modelBasedQCPlots(data = comparisons, 309 modelBasedQCPlots(data = comparisons,
292 type = "$plot_type", 310 type = "$plot_type",
293 axis.size = $group.comparison_plots_opt.comparison_vis_options.axis_size, 311 axis.size = $group.comparison_plots_opt.comparison_vis_options.axis_size,
294 dot.size = $group.comparison_plots_opt.comparison_vis_options.dot_size, 312 dot.size = $group.comparison_plots_opt.comparison_vis_options.dot_size,
295 text.size = $group.comparison_plots_opt.comparison_vis_options.text_size,
296 legend.size = $group.comparison_plots_opt.comparison_vis_options.legend_size,
297 width = $group.comparison_plots_opt.width, 313 width = $group.comparison_plots_opt.width,
298 height = $group.comparison_plots_opt.height, 314 height = $group.comparison_plots_opt.height,
299 #if $group.comparison_plots_opt.which_Protein.select != 'list' 315 #if $group.comparison_plots_opt.which_Protein.select != 'list'
300 which.Protein = "$group.comparison_plots_opt.which_Protein.select", 316 which.Protein = "$group.comparison_plots_opt.which_Protein.select",
301 #else 317 #else
422 <section name="dp_options" title="dataProcess Options" expanded="true"> 438 <section name="dp_options" title="dataProcess Options" expanded="true">
423 <param name="selected_outputs" type="select" display="checkboxes" multiple="true" label="Select outputs"> 439 <param name="selected_outputs" type="select" display="checkboxes" multiple="true" label="Select outputs">
424 <option value="log" selected="true">MSstats log</option> 440 <option value="log" selected="true">MSstats log</option>
425 <option value="r_script" selected="false">MSstats Rscript</option> 441 <option value="r_script" selected="false">MSstats Rscript</option>
426 <option value="raw_data" selected="true">MSstats RawData</option> 442 <option value="raw_data" selected="true">MSstats RawData</option>
427 <option value="processed_data" selected="true">MSstats ProcessedData</option> 443 <option value="featurelevel_data" selected="true">MSstats FeatureLevelData</option>
428 <option value="runlevel_data" selected="false">MSstats RunlevelData</option> 444 <option value="proteinlevel_data" selected="false">MSstats ProteinLevelData</option>
429 <option value="quant_sample_matrix" selected="false">Sample Quantification Matrix Table</option> 445 <option value="quant_sample_matrix" selected="false">Sample Quantification Matrix Table</option>
430 <option value="quant_sample_long" selected="false">Sample Quantification Long Table</option> 446 <option value="quant_sample_long" selected="false">Sample Quantification Long Table</option>
431 <option value="quant_group_matrix" selected="true">Group Quantification Matrix Table</option> 447 <option value="quant_group_matrix" selected="true">Group Quantification Matrix Table</option>
432 <option value="quant_group_long" selected="false">Group Quantification Long Table</option> 448 <option value="quant_group_long" selected="false">Group Quantification Long Table</option>
433 </param> 449 </param>
450 <validator type="regex" message="double-quoted names separated by commas"><![CDATA[^".+"(,".+")*$]]></validator> 466 <validator type="regex" message="double-quoted names separated by commas"><![CDATA[^".+"(,".+")*$]]></validator>
451 </param> 467 </param>
452 </when> 468 </when>
453 <when value="FALSE"/> 469 <when value="FALSE"/>
454 </conditional> 470 </conditional>
455 <param name="fillIncompleteRows" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="true" label="Fill Incomplete Rows" help="If the input dataset has incomplete rows, 'Yes' (default) adds the rows with intensity value=NA for missing peaks. 'No' reports error message with list of features which have incomplete rows"/>
456 <conditional name="features"> 471 <conditional name="features">
457 <param name="featureSubset" type="select" label="Feature Subset"> 472 <param name="featureSubset" type="select" label="Feature Subset">
458 <option value="all" selected="true">Use all features that the data set has</option> 473 <option value="all" selected="true">Use all features that the data set has</option>
459 <option value="top3">Use the top 3 features which have highest average of log2(intensity) across runs</option> 474 <option value="top3">Use the top 3 features which have highest average of log2(intensity) across runs</option>
460 <option value="topN">Use the top N features which have highest average of log2(intensity) across runs</option> 475 <option value="topN">Use the top N features which have highest average of log2(intensity) across runs</option>
484 </conditional> 499 </conditional>
485 <param name="censoredInt" type="select" label="Censored intensity"> 500 <param name="censoredInt" type="select" label="Censored intensity">
486 <help>The processing tools report missing values differently. This option is for distinguish which value should be considered as missing, and further whether it is censored or at random. Skyline and OpenSWATH input should use '0'. MaxQuant input should use 'NA'</help> 501 <help>The processing tools report missing values differently. This option is for distinguish which value should be considered as missing, and further whether it is censored or at random. Skyline and OpenSWATH input should use '0'. MaxQuant input should use 'NA'</help>
487 <option value="NA" selected="true">NA - Assume that all 'NA's in 'Intensity' column are censored</option> 502 <option value="NA" selected="true">NA - Assume that all 'NA's in 'Intensity' column are censored</option>
488 <option value="0">0 - Use zero intensities '0' as censored intensity</option> 503 <option value="0">0 - Use zero intensities '0' as censored intensity</option>
489 <option value="NULL">NULL - Assume all NA intensites are randomly missing</option> 504 <!--option value="NULL">NULL - Assume all NA intensites are randomly missing</option-->
490 </param>
491 <param name="cutoffCensored" type="select" label="Cutoff value for censoring">
492 <option value="minFeature" selected="true">minimum value for each feature</option>
493 <option value="minRun">minimum value for each run</option>
494 <option value="minFeatureNRun">smallest between minimum value of corresponding feature and minimum value of corresponding run</option>
495 </param> 505 </param>
496 <param name="maxQuantileforCensored" type="float" optional="true" value="0.999" min="0" max="1.0" label="Maximum quantile for deciding censored missing values." help="If you don't want to apply the threshold of noise intensity in your data, remove the value (empty field)"/> 506 <param name="maxQuantileforCensored" type="float" optional="true" value="0.999" min="0" max="1.0" label="Maximum quantile for deciding censored missing values." help="If you don't want to apply the threshold of noise intensity in your data, remove the value (empty field)"/>
497 507
498 508
499 <section name="out_plots_opt" title="DataProcess Plot Options" expanded="false"> 509 <section name="out_plots_opt" title="DataProcess Plot Options" expanded="false">
621 </section> 631 </section>
622 </when> 632 </when>
623 </conditional> 633 </conditional>
624 </inputs> 634 </inputs>
625 <outputs> 635 <outputs>
626 <data name="log" format="txt" label="${tool.name} on ${on_string}: MSstats log"> 636 <data name="log" format="txt" label="${tool.name} on ${on_string}: log" from_work_dir="log.txt">
627 <filter>'log' in in dp_options['selected_outputs']</filter> 637 <filter>'log' in dp_options['selected_outputs']</filter>
628 </data> 638 </data>
629 <data name="r_script" format="txt" label="${tool.name} on ${on_string}: Rscript"> 639 <data name="r_script" format="txt" label="${tool.name} on ${on_string}: Rscript">
630 <filter>'r_script' in dp_options['selected_outputs']</filter> 640 <filter>'r_script' in dp_options['selected_outputs']</filter>
631 </data> 641 </data>
632 <data name="raw_data" format="tabular" label="${tool.name} on ${on_string}: RawData" from_work_dir="raw.tsv"> 642 <data name="raw_data" format="tabular" label="${tool.name} on ${on_string}: RawData" from_work_dir="raw.tsv">
633 <filter>'raw_data' in dp_options['selected_outputs']</filter> 643 <filter>'raw_data' in dp_options['selected_outputs']</filter>
634 </data> 644 </data>
635 <data name="processed_data" format="tabular" label="${tool.name} on ${on_string}: ProcessedData" from_work_dir="ProcessedData.tsv"> 645 <data name="featurelevel_data" format="tabular" label="${tool.name} on ${on_string}: FeatureLevelData" from_work_dir="featurelevelData.tsv">
636 <filter>'processed_data' in dp_options['selected_outputs']</filter> 646 <filter>'featurelevel_data' in dp_options['selected_outputs']</filter>
637 <!--actions> 647 <!--actions>
638 <action name="column_names" type="metadata" default="PROTEIN,PEPTIDE,TRANSITION,FEATURE,LABEL,GROUP_ORIGINAL,SUBJECT_ORIGINAL,RUN,GROUP,SUBJECT,INTENSITY,SUBJECT_NESTED,ABUNDANCE,FRACTION,originalRUN,censored" /> 648 <action name="column_names" type="metadata" default="PROTEIN,PEPTIDE,TRANSITION,FEATURE,LABEL,GROUP_ORIGINAL,SUBJECT_ORIGINAL,RUN,GROUP,SUBJECT,INTENSITY,SUBJECT_NESTED,ABUNDANCE,FRACTION,originalRUN,censored" />
639 </actions--> 649 </actions-->
640 </data> 650 </data>
641 <data name="runlevel_data" format="tabular" label="${tool.name} on ${on_string}: RunlevelData" from_work_dir="RunlevelData.tsv"> 651 <data name="proteinlevel_data" format="tabular" label="${tool.name} on ${on_string}: ProteinLevelData" from_work_dir="proteinlevelData.tsv">
642 <filter>'runlevel_data' in dp_options['selected_outputs']</filter> 652 <filter>'proteinlevel_data' in dp_options['selected_outputs']</filter>
643 <!--actions> 653 <!--actions>
644 <action name="column_names" type="metadata" default="RUN,Protein,LogIntensities,NumMeasuredFeature,MissingPercentage,more50missing,NumImputedFeature,originalRUN,GROUP,GROUP_ORIGINAL,SUBJECT_ORIGINAL,SUBJECT_NESTED,SUBJECT" /> 654 <action name="column_names" type="metadata" default="RUN,Protein,LogIntensities,NumMeasuredFeature,MissingPercentage,more50missing,NumImputedFeature,originalRUN,GROUP,GROUP_ORIGINAL,SUBJECT_ORIGINAL,SUBJECT_NESTED,SUBJECT" />
645 </actions--> 655 </actions-->
646 </data> 656 </data>
647 <data name="QCPlot" format="pdf" label="${tool.name} on ${on_string}: QCPlot" from_work_dir="MSStats_only_QCPlot.pdf"> 657 <data name="QCPlot" format="pdf" label="${tool.name} on ${on_string}: QCPlot" from_work_dir="MSStats_only_QCPlot.pdf">
704 <data name="ComparisonPlot" format="pdf" label="${tool.name} on ${on_string}: Comparison Plot" from_work_dir="MSStats_group_ComparisonPlot.pdf"> 714 <data name="ComparisonPlot" format="pdf" label="${tool.name} on ${on_string}: Comparison Plot" from_work_dir="MSStats_group_ComparisonPlot.pdf">
705 <filter> group['group_comparison'] == 'yes' and group['comparison_plots_opt']['select_comparison_plots'] and 'ComparisonPlot' in group['comparison_plots_opt']['select_comparison_plots']</filter> 715 <filter> group['group_comparison'] == 'yes' and group['comparison_plots_opt']['select_comparison_plots'] and 'ComparisonPlot' in group['comparison_plots_opt']['select_comparison_plots']</filter>
706 </data> 716 </data>
707 </outputs> 717 </outputs>
708 <tests> 718 <tests>
709 <test> 719 <test expect_num_outputs="6">
710 <conditional name="input"> 720 <conditional name="input">
711 <param name="input_src" value="MSstats"/> 721 <param name="input_src" value="MSstats"/>
712 <param name="msstats_input" ftype="csv" value="msstats_testfile.txt"/> 722 <param name="msstats_input" ftype="csv" value="msstats_testfile.txt"/>
713 </conditional> 723 </conditional>
714 <param name="selected_outputs" value="raw_data,processed_data,quant_sample_matrix,quant_group_long"/> 724 <param name="selected_outputs" value="raw_data,featurelevel_data,quant_sample_matrix,quant_group_long"/>
715 <param name="selected_vis_outputs" value="ProfilePlot,profile_wsum_plot"/> 725 <param name="selected_vis_outputs" value="ProfilePlot,profile_wsum_plot"/>
716 <output name="processed_data"> 726 <output name="featurelevel_data">
717 <assert_contents> 727 <assert_contents>
718 <has_text text="D.GPLTGTYR" /> 728 <has_text text="-.PHSHPALTPEQK_347_NA_347_NA" />
719 <has_n_columns n="16" /> 729 <has_n_columns n="15" />
720 <has_n_lines n="2071" /> 730 <has_n_lines n="2071" />
721 </assert_contents> 731 </assert_contents>
722 </output> 732 </output>
723 <output name="quant_sample_matrix"> 733 <output name="quant_sample_matrix">
724 <assert_contents> 734 <assert_contents>
733 <has_n_columns n="3" /> 743 <has_n_columns n="3" />
734 <has_n_lines n="37" /> 744 <has_n_lines n="37" />
735 </assert_contents> 745 </assert_contents>
736 </output> 746 </output>
737 <output name="ProfilePlot" file="MSstats ProfilePlot.pdf" compare="sim_size"/> 747 <output name="ProfilePlot" file="MSstats ProfilePlot.pdf" compare="sim_size"/>
738 <output name="profile_wsum_plot" file="profile_wsum_plot.pdf" compare="sim_size"/> 748 <output name="profile_wsum_plot" file="profile_wsum_plot.pdf" compare="sim_size"/>
739 </test> 749 </test>
740 750
741 <test> 751 <test expect_num_outputs="6">
742 <conditional name="input"> 752 <conditional name="input">
743 <param name="input_src" value="MSstats"/> 753 <param name="input_src" value="MSstats"/>
744 <param name="msstats_input" ftype="tabular" value="msstats_testfile.tsv"/> 754 <param name="msstats_input" ftype="tabular" value="msstats_testfile.tsv"/>
745 </conditional> 755 </conditional>
746 <conditional name="group"> 756 <conditional name="group">
747 <param name="group_comparison" value="yes"/> 757 <param name="group_comparison" value="yes"/>
748 <param name="comparison_matrix" ftype="csv" value="comparison_matrix.csv"/> 758 <param name="comparison_matrix" ftype="csv" value="comparison_matrix.csv"/>
749 </conditional> 759 </conditional>
750 <param name="select_outputs" value="model_qc"/> 760 <param name="select_outputs" value="model_qc"/>
751 <param name="select_comparison_plots" value="ResidualPlots"/> 761 <param name="select_comparison_plots" value="ResidualPlots"/>
752 <output name="processed_data"> 762 <output name="featurelevel_data">
753 <assert_contents> 763 <assert_contents>
754 <has_text text="D.GPLTGTYR" /> 764 <has_text text="D.GPLTGTYR" />
755 <has_n_columns n="16" /> 765 <has_n_columns n="15" />
756 <has_n_lines n="2071" /> 766 <has_n_lines n="2071" />
757 </assert_contents> 767 </assert_contents>
758 </output> 768 </output>
759 <output name="model_qc"> 769 <output name="model_qc">
760 <assert_contents> 770 <assert_contents>
761 <has_text text="MissingPercentage" /> 771 <has_text text="MissingPercentage" />
762 <has_n_columns n="15" /> 772 <has_n_columns n="13" />
763 <has_n_lines n="108" /> 773 <has_n_lines n="108" />
764 </assert_contents> 774 </assert_contents>
765 </output> 775 </output>
766 <output name="ResidualPlots" file="residual_plot.pdf" compare="sim_size"/> 776 <output name="ResidualPlots" file="residual_plot.pdf" compare="sim_size"/>
767 </test> 777 </test>
768 778
769 <test> 779 <test expect_num_outputs="5">
770 <conditional name="input"> 780 <conditional name="input">
771 <param name="input_src" value="MaxQuant"/> 781 <param name="input_src" value="MaxQuant"/>
772 <param name="evidence" ftype="tabular" value="test_MQ_evidence.tabular"/> 782 <param name="evidence" ftype="tabular" value="test_MQ_evidence.tabular"/>
773 <param name="annotation" ftype="tabular" value="test_MQ_annotation.txt"/> 783 <param name="annotation" ftype="tabular" value="test_MQ_annotation.txt"/>
774 <param name="proteinGroups" ftype="tabular" value="test_MQ_proteingroups.tabular"/> 784 <param name="proteinGroups" ftype="tabular" value="test_MQ_proteingroups.tabular"/>
775 </conditional> 785 </conditional>
776 <param name="selected_outputs" value="processed_data,runlevel_data"/> 786 <param name="selected_outputs" value="featurelevel_data,proteinlevel_data"/>
777 <param name="selected_vis_outputs" value="ConditionPlot"/> 787 <param name="selected_vis_outputs" value="ConditionPlot"/>
778 <conditional name="group"> 788 <conditional name="group">
779 <param name="group_comparison" value="yes"/> 789 <param name="group_comparison" value="yes"/>
780 <param name="comparison_matrix" ftype="csv" value="test_MQ_group12_comparison_matrix.csv"/> 790 <param name="comparison_matrix" ftype="csv" value="test_MQ_group12_comparison_matrix.csv"/>
781 </conditional> 791 </conditional>
782 <param name="select_outputs" value="comparison_result"/> 792 <param name="select_outputs" value="comparison_result"/>
783 <param name="select_comparison_plots" value="QQPlots"/> 793 <param name="select_comparison_plots" value="QQPlots"/>
784 <output name="processed_data"> 794 <output name="featurelevel_data">
785 <assert_contents> 795 <assert_contents>
786 <has_text text="SPILVATAVAAR" /> 796 <has_text text="SPILVATAVAAR" />
787 <has_n_columns n="16" /> 797 <has_n_columns n="15" />
788 <has_n_lines n="61" /> 798 <has_n_lines n="61" />
789 </assert_contents> 799 </assert_contents>
790 </output> 800 </output>
791 <output name="runlevel_data"> 801 <output name="proteinlevel_data">
792 <assert_contents> 802 <assert_contents>
793 <has_text text="qx017084.raw.thermo" /> 803 <has_text text="qx017084rawthermo" />
794 <has_n_columns n="13" /> 804 <has_text text="sp|O75340|PDCD6_HUMANProgrammedcelldeathprotein6OS=HomosapiensOX=9606GN=PDCD6PE=1SV=1" />
805 <has_n_columns n="11" />
795 <has_n_lines n="13" /> 806 <has_n_lines n="13" />
796 </assert_contents> 807 </assert_contents>
797 </output> 808 </output>
798 <output name="comparison_result"> 809 <output name="comparison_result">
799 <assert_contents> 810 <assert_contents>
804 </output> 815 </output>
805 <output name="ConditionPlot" file="condition_plot.pdf" compare="sim_size"/> 816 <output name="ConditionPlot" file="condition_plot.pdf" compare="sim_size"/>
806 <output name="QQPlots" file="qq_plot.pdf" compare="sim_size"/> 817 <output name="QQPlots" file="qq_plot.pdf" compare="sim_size"/>
807 </test> 818 </test>
808 819
809 <test> 820 <test expect_num_outputs="5">
810 <conditional name="input"> 821 <conditional name="input">
811 <param name="input_src" value="OpenMS"/> 822 <param name="input_src" value="OpenMS"/>
812 <param name="openms_input" ftype="tabular" value="openms_input.tabular"/> 823 <param name="openms_input" ftype="tabular" value="openms_input.tabular"/>
813 </conditional> 824 </conditional>
814 <param name="selected_outputs" value="processed_data,runlevel_data"/> 825 <param name="selected_outputs" value="featurelevel_data,proteinlevel_data"/>
815 <param name="selected_vis_outputs" value="ConditionPlot"/> 826 <param name="selected_vis_outputs" value="ConditionPlot"/>
816 <conditional name="group"> 827 <conditional name="group">
817 <param name="group_comparison" value="yes"/> 828 <param name="group_comparison" value="yes"/>
818 <param name="comparison_matrix" ftype="tabular" value="openms_comparisonmatrix.tabular"/> 829 <param name="comparison_matrix" ftype="tabular" value="openms_comparisonmatrix.tabular"/>
819 </conditional> 830 </conditional>
820 <param name="select_comparison_plots" value="Heatmap"/> 831 <param name="select_comparison_plots" value="Heatmap"/>
821 <output name="processed_data"> 832 <output name="featurelevel_data">
822 <assert_contents> 833 <assert_contents>
823 <has_text text="AAAPGIQLVAGEGFQSPLEDR_2_NA_0" /> 834 <has_text text="AAAPGIQLVAGEGFQSPLEDR_2_NA_0" />
824 <has_text text="sp|P09938|RIR2_YEAST" /> 835 <has_text text="sp|P09938|RIR2_YEAST" />
825 <has_n_columns n="16" /> 836 <has_n_columns n="15" />
826 <has_n_lines n="121" /> 837 <has_n_lines n="121" />
827 </assert_contents> 838 </assert_contents>
828 </output> 839 </output>
829 <output name="runlevel_data"> 840 <output name="proteinlevel_data">
830 <assert_contents> 841 <assert_contents>
831 <has_text text="sp|P09457|ATPO_YEAST" /> 842 <has_text text="sp|P09457|ATPO_YEAST" />
832 <has_n_columns n="13" /> 843 <has_n_columns n="11" />
833 <has_n_lines n="76" /> 844 <has_n_lines n="76" />
834 </assert_contents> 845 </assert_contents>
835 </output> 846 </output>
836 <output name="ConditionPlot" file="condition_plot_openms.pdf" compare="sim_size"/> 847 <output name="ConditionPlot" file="condition_plot_openms.pdf" compare="sim_size"/>
837 <output name="Heatmap" file="Heatmap_openms.pdf" compare="sim_size"/> 848 <output name="Heatmap" file="Heatmap_openms.pdf" compare="sim_size"/>
838 </test> 849 </test>
839 <test> 850
851 <test expect_num_outputs="7">
840 <conditional name="input"> 852 <conditional name="input">
841 <param name="input_src" value="Skyline"/> 853 <param name="input_src" value="Skyline"/>
842 <param name="skyline_input" ftype="csv" value="skyline_input_first100.csv"/> 854 <param name="skyline_input" ftype="csv" value="skyline_input_first100.csv"/>
843 <param name="annotation" ftype="csv" value="skyline_annotations.csv"/> 855 <param name="annotation" ftype="csv" value="skyline_annotations.csv"/>
844 <param name="removeProtein_with1Peptide" value="TRUE"/> 856 <param name="removeProtein_with1Peptide" value="TRUE"/>
845 </conditional> 857 </conditional>
846 <conditional name="summarize"> 858 <conditional name="summarize">
847 <param name="MBimpute" value="FALSE"/> 859 <param name="MBimpute" value="FALSE"/>
848 <param name="censoredInt" value="NULL"/> 860 </conditional>
849 </conditional> 861 <param name="censoredInt" value="NA"/>
850 <param name="selected_outputs" value="log,processed_data,quant_sample_long"/> 862 <param name="selected_outputs" value="log,featurelevel_data,quant_sample_long"/>
851 <param name="selected_vis_outputs" value="ProfilePlot"/> 863 <param name="selected_vis_outputs" value="ProfilePlot"/>
852 <param name="featureName" value="Peptide"/>
853 <param name="width" value="10"/> 864 <param name="width" value="10"/>
854 <param name="height" value="7"/> 865 <param name="height" value="7"/>
866 <param name="featureName" value="Peptide"/>
855 <conditional name="group"> 867 <conditional name="group">
856 <param name="group_comparison" value="yes"/> 868 <param name="group_comparison" value="yes"/>
857 <param name="comparison_matrix" ftype="tabular" value="comparison_matrix_skyline.tabular"/> 869 <param name="comparison_matrix" ftype="tabular" value="comparison_matrix_skyline.tabular"/>
858 </conditional> 870 </conditional>
859 <section name="comparison_plots_opt"> 871 <section name="comparison_plots_opt">
875 <has_n_lines n="6" /> 887 <has_n_lines n="6" />
876 </assert_contents> 888 </assert_contents>
877 </output> 889 </output>
878 <output name="log"> 890 <output name="log">
879 <assert_contents> 891 <assert_contents>
880 <has_text text="ADVGFLC" /> 892 <has_text text="3-3" />
881 <has_text text="1 level of Isotope type labeling in this experiment" /> 893 <has_text text="summaryforMultipleRows: sum" />
882 <has_text text="The required input : provided - okay" /> 894 <has_text text="Shared peptides are removed" />
883 </assert_contents> 895 </assert_contents>
884 </output> 896 </output>
885 <output name="processed_data"> 897 <output name="featurelevel_data">
886 <assert_contents> 898 <assert_contents>
887 <has_text text="ADVGFLC[+57]NMLER_2_sum_NA" /> 899 <has_text text="ADVGFLC[+57]NMLER_2" />
888 <has_text text="319070944" /> 900 <has_text text="319070944" />
889 <has_n_columns n="15" /> 901 <has_n_columns n="14" />
890 <has_n_lines n="46" /> 902 <has_n_lines n="46" />
891 </assert_contents> 903 </assert_contents>
892 </output> 904 </output>
893 <output name="comparison_result"> 905 <output name="comparison_result">
894 <assert_contents> 906 <assert_contents>
895 <has_text text="c1-c4" /> 907 <has_text text="c1-c4" />
896 <has_text text="log2FC" /> 908 <has_text text="log2FC" />
909 <has_n_columns n="11" />
897 <has_n_lines n="4" /> 910 <has_n_lines n="4" />
898 </assert_contents> 911 </assert_contents>
899 </output> 912 </output>
900 <output name="ProfilePlot" file="Profile_plot_skyline.pdf" compare="sim_size"/> 913 <output name="ProfilePlot" file="Profile_plot_skyline.pdf" compare="sim_size"/>
901 <output name="VolcanoPlot" file="Volcano_plot_skyline.pdf" compare="sim_size"/> 914 <output name="VolcanoPlot" file="Volcano_plot_skyline.pdf" compare="sim_size"/>
902 <output name="ComparisonPlot" file="Comparison_plot_skyline.pdf" compare="sim_size"/> 915 <output name="ComparisonPlot" file="Comparison_plot_skyline.pdf" compare="sim_size"/>
903 </test> 916 </test>
904 917
905 <test> 918 <test expect_num_outputs="3">
919 <conditional name="input">
920 <param name="input_src" value="Skyline"/>
921 <param name="skyline_input" ftype="csv" value="skyline_input_first100.csv"/>
922 <param name="annotation" ftype="csv" value="skyline_annotations.csv"/>
923 <param name="removeProtein_with1Peptide" value="TRUE"/>
924 </conditional>
925 <conditional name="summarize">
926 <param name="MBimpute" value="TRUE"/>
927 <param name="featureSubset" value="highQuality"/>
928 <param name="remove_uninformative_feature_outlier" value="TRUE"/>
929 </conditional>
930 <param name="censoredInt" value="0"/>
931 <param name="selected_outputs" value="log,featurelevel_data,quant_sample_matrix"/>
932 <output name="quant_sample_matrix">
933 <assert_contents>
934 <has_text text="P32125" />
935 <has_text text="Condition5_5" />
936 <has_n_columns n="6" />
937 <has_n_lines n="2" />
938 </assert_contents>
939 </output>
940 <output name="log">
941 <assert_contents>
942 <has_text text="3-3" />
943 <has_text text="summaryforMultipleRows: sum" />
944 <has_text text="Shared peptides are removed" />
945 </assert_contents>
946 </output>
947 <output name="featurelevel_data">
948 <assert_contents>
949 <has_text text="AFAEAMANNSFNADEK_2" />
950 <has_text text="114949068" />
951 <has_n_columns n="15" />
952 <has_n_lines n="46" />
953 </assert_contents>
954 </output>
955 </test>
956
957 <test expect_num_outputs="5">
906 <conditional name="input"> 958 <conditional name="input">
907 <param name="input_src" value="OpenSWATH"/> 959 <param name="input_src" value="OpenSWATH"/>
908 <param name="openswath_input" ftype="tabular" value="test_swath_input_data.tabular"/> 960 <param name="openswath_input" ftype="tabular" value="test_swath_input_data.tabular"/>
909 <param name="annotation" ftype="tabular" value="test_swath_annotations.tabular"/> 961 <param name="annotation" ftype="tabular" value="test_swath_annotations.tabular"/>
910 </conditional> 962 </conditional>
911 <param name="selected_vis_outputs" value="QCPlot"/> 963 <param name="selected_vis_outputs" value="QCPlot"/>
912 <output name="processed_data"> 964 <output name="featurelevel_data">
913 <assert_contents> 965 <assert_contents>
914 <has_text text="GETLGLIGFGR" /> 966 <has_text text="GETLGLIGFGR" />
915 <has_n_columns n="16" /> 967 <has_n_columns n="15" />
916 <has_n_lines n="253" /> 968 <has_n_lines n="253" />
917 </assert_contents> 969 </assert_contents>
918 </output> 970 </output>
919 <output name="QCPlot" file="QC_plot.pdf" compare="sim_size"/> 971 <output name="QCPlot" file="QC_plot.pdf" compare="sim_size"/>
920 </test> 972 </test>
921 973
922 <test> 974 <test expect_num_outputs="6">
923 <conditional name="input"> 975 <conditional name="input">
924 <param name="input_src" value="OpenSWATH"/> 976 <param name="input_src" value="OpenSWATH"/>
925 <param name="openswath_input" ftype="tabular" value="test_swath_input_data.tabular"/> 977 <param name="openswath_input" ftype="tabular" value="test_swath_input_data.tabular"/>
926 <param name="annotation" ftype="tabular" value="test_swath_annotations.tabular"/> 978 <param name="annotation" ftype="tabular" value="test_swath_annotations.tabular"/>
927 </conditional> 979 </conditional>
928 <param name="selected_outputs" value="r_script,processed_data,quant_sample_long"/> 980 <param name="selected_outputs" value="r_script,featurelevel_data,quant_sample_long"/>
929 <conditional name="group"> 981 <conditional name="group">
930 <param name="group_comparison" value="yes"/> 982 <param name="group_comparison" value="yes"/>
931 <param name="comparison_matrix" ftype="csv" value="test_swath_group12_comparison_matrix.csv"/> 983 <param name="comparison_matrix" ftype="csv" value="test_swath_group12_comparison_matrix.csv"/>
932 </conditional> 984 </conditional>
933 <param name="select_outputs" value="comparison_result"/> 985 <param name="select_outputs" value="comparison_result"/>
934 <param name="select_comparison_plots" value="VolcanoPlot,ResidualPlots"/> 986 <param name="select_comparison_plots" value="VolcanoPlot,ResidualPlots"/>
935 <output name="processed_data"> 987 <output name="featurelevel_data">
936 <assert_contents> 988 <assert_contents>
937 <has_text text="GETLGLIGFGR" /> 989 <has_text text="GETLGLIGFGR" />
938 <has_n_columns n="16" /> 990 <has_n_columns n="15" />
939 <has_n_lines n="253" /> 991 <has_n_lines n="253" />
940 </assert_contents> 992 </assert_contents>
941 </output> 993 </output>
942 <output name="quant_sample_long"> 994 <output name="quant_sample_long">
943 <assert_contents> 995 <assert_contents>
1077 1129
1078 - Account for heterogeneous variation among intensities from different features: Yes: assumes equal variance among intensities from features. No: means that we cannot assume equal variance among intensities from features, then we will account for heterogeneous variation from different features 1130 - Account for heterogeneous variation among intensities from different features: Yes: assumes equal variance among intensities from features. No: means that we cannot assume equal variance among intensities from features, then we will account for heterogeneous variation from different features
1079 1131
1080 - Missing value imputation: 1132 - Missing value imputation:
1081 1133
1082 - Impute Missing Values: Only possible for Summarization Method TMP. Censored missing values will be determined (by censored intensity; cutoff value for censoring and Maximum quantile for deciding censored missing values") and imputed by Accelerated Failure Time model. 1134 - Impute Missing Values: Only possible for Summarization Method TMP. Censored missing values will be determined and imputed by Accelerated Failure Time model.
1083 1135
1084 - Remove runs which have more than 50% missing values: Yes or no. 1136 - Remove runs which have more than 50% missing values: Yes or no.
1085 - Censored Intensity: The processing tools report missing values differently. This option is for distinguishwhich value should be considered as missing, and further whether it is censored or at random 1137 - Censored Intensity: The processing tools report missing values differently. This option is for distinguishwhich value should be considered as missing, and further whether it is censored or at random
1086 1138
1087 - NA - It assumes that all NAs in Intensity column are censored. 1139 - NA - It assumes that all NAs in Intensity column are censored.
1088 - 0 - It assumes that all values between 0 and 1 in Intensity column are censored. If there areNAs inIntensitywith this option, NAs will be considered as random missing. 1140 - 0 - It assumes that all values between 0 and 1 in Intensity column are censored. If there areNAs inIntensitywith this option, NAs will be considered as random missing.
1089 - NULL - It assumes that all missing values are randomly missing.
1090 - Skyline and OpenSWATH input should use '0'. MaxQuant input should use 'NA' 1141 - Skyline and OpenSWATH input should use '0'. MaxQuant input should use 'NA'
1091 - Cutoff value for censoring: cutoff for AFT model; only with censored intensity 'NA' or '0'; if NULL it assumes that there is no censored missing and any imputation will not be performed. In case that there are completely missing measurements in a run for a protein, any imputation will not be performed. In addition, the condition, which has no measurement at all in a protein, will be not impute.
1092
1093 - minimum value for each feature: cutoff for AFT model will be the minimum value for each feature across runs. With this option, those runs with substantial missing measurements will be biased by the cutoff value. In such case, you may remove the runs that have more than 50% missing values from the analysis.
1094 - minimum value for each run: cutoff for AFT model will be the minimum value for each run across features
1095 - smallest between minimum value of corresponding feature and minimum value of corresponding run: cutoff for AFT model will be the smallest value between minimum valueof corresponding feature and minimum value of corresponding run
1096 - Maximum quantile for deciding censored missing values: If you don’t want to apply the threshold of noise intensity in your data, you can use maxQuantileforCensored=NULL.
1097 - Missing value imputation combination with summarization method TMP:
1098
1099 - Summarization method: TMP + censored intensity: 'NULL': It assumes that all intensities are missing at random, therefore no action with missing value imputation: No; or error with missing value imputation: Yes.
1100 - Missing value imputation: Yes + censored intensity:'NA' or '0': AFT model-based imputation using cutoff value for censoring in the AFT model
1101 - Missing value imputation: No + censored intensity:'NA' or '0': censored intensities will be replaced with the value specified in cutoff value for censoring
1102 - Missing value imputation: No + censored intensity: NULL: no imputation
1103 1142
1104 - Group comparison: automatic detection of differentially abundant proteins between two conditions, conditions have to be specified with the 'comparison matrix' 1143 - Group comparison: automatic detection of differentially abundant proteins between two conditions, conditions have to be specified with the 'comparison matrix'
1105 - Quantification per sample or group: choose the corresponding output option 1144 - Quantification per sample or group: choose the corresponding output option
1106 1145
1107 - Sample: relative protein abundance in each biological replicate. If there are technical replicates for biological replicates,sample quantification will be the median among technical replicates. If there is no technical replicate for biological replicate (sample), sample quantification will be the same as run-level summarization. 1146 - Sample: relative protein abundance in each biological replicate. If there are technical replicates for biological replicates,sample quantification will be the median among technical replicates. If there is no technical replicate for biological replicate (sample), sample quantification will be the same as run-level summarization.
1113 - Different outputs available. Especially for studies with many proteins, it is suggested to select only the necessary pdf outputs as many of them generate one plot per protein. 1152 - Different outputs available. Especially for studies with many proteins, it is suggested to select only the necessary pdf outputs as many of them generate one plot per protein.
1114 1153
1115 - MSstats log - check log file for warnings and information on the analysis steps (txt) 1154 - MSstats log - check log file for warnings and information on the analysis steps (txt)
1116 - MSstats Rscript - can be used to re-run analysis outside Galaxy or to inspect the executed code (txt) 1155 - MSstats Rscript - can be used to re-run analysis outside Galaxy or to inspect the executed code (txt)
1117 - MSstats RawData - raw files combined into MSstats format (tabular) 1156 - MSstats RawData - raw files combined into MSstats format (tabular)
1118 - MSstats ProcessedData - transformed, normalized, imputed intensities (tabular) 1157 - MSstats FeatureLevelData - transformed, normalized, imputed intensities (tabular)
1119 1158
1120 - Intensity column: includes original intensities values 1159 - Intensity column: includes original intensities values
1121 - Abundance column: contains the log2 transformed and normalized intensities and it will used for run-level summarization 1160 - Abundance column: contains the log2 transformed and normalized intensities and it will used for run-level summarization
1122 - Censored column: has the decision about censored missing or not, based on censored Intensity and maximum quantile for deciding censored missing values options. Abundances with TRUE value in censored column will be considered as censored missing and imputed when Missing value imputation: Yes. 1161 - Censored column: has the decision about censored missing or not, based on censored Intensity and maximum quantile for deciding censored missing values options. Abundances with TRUE value in censored column will be considered as censored missing and imputed when Missing value imputation: Yes.
1123 1162
1124 - MSstats RunlevelData - run and protein level summarized data (tabular) 1163 - MSstats ProteinLevelData - run and protein level summarized data (tabular)
1125 1164
1126 - LogIntensities: log intensity summarized per run and protein, they will be used for the group comparison and summarized profile plot 1165 - LogIntensities: log intensity summarized per run and protein, they will be used for the group comparison and summarized profile plot
1127 - NumMeasuredFeature: shows how many features were used for summarization of the corresponding run and protein 1166 - NumMeasuredFeature: shows how many features were used for summarization of the corresponding run and protein
1128 - MissingPercentage: percentage of random and censoredmissing in the corresponding run and protein out of the total number of feature in the corresponding protein. 1167 - MissingPercentage: percentage of random and censoredmissing in the corresponding run and protein out of the total number of feature in the corresponding protein.
1129 - more50missing: whether MissingPercentage is greater than 50% or not 1168 - more50missing: whether MissingPercentage is greater than 50% or not