Mercurial > repos > galaxyp > openms_percolatoradapter
view PercolatorAdapter.xml @ 7:0fc9ae55bcfc draft
"planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/openms commit 2adf8edc3de4e1cd3b299b26abb14544d17d0636"
author | galaxyp |
---|---|
date | Fri, 06 Nov 2020 20:36:48 +0000 |
parents | 147aaac03456 |
children | 016964c597f5 |
line wrap: on
line source
<?xml version='1.0' encoding='UTF-8'?> <!--This is a configuration file for the integration of a tools into Galaxy (https://galaxyproject.org/). This file was automatically generated using CTDConverter.--> <!--Proposed Tool Section: [ID Processing]--> <tool id="PercolatorAdapter" name="PercolatorAdapter" version="@TOOL_VERSION@+galaxy@GALAXY_VERSION@" profile="20.05"> <description>Facilitate input to Percolator and reintegrate.</description> <macros> <token name="@EXECUTABLE@">PercolatorAdapter</token> <import>macros.xml</import> <import>macros_autotest.xml</import> <import>macros_test.xml</import> </macros> <expand macro="requirements"/> <expand macro="stdio"/> <command detect_errors="exit_code"><![CDATA[@QUOTE_FOO@ @EXT_FOO@ #import re ## Preprocessing #if $in: mkdir in && ${ ' '.join(["ln -s '%s' 'in/%s.%s' &&" % (_, re.sub('[^\w\-_]', '_', _.element_identifier), $gxy2omsext(_.ext)) for _ in $in if _]) } #end if #if $in_decoy: mkdir in_decoy && ${ ' '.join(["ln -s '%s' 'in_decoy/%s.%s' &&" % (_, re.sub('[^\w\-_]', '_', _.element_identifier), $gxy2omsext(_.ext)) for _ in $in_decoy if _]) } #end if #if $in_osw: mkdir in_osw && ln -s '$in_osw' 'in_osw/${re.sub("[^\w\-_]", "_", $in_osw.element_identifier)}.$gxy2omsext($in_osw.ext)' && #end if mkdir out && #if "out_pin_FLAG" in str($OPTIONAL_OUTPUTS).split(',') mkdir out_pin && #end if #if "out_pout_target_FLAG" in str($OPTIONAL_OUTPUTS).split(',') mkdir out_pout_target && #end if #if "out_pout_decoy_FLAG" in str($OPTIONAL_OUTPUTS).split(',') mkdir out_pout_decoy && #end if #if "out_pout_target_proteins_FLAG" in str($OPTIONAL_OUTPUTS).split(',') mkdir out_pout_target_proteins && #end if #if "out_pout_decoy_proteins_FLAG" in str($OPTIONAL_OUTPUTS).split(',') mkdir out_pout_decoy_proteins && #end if #if "weights_FLAG" in str($OPTIONAL_OUTPUTS).split(',') mkdir weights && #end if #if $adv_opts_cond.adv_opts_selector=='advanced': #if $adv_opts_cond.init_weights: mkdir adv_opts_cond.init_weights && ln -s '$adv_opts_cond.init_weights' 'adv_opts_cond.init_weights/${re.sub("[^\w\-_]", "_", $adv_opts_cond.init_weights.element_identifier)}.$gxy2omsext($adv_opts_cond.init_weights.ext)' && #end if #if $adv_opts_cond.fasta: mkdir adv_opts_cond.fasta && ln -s '$adv_opts_cond.fasta' 'adv_opts_cond.fasta/${re.sub("[^\w\-_]", "_", $adv_opts_cond.fasta.element_identifier)}.$gxy2omsext($adv_opts_cond.fasta.ext)' && #end if #end if ## Main program call set -o pipefail && @EXECUTABLE@ -write_ctd ./ && python3 '$__tool_directory__/fill_ctd.py' '@EXECUTABLE@.ctd' '$args_json' '$hardcoded_json' && @EXECUTABLE@ -ini @EXECUTABLE@.ctd #if $in: -in ${' '.join(["'in/%s.%s'"%(re.sub('[^\w\-_]', '_', _.element_identifier), $gxy2omsext(_.ext)) for _ in $in if _])} #end if #if $in_decoy: -in_decoy ${' '.join(["'in_decoy/%s.%s'"%(re.sub('[^\w\-_]', '_', _.element_identifier), $gxy2omsext(_.ext)) for _ in $in_decoy if _])} #end if #if $in_osw: -in_osw 'in_osw/${re.sub("[^\w\-_]", "_", $in_osw.element_identifier)}.$gxy2omsext($in_osw.ext)' #end if -out 'out/output.${out_type}' #if "out_pin_FLAG" in str($OPTIONAL_OUTPUTS).split(',') -out_pin 'out_pin/output.${gxy2omsext("tabular")}' #end if #if "out_pout_target_FLAG" in str($OPTIONAL_OUTPUTS).split(',') -out_pout_target 'out_pout_target/output.${gxy2omsext("tabular")}' #end if #if "out_pout_decoy_FLAG" in str($OPTIONAL_OUTPUTS).split(',') -out_pout_decoy 'out_pout_decoy/output.${gxy2omsext("tabular")}' #end if #if "out_pout_target_proteins_FLAG" in str($OPTIONAL_OUTPUTS).split(',') -out_pout_target_proteins 'out_pout_target_proteins/output.${gxy2omsext("tabular")}' #end if #if "out_pout_decoy_proteins_FLAG" in str($OPTIONAL_OUTPUTS).split(',') -out_pout_decoy_proteins 'out_pout_decoy_proteins/output.${gxy2omsext("tabular")}' #end if #if "weights_FLAG" in str($OPTIONAL_OUTPUTS).split(',') -weights 'weights/output.${gxy2omsext("tabular")}' #end if #if $adv_opts_cond.adv_opts_selector=='advanced': #if $adv_opts_cond.init_weights: -init_weights 'adv_opts_cond.init_weights/${re.sub("[^\w\-_]", "_", $adv_opts_cond.init_weights.element_identifier)}.$gxy2omsext($adv_opts_cond.init_weights.ext)' #end if #if $adv_opts_cond.fasta: -fasta 'adv_opts_cond.fasta/${re.sub("[^\w\-_]", "_", $adv_opts_cond.fasta.element_identifier)}.$gxy2omsext($adv_opts_cond.fasta.ext)' #end if #end if #if len(str($OPTIONAL_OUTPUTS).split(',')) == 0 | tee '$stdout' #end if ## Postprocessing && mv 'out/output.${out_type}' '$out' #if "out_pin_FLAG" in str($OPTIONAL_OUTPUTS).split(',') && mv 'out_pin/output.${gxy2omsext("tabular")}' '$out_pin' #end if #if "out_pout_target_FLAG" in str($OPTIONAL_OUTPUTS).split(',') && mv 'out_pout_target/output.${gxy2omsext("tabular")}' '$out_pout_target' #end if #if "out_pout_decoy_FLAG" in str($OPTIONAL_OUTPUTS).split(',') && mv 'out_pout_decoy/output.${gxy2omsext("tabular")}' '$out_pout_decoy' #end if #if "out_pout_target_proteins_FLAG" in str($OPTIONAL_OUTPUTS).split(',') && mv 'out_pout_target_proteins/output.${gxy2omsext("tabular")}' '$out_pout_target_proteins' #end if #if "out_pout_decoy_proteins_FLAG" in str($OPTIONAL_OUTPUTS).split(',') && mv 'out_pout_decoy_proteins/output.${gxy2omsext("tabular")}' '$out_pout_decoy_proteins' #end if #if "weights_FLAG" in str($OPTIONAL_OUTPUTS).split(',') && mv 'weights/output.${gxy2omsext("tabular")}' '$weights' #end if #if "ctd_out_FLAG" in $OPTIONAL_OUTPUTS && mv '@EXECUTABLE@.ctd' '$ctd_out' #end if]]></command> <configfiles> <inputs name="args_json" data_style="paths"/> <configfile name="hardcoded_json"><![CDATA[{"percolator_executable": "percolator", "log": "log.txt", "threads": "\${GALAXY_SLOTS:-1}", "no_progress": true}]]></configfile> </configfiles> <inputs> <param name="in" argument="-in" type="data" format="idxml,mzid" multiple="true" optional="true" label="Input file(s)" help=" select idxml,mzid data sets(s)"/> <param name="in_decoy" argument="-in_decoy" type="data" format="idxml,mzid" multiple="true" optional="true" label="Input decoy file(s) in case of separate searches" help=" select idxml,mzid data sets(s)"/> <param name="in_osw" argument="-in_osw" type="data" format="osw" optional="true" label="Input file in OSW format" help=" select osw data sets(s)"/> <param name="out_type" argument="-out_type" display="radio" type="select" optional="false" label="Output file type -- default: determined from file extension or content" help=""> <option value="idXML">idxml</option> <option value="mzid">mzid</option> <option value="osw">osw</option> <expand macro="list_string_san"/> </param> <param name="enzyme" argument="-enzyme" type="select" optional="false" label="Type of enzyme: no_enzyme,elastase,pepsin,proteinasek,thermolysin,chymotrypsin,lys-n,lys-c,arg-c,asp-n,glu-c,trypsin,trypsinp" help=""> <option value="no_enzyme">no_enzyme</option> <option value="elastase">elastase</option> <option value="pepsin">pepsin</option> <option value="proteinasek">proteinasek</option> <option value="thermolysin">thermolysin</option> <option value="chymotrypsin">chymotrypsin</option> <option value="lys-n">lys-n</option> <option value="lys-c">lys-c</option> <option value="arg-c">arg-c</option> <option value="asp-n">asp-n</option> <option value="glu-c">glu-c</option> <option value="trypsin" selected="true">trypsin</option> <option value="trypsinp">trypsinp</option> <expand macro="list_string_san"/> </param> <param name="peptide_level_fdrs" argument="-peptide_level_fdrs" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Calculate peptide-level FDRs instead of PSM-level FDRs" help=""/> <param name="protein_level_fdrs" argument="-protein_level_fdrs" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Use the picked protein-level FDR to infer protein probabilities" help="Use the -fasta option and -decoy_pattern to set the Fasta file and decoy pattern"/> <param name="osw_level" argument="-osw_level" type="text" optional="true" value="ms2" label="OSW: Either "ms1", "ms2" or "transition"; the data level selected for scoring" help=""> <expand macro="list_string_san"/> </param> <param name="score_type" argument="-score_type" display="radio" type="select" optional="false" label="Type of the peptide main score" help=""> <option value="q-value" selected="true">q-value</option> <option value="pep">pep</option> <option value="svm">svm</option> <expand macro="list_string_san"/> </param> <expand macro="adv_opts_macro"> <param name="generic_feature_set" argument="-generic_feature_set" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Use only generic" help="(i.e. not search engine specific) features. Generating search engine specific features for common search engines by PSMFeatureExtractor will typically boost the identification rate significantly"/> <param name="subset_max_train" argument="-subset_max_train" type="integer" optional="true" value="0" label="Only train an SVM on a subset of <x> PSMs, and use the resulting score vector to evaluate the other PSMs" help="Recommended when analyzing huge numbers (>1 million) of PSMs. When set to 0, all PSMs are used for training as normal"/> <param name="cpos" argument="-cpos" type="float" optional="true" value="0.0" label="Cpos, penalty for mistakes made on positive examples" help="Set by cross validation if not specified"/> <param name="cneg" argument="-cneg" type="float" optional="true" value="0.0" label="Cneg, penalty for mistakes made on negative examples" help="Set by cross validation if not specified"/> <param name="testFDR" argument="-testFDR" type="float" optional="true" value="0.01" label="False discovery rate threshold for evaluating best cross validation result and the reported end result" help=""/> <param name="trainFDR" argument="-trainFDR" type="float" optional="true" value="0.01" label="False discovery rate threshold to define positive examples in training" help="Set to testFDR if 0"/> <param name="maxiter" argument="-maxiter" type="integer" optional="true" value="10" label="Maximal number of iterations" help=""/> <param name="nested_xval_bins" argument="-nested_xval_bins" type="integer" optional="true" value="1" label="Number of nested cross-validation bins in the 3 splits" help=""/> <param name="quick_validation" argument="-quick_validation" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Quicker execution by reduced internal cross-validation" help=""/> <param name="init_weights" argument="-init_weights" type="data" format="tabular" optional="true" label="Read initial weights to the given file" help=" select tabular data sets(s)"/> <param name="static" argument="-static" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Use static model (requires init-weights parameter to be set)" help=""/> <param name="default_direction" argument="-default_direction" type="text" optional="true" value="" label="The most informative feature given as the feature name, can be negated to indicate that a lower value is bette" help=""> <expand macro="list_string_san"/> </param> <param name="verbose" argument="-verbose" type="integer" optional="true" value="2" label="Set verbosity of output: 0=no processing info, 5=all" help=""/> <param name="unitnorm" argument="-unitnorm" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Use unit normalization [0-1] instead of standard deviation normalization" help=""/> <param name="test_each_iteration" argument="-test_each_iteration" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Measure performance on test set each iteration" help=""/> <param name="override" argument="-override" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Override error check and do not fall back on default score vector in case of suspect score vecto" help=""/> <param name="seed" argument="-seed" type="integer" optional="true" value="1" label="Setting seed of the random number generato" help=""/> <param name="doc" argument="-doc" type="integer" optional="true" value="0" label="Include description of correct features" help=""/> <param name="klammer" argument="-klammer" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Retention time features calculated as in Klammer et al" help="Only available if -doc is set"/> <param name="fasta" argument="-fasta" type="data" format="fasta" optional="true" label="Provide the fasta file as the argument to this flag, which will be used for protein grouping based on an in-silico digest (only valid if option -protein_level_fdrs is active)" help=" select fasta data sets(s)"/> <param name="decoy_pattern" argument="-decoy_pattern" type="text" optional="true" value="random" label="Define the text pattern to identify the decoy proteins and/or PSMs, set this up if the label that identifies the decoys in the database is not the default (Only valid if option -protein_level_fdrs is active)" help=""> <expand macro="list_string_san"/> </param> <param name="post_processing_tdc" argument="-post_processing_tdc" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Use target-decoy competition to assign q-values and PEPs" help=""/> <param name="train_best_positive" argument="-train_best_positive" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Enforce that, for each spectrum, at most one PSM is included in the positive set during each training iteration" help="If the user only provides one PSM per spectrum, this filter will have no effect"/> <param name="ipf_max_peakgroup_pep" argument="-ipf_max_peakgroup_pep" type="float" optional="true" value="0.7" label="OSW/IPF: Assess transitions only for candidate peak groups until maximum posterior error probability" help=""/> <param name="ipf_max_transition_isotope_overlap" argument="-ipf_max_transition_isotope_overlap" type="float" optional="true" value="0.5" label="OSW/IPF: Maximum isotope overlap to consider transitions in IPF" help=""/> <param name="ipf_min_transition_sn" argument="-ipf_min_transition_sn" type="float" optional="true" value="0.0" label="OSW/IPF: Minimum log signal-to-noise level to consider transitions in IPF" help="Set -1 to disable this filter"/> <param name="force" argument="-force" type="boolean" truevalue="true" falsevalue="false" checked="false" label="Overrides tool-specific checks" help=""/> <param name="test" argument="-test" type="hidden" optional="true" value="False" label="Enables the test mode (needed for internal use only)" help=""> <expand macro="list_string_san"/> </param> </expand> <param name="OPTIONAL_OUTPUTS" type="select" optional="true" multiple="true" label="Optional outputs"> <option value="out_pin_FLAG">out_pin (Write pin file (e.g., for debugging))</option> <option value="out_pout_target_FLAG">out_pout_target (Write pout file (e.g., for debugging))</option> <option value="out_pout_decoy_FLAG">out_pout_decoy (Write pout file (e.g., for debugging))</option> <option value="out_pout_target_proteins_FLAG">out_pout_target_proteins (Write pout file (e.g., for debugging))</option> <option value="out_pout_decoy_proteins_FLAG">out_pout_decoy_proteins (Write pout file (e.g., for debugging))</option> <option value="weights_FLAG">weights (Output final weights to the given file)</option> <option value="ctd_out_FLAG">Output used ctd (ini) configuration file</option> </param> </inputs> <outputs> <data name="out" label="${tool.name} on ${on_string}: out"> <change_format> <when input="out_type" value="idXML" format="idxml"/> <when input="out_type" value="mzid" format="mzid"/> <when input="out_type" value="osw" format="osw"/> </change_format> </data> <data name="out_pin" label="${tool.name} on ${on_string}: out_pin" format="tabular"> <filter>OPTIONAL_OUTPUTS is not None and "out_pin_FLAG" in OPTIONAL_OUTPUTS</filter> </data> <data name="out_pout_target" label="${tool.name} on ${on_string}: out_pout_target" format="tabular"> <filter>OPTIONAL_OUTPUTS is not None and "out_pout_target_FLAG" in OPTIONAL_OUTPUTS</filter> </data> <data name="out_pout_decoy" label="${tool.name} on ${on_string}: out_pout_decoy" format="tabular"> <filter>OPTIONAL_OUTPUTS is not None and "out_pout_decoy_FLAG" in OPTIONAL_OUTPUTS</filter> </data> <data name="out_pout_target_proteins" label="${tool.name} on ${on_string}: out_pout_target_proteins" format="tabular"> <filter>OPTIONAL_OUTPUTS is not None and "out_pout_target_proteins_FLAG" in OPTIONAL_OUTPUTS</filter> </data> <data name="out_pout_decoy_proteins" label="${tool.name} on ${on_string}: out_pout_decoy_proteins" format="tabular"> <filter>OPTIONAL_OUTPUTS is not None and "out_pout_decoy_proteins_FLAG" in OPTIONAL_OUTPUTS</filter> </data> <data name="weights" label="${tool.name} on ${on_string}: weights" format="tabular"> <filter>OPTIONAL_OUTPUTS is not None and "weights_FLAG" in OPTIONAL_OUTPUTS</filter> </data> <data name="ctd_out" format="xml" label="${tool.name} on ${on_string}: ctd"> <filter>OPTIONAL_OUTPUTS is not None and "ctd_out_FLAG" in OPTIONAL_OUTPUTS</filter> </data> </outputs> <tests> <expand macro="autotest_PercolatorAdapter"/> <expand macro="manutest_PercolatorAdapter"/> </tests> <help><![CDATA[Facilitate input to Percolator and reintegrate. For more information, visit http://www.openms.de/doxygen/release/2.6.0/html/TOPP_PercolatorAdapter.html]]></help> <expand macro="references"/> </tool>