# HG changeset patch
# User galaxyp
# Date 1547071164 18000
# Node ID ed0bb50d7ffe1c4b0b3e9e532fabe20e42c97fd2
# Parent bcc7a4c4cc299c4981c3cd353efb64e1531d3ad2
planemo upload commit bd6bc95760db6832c77d4d2872281772c31f9039
diff -r bcc7a4c4cc29 -r ed0bb50d7ffe quantp.r
--- a/quantp.r Thu Dec 20 16:06:05 2018 -0500
+++ b/quantp.r Wed Jan 09 16:59:24 2019 -0500
@@ -60,9 +60,9 @@
dev.off();
suppressWarnings(g <- autoplot(regmodel, label = FALSE)[[1]] +
- geom_point(aes(text=sprintf("Residual: %.2f
Fitted value: %.2f
Gene: %s", .fitted, .resid, PE_TE_data$PE_ID)),
- shape = 1, size = .1, stroke = .2) +
- theme_light())
+ geom_point(aes(text=sprintf("Residual: %.2f
Fitted value: %.2f
Gene: %s", .fitted, .resid, PE_TE_data$PE_ID)),
+ shape = 1, size = .1, stroke = .2) +
+ theme_light())
saveWidget(ggplotly(g, tooltip= c("text")), file.path(gsub("\\.png", "\\.html", outplot)))
outplot = paste(outdir,"/PE_TE_lm_2.png",sep="",collapse="");
@@ -74,9 +74,9 @@
dev.off();
suppressWarnings(g <- autoplot(regmodel, label = FALSE)[[2]] +
- geom_point(aes(text=sprintf("Standarized residual: %.2f
Theoretical quantile: %.2f
Gene: %s", .qqx, .qqy, PE_TE_data$PE_ID)),
- shape = 1, size = .1) +
- theme_light())
+ geom_point(aes(text=sprintf("Standarized residual: %.2f
Theoretical quantile: %.2f
Gene: %s", .qqx, .qqy, PE_TE_data$PE_ID)),
+ shape = 1, size = .1) +
+ theme_light())
saveWidget(ggplotly(g, tooltip = "text"), file.path(gsub("\\.png", "\\.html", outplot)))
@@ -91,9 +91,9 @@
cd_cont_neg <- function(leverage, level, model) {-cd_cont_pos(leverage, level, model)}
suppressWarnings(g <- autoplot(regmodel, label = FALSE)[[4]] +
- aes(label = PE_TE_data$PE_ID) +
- geom_point(aes(text=sprintf("Leverage: %.2f
Standardized residual: %.2f
Gene: %s", .hat, .stdresid, PE_TE_data$PE_ID))) +
- theme_light())
+ aes(label = PE_TE_data$PE_ID) +
+ geom_point(aes(text=sprintf("Leverage: %.2f
Standardized residual: %.2f
Gene: %s", .hat, .stdresid, PE_TE_data$PE_ID))) +
+ theme_light())
saveWidget(ggplotly(g, tooltip = "text"), file.path(gsub("\\.png", "\\.html", outplot)))
cat('
', file = htmloutfile, append = TRUE);
@@ -215,7 +215,7 @@
cooksd_df[cooksd_df$cooksd > cutoff,]$colors <- "red"
g <- ggplot(cooksd_df, aes(x = index, y = cooksd, label = row.names(cooksd_df), color=as.factor(colors),
- text=sprintf("Gene: %s
Cook's Distance: %.3f", row.names(cooksd_df), cooksd))) +
+ text=sprintf("Gene: %s
Cook's Distance: %.3f", row.names(cooksd_df), cooksd))) +
ggtitle("Influential Obs. by Cook's distance") + xlab("Observations") + ylab("Cook's Distance") +
#xlim(0, 3000) + ylim(0, .15) +
scale_shape_discrete(solid=F) +
@@ -275,10 +275,10 @@
png(outplot, width = 10, height = 10, units = 'in', res=300);
# bitmap(outplot,"png16m");
suppressWarnings(g <- ggplot(PE_TE_data_no_outlier, aes(x=TE_abundance, y=PE_abundance, label=PE_ID)) + geom_smooth() +
- xlab("Transcript abundance log fold-change") + ylab("Protein abundance log fold-change") +
- xlim(min_lim,max_lim) + ylim(min_lim,max_lim) +
- geom_point(aes(text=sprintf("Gene: %s
Transcript Abundance (log fold-change): %.3f
Protein Abundance (log fold-change): %.3f",
- PE_ID, TE_abundance, PE_abundance))))
+ xlab("Transcript abundance log fold-change") + ylab("Protein abundance log fold-change") +
+ xlim(min_lim,max_lim) + ylim(min_lim,max_lim) +
+ geom_point(aes(text=sprintf("Gene: %s
Transcript Abundance (log fold-change): %.3f
Protein Abundance (log fold-change): %.3f",
+ PE_ID, TE_abundance, PE_abundance))))
suppressMessages(plot(g))
suppressMessages(saveWidget(ggplotly(g, tooltip="text"), file.path(gsub("\\.png", "\\.html", outplot))))
dev.off();
@@ -440,9 +440,9 @@
# Interactive plot for k-means clustering
g <- ggplot(PE_TE_data, aes(x = TE_abundance, y = PE_abundance, label = row.names(PE_TE_data),
- text=sprintf("Gene: %s
Transcript Abundance: %.3f
Protein Abundance: %.3f",
- PE_ID, TE_abundance, PE_abundance),
- color=as.factor(k1$cluster))) +
+ text=sprintf("Gene: %s
Transcript Abundance: %.3f
Protein Abundance: %.3f",
+ PE_ID, TE_abundance, PE_abundance),
+ color=as.factor(k1$cluster))) +
xlab("Transcript Abundance") + ylab("Protein Abundance") +
scale_shape_discrete(solid=F) + geom_smooth(method = "loess", span = 2/3) +
geom_point(size = 1, shape = 8) +
@@ -475,11 +475,11 @@
png(outfile, width = 10, height = 10, units = 'in', res=300);
# bitmap(outfile, "png16m");
suppressWarnings(g <- ggplot(PE_TE_data, aes(x=TE_abundance, y=PE_abundance, label=PE_ID)) + geom_smooth() +
- xlab("Transcript abundance log fold-change") + ylab("Protein abundance log fold-change") +
- xlim(min_lim,max_lim) + ylim(min_lim,max_lim) +
- geom_point(aes(text=sprintf("Gene: %s
Transcript Abundance (log fold-change): %.3f
Protein Abundance (log fold-change): %.3f",
- PE_ID, TE_abundance, PE_abundance)),
- size = .5))
+ xlab("Transcript abundance log fold-change") + ylab("Protein abundance log fold-change") +
+ xlim(min_lim,max_lim) + ylim(min_lim,max_lim) +
+ geom_point(aes(text=sprintf("Gene: %s
Transcript Abundance (log fold-change): %.3f
Protein Abundance (log fold-change): %.3f",
+ PE_ID, TE_abundance, PE_abundance)),
+ size = .5))
suppressMessages(plot(g))
suppressMessages(saveWidget(ggplotly(g, tooltip = "text"), file.path(gsub("\\.png", "\\.html", outfile))))
dev.off();
@@ -682,8 +682,8 @@
dev.off();
g <- ggplot(PE_df_logfold, aes(x = LogFold, -log10(PE_pval), color = as.factor(color),
- text=sprintf("Gene: %s
Log2 Fold-Change: %.3f
-log10 p-value: %.3f
p-value: %.3f",
- Genes, LogFold, -log10(PE_pval), PE_pval))) +
+ text=sprintf("Gene: %s
Log2 Fold-Change: %.3f
-log10 p-value: %.3f
p-value: %.3f",
+ Genes, LogFold, -log10(PE_pval), PE_pval))) +
xlab("log2 fold change") + ylab("-log10 p-value") +
geom_point(shape=1, size = 1.5, stroke = .2) +
scale_color_manual(values = c("black" = "black", "red" = "red", "blue" = "blue")) +
@@ -722,7 +722,7 @@
dev.off();
g <- ggplot(TE_df_logfold, aes(x = LogFold, -log10(TE_pval), color = as.factor(color),
- text=sprintf("Gene: %s
Log2 Fold-Change: %.3f
-log10 p-value: %.3f
p-value: %.3f",
+ text=sprintf("Gene: %s
Log2 Fold-Change: %.3f
-log10 p-value: %.3f
p-value: %.3f",
Genes, LogFold, -log10(TE_pval), TE_pval))) +
xlab("log2 fold change") + ylab("-log10 p-value") +
geom_point(shape=1, size = 1.5, stroke = .2) +
@@ -974,28 +974,33 @@
# TE Boxplot
outplot = paste(outdir,"/Box_TE.png",sep="",collape="");
+ multisample_boxplot(TE_df, sampleinfo_df, outplot, "Yes", "Samples", "Transcript Abundance data");
+ lines <- extractWidgetCode(outplot)
+ prescripts <- c(prescripts, lines$prescripts)
+ postscripts <- c(postscripts, lines$postscripts)
cat('\n',
'Boxplot: Transcriptome data | Boxplot: Proteome data |
\n',
- "", ' | \n', file = htmloutfile, append = TRUE);
- multisample_boxplot(TE_df, sampleinfo_df, outplot, "Yes", "Samples", "Transcript Abundance data");
+ "
", ' ', lines$widget_div, ' | \n', file = htmloutfile, append = TRUE);
# PE Boxplot
outplot = paste(outdir,"/Box_PE.png",sep="",collape="");
- cat("", ' |
\n', file = htmloutfile, append = TRUE);
multisample_boxplot(PE_df, sampleinfo_df, outplot, "Yes", "Samples", "Protein Abundance data");
-
+ lines <- extractWidgetCode(outplot)
+ postscripts <- c(postscripts, lines$postscripts)
+ cat("", ' ', lines$widget_div,
+ ' |
\n', file = htmloutfile, append = TRUE);
cat('
CORRELATION
\n',
file = htmloutfile, append = TRUE);
# TE PE scatter
+ PE_TE_data = data.frame(PE_df, TE_df);
+ colnames(PE_TE_data) = c("PE_ID","PE_abundance","TE_ID","TE_abundance");
outplot = paste(outdir,"/TE_PE_scatter.png",sep="",collape="");
cat(' Scatter plot between Proteome and Transcriptome Abundance |
\n', file = htmloutfile, append = TRUE);
singlesample_scatter(PE_TE_data, outplot);
lines <- extractWidgetCode(outplot);
postscripts <- c(postscripts, lines$postscripts);
- cat("", ' ', lines$widget_div, ' |
\n', file = htmloutfile, append = TRUE);
- PE_TE_data = data.frame(PE_df, TE_df);
- colnames(PE_TE_data) = c("PE_ID","PE_abundance","TE_ID","TE_abundance");
+ cat("", ' ', gsub('width:500px;height:500px', 'width:800px;height:800px' , lines$widget_div), ' |
\n', file = htmloutfile, append = TRUE);
# TE PE Cor
cat("", file = htmloutfile, append = TRUE);
@@ -1014,7 +1019,9 @@
extractWidgetCode(paste(outdir,"/PE_TE_lm_2.png",sep="",collapse=""))$postscripts,
extractWidgetCode(paste(outdir,"/PE_TE_lm_5.png",sep="",collapse=""))$postscripts,
extractWidgetCode(paste(outdir,"/PE_TE_lm_cooksd.png",sep="",collapse=""))$postscripts,
- extractWidgetCode(paste(outdir,"/AbundancePlot_scatter_without_outliers.png",sep="",collapse=""))$postscripts));
+ extractWidgetCode(paste(outdir,"/AbundancePlot_scatter_without_outliers.png",sep="",collapse=""))$postscripts,
+ gsub('data-for="html', 'data-for="secondhtml"',
+ extractWidgetCode(paste(outdir,"/TE_PE_scatter.png",sep="",collapse=""))$postscripts)))
cat('
CLUSTER ANALYSIS\n',
file = htmloutfile, append = TRUE);
diff -r bcc7a4c4cc29 -r ed0bb50d7ffe quantp.xml
--- a/quantp.xml Thu Dec 20 16:06:05 2018 -0500
+++ b/quantp.xml Wed Jan 09 16:59:24 2019 -0500
@@ -1,4 +1,4 @@
-
+
Correlation between protein and transcript abundances
r-data.table
@@ -7,7 +7,7 @@
r-ggplot2
r-ggfortify
r-plotly
- r-d3heatmap
+ r-d3heatmap
+
+
+
+
+
+
+
+
+
+
+
+
+
|