Mercurial > repos > galaxyp > qupath_roi_splitter
view qupath_roi_splitter.py @ 4:9f136ebf73ac draft
planemo upload for repository hhttps://github.com/npinter/ROIsplitter commit 918ae25f84e7042ed36461219ff068633c1c2427
author | galaxyp |
---|---|
date | Fri, 19 Jul 2024 14:33:40 +0000 |
parents | 24ccdcfbabac |
children | 17c54a716a5b |
line wrap: on
line source
import argparse import cv2 import geojson import numpy as np import pandas as pd def collect_coords(input_coords, feature_index, coord_index=0): coords_with_index = [] for coord in input_coords: coords_with_index.append((coord[0], coord[1], feature_index, coord_index)) coord_index += 1 return coords_with_index def collect_roi_coords(input_roi, feature_index): all_coords = [] if len(input_roi["geometry"]["coordinates"]) == 1: # Polygon w/o holes all_coords.extend(collect_coords(input_roi["geometry"]["coordinates"][0], feature_index)) else: coord_index = 0 for sub_roi in input_roi["geometry"]["coordinates"]: # Polygon with holes or MultiPolygon if not isinstance(sub_roi[0][0], list): all_coords.extend(collect_coords(sub_roi, feature_index, coord_index)) coord_index += len(sub_roi) else: # MultiPolygon with holes for sub_coord in sub_roi: all_coords.extend(collect_coords(sub_coord, feature_index, coord_index)) coord_index += len(sub_coord) return all_coords def split_qupath_roi(in_roi): with open(in_roi) as file: qupath_roi = geojson.load(file) # HE dimensions dim_plt = [int(qupath_roi["dim"]["width"]), int(qupath_roi["dim"]["height"])] tma_name = qupath_roi["name"] cell_types = [ct.rsplit(" - ", 1)[-1] for ct in qupath_roi["featureNames"]] coords_by_cell_type = {ct: [] for ct in cell_types} coords_by_cell_type['all'] = [] # For storing all coordinates if args.all is True for feature_index, roi in enumerate(qupath_roi["features"]): feature_coords = collect_roi_coords(roi, feature_index) if args.all: coords_by_cell_type['all'].extend(feature_coords) elif "classification" in roi["properties"]: cell_type = roi["properties"]["classification"]["name"] if cell_type in cell_types: coords_by_cell_type[cell_type].extend(feature_coords) for cell_type, coords in coords_by_cell_type.items(): if coords: # Generate image (white background) img = np.ones((dim_plt[1], dim_plt[0]), dtype="uint8") * 255 # Convert to numpy array and ensure integer coordinates coords_arr = np.array(coords).astype(int) # Sort by feature_index first, then by coord_index coords_arr = coords_arr[np.lexsort((coords_arr[:, 3], coords_arr[:, 2]))] # Get filled pixel coordinates if args.fill: filled_coords = np.column_stack(np.where(img == 0)) all_coords = np.unique(np.vstack((coords_arr[:, :2], filled_coords[:, ::-1])), axis=0) else: all_coords = coords_arr[:, :2] # Save all coordinates to CSV coords_df = pd.DataFrame(all_coords, columns=['x', 'y'], dtype=int) coords_df.to_csv("{}_{}.txt".format(tma_name, cell_type), sep='\t', index=False) # Generate image for visualization if --img is specified if args.img: # Group coordinates by feature_index features = {} for x, y, feature_index, coord_index in coords_arr: if feature_index not in features: features[feature_index] = [] features[feature_index].append((x, y)) # Draw each feature separately for feature_coords in features.values(): pts = np.array(feature_coords, dtype=np.int32) if args.fill: cv2.fillPoly(img, [pts], color=0) # Black fill else: cv2.polylines(img, [pts], isClosed=True, color=0, thickness=1) # Black outline cv2.imwrite("{}_{}.png".format(tma_name, cell_type), img) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Split ROI coordinates of QuPath TMA annotation by cell type (classification)") parser.add_argument("--qupath_roi", default=False, help="Input QuPath annotation (GeoJSON file)") parser.add_argument("--fill", action="store_true", required=False, help="Fill pixels in ROIs (order of coordinates will be lost)") parser.add_argument('--version', action='version', version='%(prog)s 0.3.0') parser.add_argument("--all", action="store_true", required=False, help="Extracts all ROIs") parser.add_argument("--img", action="store_true", required=False, help="Generates image of ROIs") args = parser.parse_args() if args.qupath_roi: split_qupath_roi(args.qupath_roi)