Mercurial > repos > george-weingart > lefse
comparison home/ubuntu/lefse_to_export/plot_res.py @ 1:db64b6287cd6 draft
Modified datatypes
author | george-weingart |
---|---|
date | Wed, 20 Aug 2014 16:56:51 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
0:e7cd19afda2e | 1:db64b6287cd6 |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 import os,sys | |
4 import matplotlib | |
5 matplotlib.use('Agg') | |
6 from pylab import * | |
7 | |
8 from lefse import * | |
9 import argparse | |
10 | |
11 colors = ['r','g','b','m','c','y','k','w'] | |
12 | |
13 def read_params(args): | |
14 parser = argparse.ArgumentParser(description='Plot results') | |
15 parser.add_argument('input_file', metavar='INPUT_FILE', type=str, help="tab delimited input file") | |
16 parser.add_argument('output_file', metavar='OUTPUT_FILE', type=str, help="the file for the output image") | |
17 parser.add_argument('--feature_font_size', dest="feature_font_size", type=int, default=7, help="the file for the output image") | |
18 parser.add_argument('--format', dest="format", choices=["png","svg","pdf"], default='png', type=str, help="the format for the output file") | |
19 parser.add_argument('--dpi',dest="dpi", type=int, default=72) | |
20 parser.add_argument('--title',dest="title", type=str, default="") | |
21 parser.add_argument('--title_font_size',dest="title_font_size", type=str, default="12") | |
22 parser.add_argument('--class_legend_font_size',dest="class_legend_font_size", type=str, default="10") | |
23 parser.add_argument('--width',dest="width", type=float, default=7.0 ) | |
24 parser.add_argument('--height',dest="height", type=float, default=4.0, help="only for vertical histograms") | |
25 parser.add_argument('--left_space',dest="ls", type=float, default=0.2 ) | |
26 parser.add_argument('--right_space',dest="rs", type=float, default=0.1 ) | |
27 parser.add_argument('--orientation',dest="orientation", type=str, choices=["h","v"], default="h" ) | |
28 parser.add_argument('--autoscale',dest="autoscale", type=int, choices=[0,1], default=1 ) | |
29 parser.add_argument('--background_color',dest="back_color", type=str, choices=["k","w"], default="w", help="set the color of the background") | |
30 parser.add_argument('--subclades', dest="n_scl", type=int, default=1, help="number of label levels to be dislayed (starting from the leaves, -1 means all the levels, 1 is default )") | |
31 parser.add_argument('--max_feature_len', dest="max_feature_len", type=int, default=60, help="Maximum length of feature strings (def 60)") | |
32 parser.add_argument('--all_feats', dest="all_feats", type=str, default="") | |
33 args = parser.parse_args() | |
34 return vars(args) | |
35 | |
36 def read_data(input_file,output_file): | |
37 with open(input_file, 'r') as inp: | |
38 rows = [line.strip().split()[:-1] for line in inp.readlines() if len(line.strip().split())>3] | |
39 classes = list(set([v[2] for v in rows if len(v)>2])) | |
40 if len(classes) < 1: | |
41 print "No differentially abundant features found in "+input_file | |
42 os.system("touch "+output_file) | |
43 sys.exit() | |
44 data = {} | |
45 data['rows'] = rows | |
46 data['cls'] = classes | |
47 return data | |
48 | |
49 def plot_histo_hor(path,params,data,bcl): | |
50 cls2 = [] | |
51 if params['all_feats'] != "": | |
52 cls2 = sorted(params['all_feats'].split(":")) | |
53 cls = sorted(data['cls']) | |
54 if bcl: data['rows'].sort(key=lambda ab: fabs(float(ab[3]))*(cls.index(ab[2])*2-1)) | |
55 else: | |
56 mmax = max([fabs(float(a)) for a in zip(*data['rows'])[3]]) | |
57 data['rows'].sort(key=lambda ab: fabs(float(ab[3]))/mmax+(cls.index(ab[2])+1)) | |
58 pos = arange(len(data['rows'])) | |
59 head = 0.75 | |
60 tail = 0.5 | |
61 ht = head + tail | |
62 ints = max(len(pos)*0.2,1.5) | |
63 fig = plt.figure(figsize=(params['width'], ints + ht), edgecolor=params['back_color'],facecolor=params['back_color']) | |
64 ax = fig.add_subplot(111,frame_on=False,axis_bgcolor=params['back_color']) | |
65 ls, rs = params['ls'], 1.0-params['rs'] | |
66 plt.subplots_adjust(left=ls,right=rs,top=1-head*(1.0-ints/(ints+ht)), bottom=tail*(1.0-ints/(ints+ht))) | |
67 | |
68 fig.canvas.set_window_title('LDA results') | |
69 | |
70 l_align = {'horizontalalignment':'left', 'verticalalignment':'baseline'} | |
71 r_align = {'horizontalalignment':'right', 'verticalalignment':'baseline'} | |
72 added = [] | |
73 m = 1 if data['rows'][0][2] == cls[0] else -1 | |
74 for i,v in enumerate(data['rows']): | |
75 indcl = cls.index(v[2]) | |
76 lab = str(v[2]) if str(v[2]) not in added else "" | |
77 added.append(str(v[2])) | |
78 col = colors[indcl%len(colors)] | |
79 if len(cls2) > 0: | |
80 col = colors[cls2.index(v[2])%len(colors)] | |
81 vv = fabs(float(v[3])) * (m*(indcl*2-1)) if bcl else fabs(float(v[3])) | |
82 ax.barh(pos[i],vv, align='center', color=col, label=lab, height=0.8, edgecolor=params['fore_color']) | |
83 mv = max([abs(float(v[3])) for v in data['rows']]) | |
84 for i,r in enumerate(data['rows']): | |
85 indcl = cls.index(data['rows'][i][2]) | |
86 if params['n_scl'] < 0: rr = r[0] | |
87 else: rr = r[0].split(".")[-min(r[0].count("."),params['n_scl'])] | |
88 if len(rr) > params['max_feature_len']: rr = rr[:params['max_feature_len']/2-2]+" [..]"+rr[-params['max_feature_len']/2+2:] | |
89 if m*(indcl*2-1) < 0 and bcl: ax.text(mv/40.0,float(i)-0.3,rr, l_align, size=params['feature_font_size'],color=params['fore_color']) | |
90 else: ax.text(-mv/40.0,float(i)-0.3,rr, r_align, size=params['feature_font_size'],color=params['fore_color']) | |
91 ax.set_title(params['title'],size=params['title_font_size'],y=1.0+head*(1.0-ints/(ints+ht))*0.8,color=params['fore_color']) | |
92 | |
93 ax.set_yticks([]) | |
94 ax.set_xlabel("LDA SCORE (log 10)") | |
95 ax.xaxis.grid(True) | |
96 xlim = ax.get_xlim() | |
97 if params['autoscale']: | |
98 ran = arange(0.0001,round(round((abs(xlim[0])+abs(xlim[1]))/10,4)*100,0)/100) | |
99 if len(ran) > 1 and len(ran) < 100: | |
100 ax.set_xticks(arange(xlim[0],xlim[1]+0.0001,min(xlim[1]+0.0001,round(round((abs(xlim[0])+abs(xlim[1]))/10,4)*100,0)/100))) | |
101 ax.set_ylim((pos[0]-1,pos[-1]+1)) | |
102 leg = ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, borderaxespad=0., frameon=False,prop={'size':params['class_legend_font_size']}) | |
103 | |
104 def get_col_attr(x): | |
105 return hasattr(x, 'set_color') and not hasattr(x, 'set_facecolor') | |
106 for o in leg.findobj(get_col_attr): | |
107 o.set_color(params['fore_color']) | |
108 for o in ax.findobj(get_col_attr): | |
109 o.set_color(params['fore_color']) | |
110 | |
111 | |
112 plt.savefig(path,format=params['format'],facecolor=params['back_color'],edgecolor=params['fore_color'],dpi=params['dpi']) | |
113 plt.close() | |
114 | |
115 def plot_histo_ver(path,params,data): | |
116 cls = data['cls'] | |
117 mmax = max([fabs(float(a)) for a in zip(*data['rows'])[1]]) | |
118 data['rows'].sort(key=lambda ab: fabs(float(ab[3]))/mmax+(cls.index(ab[2])+1)) | |
119 pos = arange(len(data['rows'])) | |
120 if params['n_scl'] < 0: nam = [d[0] for d in data['rows']] | |
121 else: nam = [d[0].split(".")[-min(d[0].count("."),params['n_scl'])] for d in data['rows']] | |
122 fig = plt.figure(edgecolor=params['back_color'],facecolor=params['back_color'],figsize=(params['width'], params['height'])) | |
123 ax = fig.add_subplot(111,axis_bgcolor=params['back_color']) | |
124 plt.subplots_adjust(top=0.9, left=params['ls'], right=params['rs'], bottom=0.3) | |
125 fig.canvas.set_window_title('LDA results') | |
126 l_align = {'horizontalalignment':'left', 'verticalalignment':'baseline'} | |
127 r_align = {'horizontalalignment':'right', 'verticalalignment':'baseline'} | |
128 added = [] | |
129 for i,v in enumerate(data['rows']): | |
130 indcl = data['cls'].index(v[2]) | |
131 lab = str(v[2]) if str(v[2]) not in added else "" | |
132 added.append(str(v[2])) | |
133 col = colors[indcl%len(colors)] | |
134 vv = fabs(float(v[3])) | |
135 ax.bar(pos[i],vv, align='center', color=col, label=lab) | |
136 xticks(pos,nam,rotation=-20, ha = 'left',size=params['feature_font_size']) | |
137 ax.set_title(params['title'],size=params['title_font_size']) | |
138 ax.set_ylabel("LDA SCORE (log 10)") | |
139 ax.yaxis.grid(True) | |
140 a,b = ax.get_xlim() | |
141 dx = float(len(pos))/float((b-a)) | |
142 ax.set_xlim((0-dx,max(pos)+dx)) | |
143 plt.savefig(path,format=params['format'],facecolor=params['back_color'],edgecolor=params['fore_color'],dpi=params['dpi']) | |
144 plt.close() | |
145 | |
146 if __name__ == '__main__': | |
147 params = read_params(sys.argv) | |
148 params['fore_color'] = 'w' if params['back_color'] == 'k' else 'k' | |
149 data = read_data(params['input_file'],params['output_file']) | |
150 if params['orientation'] == 'v': plot_histo_ver(params['output_file'],params,data) | |
151 else: plot_histo_hor(params['output_file'],params,data,len(data['cls']) == 2) | |
152 | |
153 |