Mercurial > repos > george-weingart > lefse
diff format_input.py @ 0:e7cd19afda2e draft
Lefse
author | george-weingart |
---|---|
date | Tue, 13 May 2014 21:57:00 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/format_input.py Tue May 13 21:57:00 2014 -0400 @@ -0,0 +1,286 @@ +#!/usr/bin/env python + +import sys,os,argparse,pickle,re + +def read_input_file(inp_file): + with open(inp_file) as inp: + return [[v.strip() for v in line.strip().split("\t")] for line in inp.readlines()] + +def transpose(data): + return zip(*data) + +def read_params(args): + parser = argparse.ArgumentParser(description='LEfSe formatting modules') + parser.add_argument('input_file', metavar='INPUT_FILE', type=str, help="the input file, feature hierarchical level can be specified with | or . and those symbols must not be present for other reasons in the input file.") + parser.add_argument('output_file', metavar='OUTPUT_FILE', type=str, + help="the output file containing the data for LEfSe") + parser.add_argument('--output_table', type=str, required=False, default="", + help="the formatted table in txt format") + parser.add_argument('-f',dest="feats_dir", choices=["c","r"], type=str, default="r", + help="set whether the features are on rows (default) or on columns") + parser.add_argument('-c',dest="class", metavar="[1..n_feats]", type=int, default=1, + help="set which feature use as class (default 1)") + parser.add_argument('-s',dest="subclass", metavar="[1..n_feats]", type=int, default=None, + help="set which feature use as subclass (default -1 meaning no subclass)") + parser.add_argument('-o',dest="norm_v", metavar="float", type=float, default=-1.0, + help="set the normalization value (default -1.0 meaning no normalization)") + parser.add_argument('-u',dest="subject", metavar="[1..n_feats]", type=int, default=None, + help="set which feature use as subject (default -1 meaning no subject)") + parser.add_argument('-m',dest="missing_p", choices=["f","s"], type=str, default="d", + help="set the policy to adopt with missin values: f removes the features with missing values, s removes samples with missing values (default f)") + parser.add_argument('-n',dest="subcl_min_card", metavar="int", type=int, default=10, + help="set the minimum cardinality of each subclass (subclasses with low cardinalities will be grouped together, if the cardinality is still low, no pairwise comparison will be performed with them)") + + args = parser.parse_args() + + return vars(args) + +def remove_missing(data,roc): + if roc == "c": data = transpose(data) + max_len = max([len(r) for r in data]) + to_rem = [] + for i,r in enumerate(data): + if len([v for v in r if not( v == "" or v.isspace())]) < max_len: to_rem.append(i) + if len(to_rem): + for i in to_rem.reverse(): + data.pop(i) + if roc == "c": return transpose(data) + return data + + +def sort_by_cl(data,n,c,s,u): + def sort_lines1(a,b): + return int(a[c] > b[c])*2-1 + def sort_lines2u(a,b): + if a[c] != b[c]: return int(a[c] > b[c])*2-1 + return int(a[u] > b[u])*2-1 + def sort_lines2s(a,b): + if a[c] != b[c]: return int(a[c] > b[c])*2-1 + return int(a[s] > b[s])*2-1 + def sort_lines3(a,b): + if a[c] != b[c]: return int(a[c] > b[c])*2-1 + if a[s] != b[s]: return int(a[s] > b[s])*2-1 + return int(a[u] > b[u])*2-1 + if n == 3: data.sort(sort_lines3) + if n == 2: + if s is None: + data.sort(sort_lines2u) + else: + data.sort(sort_lines2s) + if n == 1: data.sort(sort_lines1) + return data + +def group_small_subclasses(cls,min_subcl): + last = "" + n = 0 + repl = [] + dd = [list(cls['class']),list(cls['subclass'])] + for d in dd: + if d[1] != last: + if n < min_subcl and last != "": + repl.append(d[1]) + last = d[1] + n = 1 + for i,d in enumerate(dd): + if d[1] in repl: dd[i][1] = "other" + dd[i][1] = str(dd[i][0])+"_"+str(dd[i][1]) + cls['class'] = dd[0] + cls['subclass'] = dd[1] + return cls + +def get_class_slices(data): + previous_class = data[0][0] + previous_subclass = data[0][1] + subclass_slices = [] + class_slices = [] + last_cl = 0 + last_subcl = 0 + class_hierarchy = [] + subcls = [] + for i,d in enumerate(data): + if d[1] != previous_subclass: + subclass_slices.append((previous_subclass,(last_subcl,i))) + last_subcl = i + subcls.append(previous_subclass) + if d[0] != previous_class: + class_slices.append((previous_class,(last_cl,i))) + class_hierarchy.append((previous_class,subcls)) + subcls = [] + last_cl = i + previous_subclass = d[1] + previous_class = d[0] + subclass_slices.append((previous_subclass,(last_subcl,i+1))) + subcls.append(previous_subclass) + class_slices.append((previous_class,(last_cl,i+1))) + class_hierarchy.append((previous_class,subcls)) + return dict(class_slices), dict(subclass_slices), dict(class_hierarchy) + +def numerical_values(feats,norm): + mm = [] + for k,v in feats.items(): + feats[k] = [float(val) for val in v] + if norm < 0.0: return feats + tr = zip(*(feats.values())) + mul = [] + fk = feats.keys() + hie = True if sum([k.count(".") for k in fk]) > len(fk) else False + for i in range(len(feats.values()[0])): + if hie: mul.append(sum([t for j,t in enumerate(tr[i]) if fk[j].count(".") < 1 ])) + else: mul.append(sum(tr[i])) + if hie and sum(mul) == 0: + mul = [] + for i in range(len(feats.values()[0])): + mul.append(sum(tr[i])) + for i,m in enumerate(mul): + if m == 0: mul[i] = 0.0 + else: mul[i] = float(norm) / m + for k,v in feats.items(): + feats[k] = [val*mul[i] for i,val in enumerate(v)] + return feats + +def add_missing_levels2(ff): + + if sum( [f.count(".") for f in ff] ) < 1: return ff + + dn = {} + + added = True + while added: + added = False + for f in ff: + lev = f.count(".") + if lev == 0: continue + if lev not in dn: dn[lev] = [f] + else: dn[lev].append(f) + for fn in sorted(dn,reverse=True): + for f in dn[fn]: + fc = ".".join(f.split('.')[:-1]) + if fc not in ff: + ab_all = [ff[fg] for fg in ff if (fg.count(".") == 0 and fg == fc) or (fg.count(".") > 0 and fc == ".".join(fg.split('.')[:-1]))] + ab =[] + for l in [f for f in zip(*ab_all)]: + ab.append(sum([float(ll) for ll in l])) + ff[fc] = ab + added = True + if added: + break + + return ff + + +def add_missing_levels(ff): + if sum( [f.count(".") for f in ff] ) < 1: return ff + + clades2leaves = {} + for f in ff: + fs = f.split(".") + if len(fs) < 2: + continue + for l in range(len(fs)): + n = ".".join( fs[:l] ) + if n in clades2leaves: + clades2leaves[n].append( f ) + else: + clades2leaves[n] = [f] + for k,v in clades2leaves.items(): + if k and k not in ff: + ff[k] = [sum(a) for a in zip(*[[float(fn) for fn in ff[vv]] for vv in v])] + return ff + + + +def modify_feature_names(fn): + ret = fn + + for v in [' ',r'\$',r'\@',r'#',r'%',r'\^',r'\&',r'\*',r'\"',r'\'']: + ret = [re.sub(v,"",f) for f in ret] + for v in ["/",r'\(',r'\)',r'-',r'\+',r'=',r'{',r'}',r'\[',r'\]', + r',',r'\.',r';',r':',r'\?',r'\<',r'\>',r'\.',r'\,']: + ret = [re.sub(v,"_",f) for f in ret] + for v in ["\|"]: + ret = [re.sub(v,".",f) for f in ret] + + ret2 = [] + for r in ret: + if r[0] in ['0','1','2','3','4','5','6','7','8','9']: + ret2.append("f_"+r) + else: ret2.append(r) + + return ret2 + + +def rename_same_subcl(cl,subcl): + toc = [] + for sc in set(subcl): + if len(set([cl[i] for i in range(len(subcl)) if sc == subcl[i]])) > 1: + toc.append(sc) + new_subcl = [] + for i,sc in enumerate(subcl): + if sc in toc: new_subcl.append(cl[i]+"_"+sc) + else: new_subcl.append(sc) + return new_subcl + +if __name__ == '__main__': + params = read_params(sys.argv) + + if type(params['subclass']) is int and int(params['subclass']) < 1: + params['subclass'] = None + if type(params['subject']) is int and int(params['subject']) < 1: + params['subject'] = None + data = read_input_file(sys.argv[1]) + + if params['feats_dir'] == "c": + data = transpose(data) + + ncl = 1 + if not params['subclass'] is None: ncl += 1 + if not params['subject'] is None: ncl += 1 + + first_line = zip(*data)[0] + + first_line = modify_feature_names(list(first_line)) + + data = zip( first_line, + *sort_by_cl(zip(*data)[1:], + ncl, + params['class']-1, + params['subclass']-1 if not params['subclass'] is None else None, + params['subject']-1 if not params['subject'] is None else None)) +# data.insert(0,first_line) +# data = remove_missing(data,params['missing_p']) + cls = {} + + cls_i = [('class',params['class']-1)] + if params['subclass'] > 0: cls_i.append(('subclass',params['subclass']-1)) + if params['subject'] > 0: cls_i.append(('subject',params['subject']-1)) + cls_i.sort(lambda x, y: -cmp(x[1],y[1])) + for v in cls_i: cls[v[0]] = data.pop(v[1])[1:] + if not params['subclass'] > 0: cls['subclass'] = [str(cl)+"_subcl" for cl in cls['class']] + + cls['subclass'] = rename_same_subcl(cls['class'],cls['subclass']) +# if 'subclass' in cls.keys(): cls = group_small_subclasses(cls,params['subcl_min_card']) + class_sl,subclass_sl,class_hierarchy = get_class_slices(zip(*cls.values())) + + feats = dict([(d[0],d[1:]) for d in data]) + + feats = add_missing_levels(feats) + + feats = numerical_values(feats,params['norm_v']) + out = {} + out['feats'] = feats + out['norm'] = params['norm_v'] + out['cls'] = cls + out['class_sl'] = class_sl + out['subclass_sl'] = subclass_sl + out['class_hierarchy'] = class_hierarchy + + if params['output_table']: + with open( params['output_table'], "w") as outf: + if 'class' in cls: outf.write( "\t".join(list(["class"])+list(cls['class'])) + "\n" ) + if 'subclass' in cls: outf.write( "\t".join(list(["subclass"])+list(cls['subclass'])) + "\n" ) + if 'subject' in cls: outf.write( "\t".join(list(["subject"])+list(cls['subject'])) + "\n" ) + for k,v in out['feats'].items(): outf.write( "\t".join([k]+[str(vv) for vv in v]) + "\n" ) + + with open(params['output_file'], 'wb') as back_file: + pickle.dump(out,back_file) +