Mercurial > repos > george-weingart > lefse
view format_input.py @ 2:a31c10fe09c8 draft default tip
Fixed bug due to numerical approximation after normalization affecting root-level clades (e.g. "Bacteria" or "Archaea")
author | george-weingart |
---|---|
date | Tue, 07 Jul 2015 13:52:29 -0400 |
parents | |
children |
line wrap: on
line source
#!/usr/bin/env python import sys,os,argparse,pickle,re,numpy #*************************************************************************************************************** #* Log of change * #* January 16, 2014 - George Weingart - george.weingart@gmail.com * #* * #* biom Support * #* Modified the program to enable it to accept biom files as input * #* * #* Added two optional input parameters: * #* 1. biom_c is the name of the biom metadata to be used as class * #* 2. biom_s is the name of the biom metadata to be used as subclass * #* class and subclass are used in the same context as the original * #* parameters class and subclass * #* These parameters are totally optional, the default is the program * #* chooses as class the first metadata received from the conversion * #* of the biom file into a sequential (pcl) file as generated by * #* breadcrumbs, and similarly, the second metadata is selected as * #* subclass. * #* The syntax or logic for the original non-biom case was NOT changed. * #* * #* <******************* IMPORTANT NOTE *************************> * #* The biom case requires breadcrumbs and therefore there is a * #* a conditional import of the breadcrumbs modules * #* If the User uses a biom input and breadcrumbs is not detected, * #* the run is abnormally ended * #* breadcrumbs itself needs a biom environment, so if the immport * #* of biom in breadcrumbs fails, the run is also abnormally #* ended (Only if the input file was biom) * #* * #* USAGE EXAMPLES * #* -------------- * #* Case #1: Using a sequential file as input (Old version - did not change * #* ./format_input.py hmp_aerobiosis_small.txt hmp_aerobiosis_small.in -c 1 -s 2 -u 3 -o 1000000 * #* Case #2: Using a biom file as input * #* ./format_input.py hmp_aerobiosis_small.biom hmp_aerobiosis_small.in -o 1000000 * #* Case #3: Using a biom file as input and override the class and subclass * #* ./format_input.py lefse.biom hmp_aerobiosis_small.in -biom_c oxygen_availability -biom_s body_site -o 1000000 #* * #*************************************************************************************************************** def read_input_file(inp_file, CommonArea): if inp_file.endswith('.biom'): #* If the file format is biom: CommonArea = biom_processing(inp_file) #* Process in biom format return CommonArea #* And return the CommonArea with open(inp_file) as inp: CommonArea['ReturnedData'] = [[v.strip() for v in line.strip().split("\t")] for line in inp.readlines()] return CommonArea def transpose(data): return zip(*data) def read_params(args): parser = argparse.ArgumentParser(description='LEfSe formatting modules') parser.add_argument('input_file', metavar='INPUT_FILE', type=str, help="the input file, feature hierarchical level can be specified with | or . and those symbols must not be present for other reasons in the input file.") parser.add_argument('output_file', metavar='OUTPUT_FILE', type=str, help="the output file containing the data for LEfSe") parser.add_argument('--output_table', type=str, required=False, default="", help="the formatted table in txt format") parser.add_argument('-f',dest="feats_dir", choices=["c","r"], type=str, default="r", help="set whether the features are on rows (default) or on columns") parser.add_argument('-c',dest="class", metavar="[1..n_feats]", type=int, default=1, help="set which feature use as class (default 1)") parser.add_argument('-s',dest="subclass", metavar="[1..n_feats]", type=int, default=None, help="set which feature use as subclass (default -1 meaning no subclass)") parser.add_argument('-o',dest="norm_v", metavar="float", type=float, default=-1.0, help="set the normalization value (default -1.0 meaning no normalization)") parser.add_argument('-u',dest="subject", metavar="[1..n_feats]", type=int, default=None, help="set which feature use as subject (default -1 meaning no subject)") parser.add_argument('-m',dest="missing_p", choices=["f","s"], type=str, default="d", help="set the policy to adopt with missin values: f removes the features with missing values, s removes samples with missing values (default f)") parser.add_argument('-n',dest="subcl_min_card", metavar="int", type=int, default=10, help="set the minimum cardinality of each subclass (subclasses with low cardinalities will be grouped together, if the cardinality is still low, no pairwise comparison will be performed with them)") parser.add_argument('-biom_c',dest="biom_class", type=str, help="For biom input files: Set which feature use as class ") parser.add_argument('-biom_s',dest="biom_subclass", type=str, help="For biom input files: set which feature use as subclass ") args = parser.parse_args() return vars(args) def remove_missing(data,roc): if roc == "c": data = transpose(data) max_len = max([len(r) for r in data]) to_rem = [] for i,r in enumerate(data): if len([v for v in r if not( v == "" or v.isspace())]) < max_len: to_rem.append(i) if len(to_rem): for i in to_rem.reverse(): data.pop(i) if roc == "c": return transpose(data) return data def sort_by_cl(data,n,c,s,u): def sort_lines1(a,b): return int(a[c] > b[c])*2-1 def sort_lines2u(a,b): if a[c] != b[c]: return int(a[c] > b[c])*2-1 return int(a[u] > b[u])*2-1 def sort_lines2s(a,b): if a[c] != b[c]: return int(a[c] > b[c])*2-1 return int(a[s] > b[s])*2-1 def sort_lines3(a,b): if a[c] != b[c]: return int(a[c] > b[c])*2-1 if a[s] != b[s]: return int(a[s] > b[s])*2-1 return int(a[u] > b[u])*2-1 if n == 3: data.sort(sort_lines3) if n == 2: if s is None: data.sort(sort_lines2u) else: data.sort(sort_lines2s) if n == 1: data.sort(sort_lines1) return data def group_small_subclasses(cls,min_subcl): last = "" n = 0 repl = [] dd = [list(cls['class']),list(cls['subclass'])] for d in dd: if d[1] != last: if n < min_subcl and last != "": repl.append(d[1]) last = d[1] n = 1 for i,d in enumerate(dd): if d[1] in repl: dd[i][1] = "other" dd[i][1] = str(dd[i][0])+"_"+str(dd[i][1]) cls['class'] = dd[0] cls['subclass'] = dd[1] return cls def get_class_slices(data): previous_class = data[0][0] previous_subclass = data[0][1] subclass_slices = [] class_slices = [] last_cl = 0 last_subcl = 0 class_hierarchy = [] subcls = [] for i,d in enumerate(data): if d[1] != previous_subclass: subclass_slices.append((previous_subclass,(last_subcl,i))) last_subcl = i subcls.append(previous_subclass) if d[0] != previous_class: class_slices.append((previous_class,(last_cl,i))) class_hierarchy.append((previous_class,subcls)) subcls = [] last_cl = i previous_subclass = d[1] previous_class = d[0] subclass_slices.append((previous_subclass,(last_subcl,i+1))) subcls.append(previous_subclass) class_slices.append((previous_class,(last_cl,i+1))) class_hierarchy.append((previous_class,subcls)) return dict(class_slices), dict(subclass_slices), dict(class_hierarchy) def numerical_values(feats,norm): mm = [] for k,v in feats.items(): feats[k] = [float(val) for val in v] if norm < 0.0: return feats tr = zip(*(feats.values())) mul = [] fk = feats.keys() hie = True if sum([k.count(".") for k in fk]) > len(fk) else False for i in range(len(feats.values()[0])): if hie: mul.append(sum([t for j,t in enumerate(tr[i]) if fk[j].count(".") < 1 ])) else: mul.append(sum(tr[i])) if hie and sum(mul) == 0: mul = [] for i in range(len(feats.values()[0])): mul.append(sum(tr[i])) for i,m in enumerate(mul): if m == 0: mul[i] = 0.0 else: mul[i] = float(norm) / m for k,v in feats.items(): feats[k] = [val*mul[i] for i,val in enumerate(v)] if numpy.mean(feats[k]) and (numpy.std(feats[k])/numpy.mean(feats[k])) < 1e-10: feats[k] = [ float(round(kv*1e6)/1e6) for kv in feats[k]] return feats def add_missing_levels2(ff): if sum( [f.count(".") for f in ff] ) < 1: return ff dn = {} added = True while added: added = False for f in ff: lev = f.count(".") if lev == 0: continue if lev not in dn: dn[lev] = [f] else: dn[lev].append(f) for fn in sorted(dn,reverse=True): for f in dn[fn]: fc = ".".join(f.split('.')[:-1]) if fc not in ff: ab_all = [ff[fg] for fg in ff if (fg.count(".") == 0 and fg == fc) or (fg.count(".") > 0 and fc == ".".join(fg.split('.')[:-1]))] ab =[] for l in [f for f in zip(*ab_all)]: ab.append(sum([float(ll) for ll in l])) ff[fc] = ab added = True if added: break return ff def add_missing_levels(ff): if sum( [f.count(".") for f in ff] ) < 1: return ff clades2leaves = {} for f in ff: fs = f.split(".") if len(fs) < 2: continue for l in range(len(fs)): n = ".".join( fs[:l] ) if n in clades2leaves: clades2leaves[n].append( f ) else: clades2leaves[n] = [f] for k,v in clades2leaves.items(): if k and k not in ff: ff[k] = [sum(a) for a in zip(*[[float(fn) for fn in ff[vv]] for vv in v])] return ff def modify_feature_names(fn): ret = fn for v in [' ',r'\$',r'\@',r'#',r'%',r'\^',r'\&',r'\*',r'\"',r'\'']: ret = [re.sub(v,"",f) for f in ret] for v in ["/",r'\(',r'\)',r'-',r'\+',r'=',r'{',r'}',r'\[',r'\]', r',',r'\.',r';',r':',r'\?',r'\<',r'\>',r'\.',r'\,']: ret = [re.sub(v,"_",f) for f in ret] for v in ["\|"]: ret = [re.sub(v,".",f) for f in ret] ret2 = [] for r in ret: if r[0] in ['0','1','2','3','4','5','6','7','8','9']: ret2.append("f_"+r) else: ret2.append(r) return ret2 def rename_same_subcl(cl,subcl): toc = [] for sc in set(subcl): if len(set([cl[i] for i in range(len(subcl)) if sc == subcl[i]])) > 1: toc.append(sc) new_subcl = [] for i,sc in enumerate(subcl): if sc in toc: new_subcl.append(cl[i]+"_"+sc) else: new_subcl.append(sc) return new_subcl #************************************************************************************* #* Modifications by George Weingart, Jan 15, 2014 * #* If the input file is biom: * #* a. Load an AbundanceTable (Using breadcrumbs) * #* b. Create a sequential file from the AbundanceTable (de-facto - pcl) * #* c. Use that file as input to the rest of the program * #* d. Calculate the c,s,and u parameters, either from the values the User entered * #* from the meta data values in the biom file or set up defaults * #* <<<------------- I M P O R T A N T N O T E ------------------->> * #* breadcrumbs src directory must be included in the PYTHONPATH * #* <<<------------- I M P O R T A N T N O T E ------------------->> * #************************************************************************************* def biom_processing(inp_file): CommonArea = dict() #* Set up a dictionary to return CommonArea['abndData'] = AbundanceTable.funcMakeFromFile(inp_file, #* Create AbundanceTable from input biom file cDelimiter = None, sMetadataID = None, sLastMetadataRow = None, sLastMetadata = None, strFormat = None) #**************************************************************** #* Building the data element here * #**************************************************************** ResolvedData = list() #This is the Resolved data that will be returned IDMetadataName = CommonArea['abndData'].funcGetIDMetadataName() #* ID Metadataname IDMetadata = [CommonArea['abndData'].funcGetIDMetadataName()] #* The first Row for IDMetadataEntry in CommonArea['abndData'].funcGetMetadataCopy()[IDMetadataName]: #* Loop on all the metadata values IDMetadata.append(IDMetadataEntry) ResolvedData.append(IDMetadata) #Add the IDMetadata with all its values to the resolved area for key, value in CommonArea['abndData'].funcGetMetadataCopy().iteritems(): if key != IDMetadataName: MetadataEntry = list() #* Set it up MetadataEntry.append(key) #* And post it to the area for x in value: MetadataEntry.append(x) #* Append the metadata value name ResolvedData.append(MetadataEntry) for AbundanceDataEntry in CommonArea['abndData'].funcGetAbundanceCopy(): #* The Abundance Data lstAbundanceDataEntry = list(AbundanceDataEntry) #Convert tuple to list ResolvedData.append(lstAbundanceDataEntry) #Append the list to the metadata list CommonArea['ReturnedData'] = ResolvedData #Post the results return CommonArea #******************************************************************************* #* Check the params and override in the case of biom * #******************************************************************************* def check_params_for_biom_case(params, CommonArea): CommonArea['MetadataNames'] = list() #Metadata names params['original_class'] = params['class'] #Save the original class params['original_subclass'] = params['subclass'] #Save the original subclass params['original_subject'] = params['subject'] #Save the original subclass TotalMetadataEntriesAndIDInBiomFile = len(CommonArea['abndData'].funcGetMetadataCopy()) # The number of metadata entries for i in range(0,TotalMetadataEntriesAndIDInBiomFile): #* Populate the meta data names table CommonArea['MetadataNames'].append(CommonArea['ReturnedData'][i][0]) #Add the metadata name #**************************************************** #* Setting the params here * #**************************************************** if TotalMetadataEntriesAndIDInBiomFile > 0: #If there is at least one entry - has to be the subject params['subject'] = 1 if TotalMetadataEntriesAndIDInBiomFile == 2: #If there are 2 - The first is the subject and the second has to be the metadata, and that is the class params['class'] = 2 if TotalMetadataEntriesAndIDInBiomFile == 3: #If there are 3: Set up default that the second entry is the class and the third is the subclass params['class'] = 2 params['subclass'] = 3 FlagError = False #Set up error flag if not params['biom_class'] is None and not params['biom_subclass'] is None: #Check if the User passed a valid class and subclass if params['biom_class'] in CommonArea['MetadataNames']: params['class'] = CommonArea['MetadataNames'].index(params['biom_class']) +1 #* Set up the index for that metadata else: FlagError = True if params['biom_subclass'] in CommonArea['MetadataNames']: params['subclass'] = CommonArea['MetadataNames'].index(params['biom_subclass']) +1 #* Set up the index for that metadata else: FlagError = True if FlagError == True: #* If the User passed an invalid class print "**Invalid biom class or subclass passed - Using defaults: First metadata=class, Second Metadata=subclass\n" params['class'] = 2 params['subclass'] = 3 return params if __name__ == '__main__': CommonArea = dict() #Build a Common Area to pass variables in the biom case params = read_params(sys.argv) #************************************************************* #* Conditionally import breadcrumbs if file is a biom file * #* If it is and no breadcrumbs found - abnormally exit * #************************************************************* if params['input_file'].endswith('.biom'): try: from lefsebiom.ConstantsBreadCrumbs import * from lefsebiom.AbundanceTable import * except ImportError: sys.stderr.write("************************************************************************************************************ \n") sys.stderr.write("* Error: Breadcrumbs libraries not detected - required to process biom files - run abnormally terminated * \n") sys.stderr.write("************************************************************************************************************ \n") exit(1) if type(params['subclass']) is int and int(params['subclass']) < 1: params['subclass'] = None if type(params['subject']) is int and int(params['subject']) < 1: params['subject'] = None CommonArea = read_input_file(sys.argv[1], CommonArea) #Pass The CommonArea to the Read data = CommonArea['ReturnedData'] #Select the data if sys.argv[1].endswith('biom'): #* Check if biom: params = check_params_for_biom_case(params, CommonArea) #Check the params for the biom case if params['feats_dir'] == "c": data = transpose(data) ncl = 1 if not params['subclass'] is None: ncl += 1 if not params['subject'] is None: ncl += 1 first_line = zip(*data)[0] first_line = modify_feature_names(list(first_line)) data = zip( first_line, *sort_by_cl(zip(*data)[1:], ncl, params['class']-1, params['subclass']-1 if not params['subclass'] is None else None, params['subject']-1 if not params['subject'] is None else None)) # data.insert(0,first_line) # data = remove_missing(data,params['missing_p']) cls = {} cls_i = [('class',params['class']-1)] if params['subclass'] > 0: cls_i.append(('subclass',params['subclass']-1)) if params['subject'] > 0: cls_i.append(('subject',params['subject']-1)) cls_i.sort(lambda x, y: -cmp(x[1],y[1])) for v in cls_i: cls[v[0]] = data.pop(v[1])[1:] if not params['subclass'] > 0: cls['subclass'] = [str(cl)+"_subcl" for cl in cls['class']] cls['subclass'] = rename_same_subcl(cls['class'],cls['subclass']) # if 'subclass' in cls.keys(): cls = group_small_subclasses(cls,params['subcl_min_card']) class_sl,subclass_sl,class_hierarchy = get_class_slices(zip(*cls.values())) feats = dict([(d[0],d[1:]) for d in data]) feats = add_missing_levels(feats) feats = numerical_values(feats,params['norm_v']) out = {} out['feats'] = feats out['norm'] = params['norm_v'] out['cls'] = cls out['class_sl'] = class_sl out['subclass_sl'] = subclass_sl out['class_hierarchy'] = class_hierarchy if params['output_table']: with open( params['output_table'], "w") as outf: if 'class' in cls: outf.write( "\t".join(list(["class"])+list(cls['class'])) + "\n" ) if 'subclass' in cls: outf.write( "\t".join(list(["subclass"])+list(cls['subclass'])) + "\n" ) if 'subject' in cls: outf.write( "\t".join(list(["subject"])+list(cls['subject'])) + "\n" ) for k,v in out['feats'].items(): outf.write( "\t".join([k]+[str(vv) for vv in v]) + "\n" ) with open(params['output_file'], 'wb') as back_file: pickle.dump(out,back_file)