Mercurial > repos > george-weingart > maaslin
comparison src/test-AnalysisModules/test-AnalysisModules.R @ 8:e9677425c6c3 default tip
Updated the structure of the libraries
| author | george.weingart@gmail.com |
|---|---|
| date | Mon, 09 Feb 2015 12:17:40 -0500 |
| parents | e0b5980139d9 |
| children |
comparison
equal
deleted
inserted
replaced
| 7:c72e14eabb08 | 8:e9677425c6c3 |
|---|---|
| 1 c_strDir <- file.path(getwd( ),"..") | |
| 2 | |
| 3 source(file.path(c_strDir,"lib","Constants.R")) | |
| 4 source(file.path(c_strDir,"lib","Utility.R")) | |
| 5 | |
| 6 #Test Utilities | |
| 7 context("Test funcGetLMResults") | |
| 8 context("Test funcGetStepPredictors") | |
| 9 | |
| 10 context("Test funcMakeContrasts") | |
| 11 covX1 = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) | |
| 12 covX2 = c(144.4, 245.9, 141.9, 253.3, 144.7, 244.1, 150.7, 245.2, 160.1) | |
| 13 covX3 = as.factor(c(1,2,3,1,2,3,1,2,3)) | |
| 14 covX4 = as.factor(c(1,1,1,1,2,2,2,2,2)) | |
| 15 covX5 = as.factor(c(1,2,1,2,1,2,1,2,1)) | |
| 16 covY = c(.26, .31, .25, .50, .36, .40, .52, .28, .38) | |
| 17 frmeTmp = data.frame(Covariate1=covX1, Covariate2=covX2, Covariate3=covX3, Covariate4=covX4, Covariate5=covX5, adCur= covY) | |
| 18 iTaxon = 6 | |
| 19 #Add in updating QC errors | |
| 20 #Add in random covariates | |
| 21 strFormula = "adCur ~ Covariate1" | |
| 22 strRandomFormula = NULL | |
| 23 lsSig = list() | |
| 24 lsSig[[1]] = list() | |
| 25 lsSig[[1]]$name = "Covariate1" | |
| 26 lsSig[[1]]$orig = "Covariate1" | |
| 27 lsSig[[1]]$taxon = "adCur" | |
| 28 lsSig[[1]]$data = covY | |
| 29 lsSig[[1]]$factors = "Covariate1" | |
| 30 lsSig[[1]]$metadata = covX1 | |
| 31 vdCoef = c(Covariate1=0.6) | |
| 32 lsSig[[1]]$value = vdCoef | |
| 33 lsSig[[1]]$std = sd(covX1) | |
| 34 lsSig[[1]]$allCoefs = vdCoef | |
| 35 ret1 = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, | |
| 36 functionContrast=function(x,adCur,dfData) | |
| 37 { | |
| 38 retList = list() | |
| 39 ret = cor.test(as.formula(paste("~",x,"+ adCur")), data=dfData, method="spearman", na.action=c_strNA_Action) | |
| 40 #Returning rho for the coef in a named vector | |
| 41 vdCoef = c() | |
| 42 vdCoef[[x]]=ret$estimate | |
| 43 retList[[1]]=list(p.value=ret$p.value,SD=sd(dfData[[x]]),name=x,coef=vdCoef) | |
| 44 return(retList) | |
| 45 }, lsQCCounts=list()) | |
| 46 ret1$adP = round(ret1$adP,5) | |
| 47 test_that("1. Test that the funcMakeContrasts works on a continuous variable.",{ | |
| 48 expect_equal(ret1,list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list()))}) | |
| 49 | |
| 50 strFormula = "adCur ~ Covariate1 + Covariate2" | |
| 51 strRandomFormula = NULL | |
| 52 lsSig = list() | |
| 53 lsSig[[1]] = list() | |
| 54 lsSig[[1]]$name = "Covariate1" | |
| 55 lsSig[[1]]$orig = "Covariate1" | |
| 56 lsSig[[1]]$taxon = "adCur" | |
| 57 lsSig[[1]]$data = covY | |
| 58 lsSig[[1]]$factors = "Covariate1" | |
| 59 lsSig[[1]]$metadata = covX1 | |
| 60 vdCoef = c(Covariate1=0.6) | |
| 61 lsSig[[1]]$value = vdCoef | |
| 62 lsSig[[1]]$std = sd(covX1) | |
| 63 lsSig[[1]]$allCoefs = vdCoef | |
| 64 lsSig[[2]] = list() | |
| 65 lsSig[[2]]$name = "Covariate2" | |
| 66 lsSig[[2]]$orig = "Covariate2" | |
| 67 lsSig[[2]]$taxon = "adCur" | |
| 68 lsSig[[2]]$data = covY | |
| 69 lsSig[[2]]$factors = "Covariate2" | |
| 70 lsSig[[2]]$metadata = covX2 | |
| 71 vdCoef = c(Covariate2=0.46666667) | |
| 72 lsSig[[2]]$value = vdCoef | |
| 73 lsSig[[2]]$std = sd(covX2) | |
| 74 lsSig[[2]]$allCoefs = vdCoef | |
| 75 ret1 = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, | |
| 76 functionContrast=function(x,adCur,dfData) | |
| 77 { | |
| 78 retList = list() | |
| 79 ret = cor.test(as.formula(paste("~",x,"+ adCur")), data=dfData, method="spearman", na.action=c_strNA_Action) | |
| 80 #Returning rho for the coef in a named vector | |
| 81 vdCoef = c() | |
| 82 vdCoef[[x]]=ret$estimate | |
| 83 retList[[1]]=list(p.value=ret$p.value,SD=sd(dfData[[x]]),name=x,coef=vdCoef) | |
| 84 return(retList) | |
| 85 }, lsQCCounts=list()) | |
| 86 ret1$adP = round(ret1$adP,5) | |
| 87 test_that("Test that the funcMakeContrasts works on 2 continuous variables.",{ | |
| 88 expect_equal(ret1,list(adP=round(c(0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list()))}) | |
| 89 | |
| 90 strFormula = "adCur ~ Covariate4" | |
| 91 strRandomFormula = NULL | |
| 92 lsSig = list() | |
| 93 lsSig[[1]] = list() | |
| 94 lsSig[[1]]$name = "Covariate4" | |
| 95 lsSig[[1]]$orig = "Covariate42" | |
| 96 lsSig[[1]]$taxon = "adCur" | |
| 97 lsSig[[1]]$data = covY | |
| 98 lsSig[[1]]$factors = "Covariate4" | |
| 99 lsSig[[1]]$metadata = covX4 #update | |
| 100 vdCoef = c(Covariate42=NA) | |
| 101 lsSig[[1]]$value = vdCoef | |
| 102 lsSig[[1]]$std = sd(covX4) #update | |
| 103 lsSig[[1]]$allCoefs = vdCoef | |
| 104 # Get return | |
| 105 rets = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, | |
| 106 functionContrast=function(x,adCur,dfData) | |
| 107 { | |
| 108 retList = list() | |
| 109 lmodKW = kruskal(adCur,dfData[[x]],group=FALSE,p.adj="holm") | |
| 110 asLevels = levels(dfData[[x]]) | |
| 111 # The names of the generated comparisons, sometimes the control is first sometimes it is not so | |
| 112 # We will just check which is in the names and use that | |
| 113 asComparisons = row.names(lmodKW$comparisons) | |
| 114 #Get the comparison with the control | |
| 115 for(sLevel in asLevels[2:length(asLevels)]) | |
| 116 { | |
| 117 sComparison = intersect(c(paste(asLevels[1],sLevel,sep=" - "),paste(sLevel,asLevels[1],sep=" - ")),asComparisons) | |
| 118 #Returning NA for the coef in a named vector | |
| 119 vdCoef = c() | |
| 120 vdCoef[[paste(x,sLevel,sep="")]]=NA | |
| 121 retList[[length(retList)+1]]=list(p.value=lmodKW$comparisons[sComparison,"p.value"],SD=NA,name=paste(x,sLevel,sep=""),coef=vdCoef) | |
| 122 } | |
| 123 return(retList) | |
| 124 }, lsQCCounts=list()) | |
| 125 rets$adP=round(rets$adP,digits=5) | |
| 126 test_that("Test that the funcMakeContrasts works on 1 factor covariate with 2 levels.",{ | |
| 127 expect_equal(rets,list(adP=round(c(0.24434),5),lsSig=lsSig,lsQCCounts=list()))}) | |
| 128 | |
| 129 strFormula = "adCur ~ Covariate3" | |
| 130 strRandomFormula = NULL | |
| 131 lsSig = list() | |
| 132 lsSig[[1]] = list() | |
| 133 lsSig[[1]]$name = "Covariate3" | |
| 134 lsSig[[1]]$orig = "Covariate32" | |
| 135 lsSig[[1]]$taxon = "adCur" | |
| 136 lsSig[[1]]$data = covY | |
| 137 lsSig[[1]]$factors = "Covariate3" | |
| 138 lsSig[[1]]$metadata = covX3 #update | |
| 139 vdCoef = c(Covariate32=NA) | |
| 140 lsSig[[1]]$value = vdCoef | |
| 141 lsSig[[1]]$std = sd(covX3) #update | |
| 142 lsSig[[1]]$allCoefs = vdCoef | |
| 143 lsSig[[2]] = list() | |
| 144 lsSig[[2]]$name = "Covariate3" | |
| 145 lsSig[[2]]$orig = "Covariate33" | |
| 146 lsSig[[2]]$taxon = "adCur" | |
| 147 lsSig[[2]]$data = covY | |
| 148 lsSig[[2]]$factors = "Covariate3" | |
| 149 lsSig[[2]]$metadata = covX3 #update | |
| 150 vdCoef = c(Covariate33=NA) | |
| 151 lsSig[[2]]$value = vdCoef | |
| 152 lsSig[[2]]$std = sd(covX3) #update | |
| 153 lsSig[[2]]$allCoefs = vdCoef | |
| 154 ret1 = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, | |
| 155 functionContrast=function(x,adCur,dfData) | |
| 156 { | |
| 157 retList = list() | |
| 158 lmodKW = kruskal(adCur,dfData[[x]],group=FALSE,p.adj="holm") | |
| 159 asLevels = levels(dfData[[x]]) | |
| 160 # The names of the generated comparisons, sometimes the control is first sometimes it is not so | |
| 161 # We will just check which is in the names and use that | |
| 162 asComparisons = row.names(lmodKW$comparisons) | |
| 163 #Get the comparison with the control | |
| 164 for(sLevel in asLevels[2:length(asLevels)]) | |
| 165 { | |
| 166 sComparison = intersect(c(paste(asLevels[1],sLevel,sep=" - "),paste(sLevel,asLevels[1],sep=" - ")),asComparisons) | |
| 167 #Returning NA for the coef in a named vector | |
| 168 vdCoef = c() | |
| 169 vdCoef[[paste(x,sLevel,sep="")]]=NA | |
| 170 retList[[length(retList)+1]]=list(p.value=lmodKW$comparisons[sComparison,"p.value"],SD=NA,name=paste(x,sLevel,sep=""),coef=vdCoef) | |
| 171 } | |
| 172 return(retList) | |
| 173 }, lsQCCounts=list()) | |
| 174 ret1$adP = round(ret1$adP,5) | |
| 175 test_that("Test that the funcMakeContrasts works on 1 factor covariate with 3 levels.",{ | |
| 176 expect_equal(ret1,list(adP=c(1.0,1.0),lsSig=lsSig,lsQCCounts=list()))}) | |
| 177 | |
| 178 strFormula = "adCur ~ Covariate4 + Covariate5" | |
| 179 strRandomFormula = NULL | |
| 180 lsSig = list() | |
| 181 lsSig[[1]] = list() | |
| 182 lsSig[[1]]$name = "Covariate4" | |
| 183 lsSig[[1]]$orig = "Covariate42" | |
| 184 lsSig[[1]]$taxon = "adCur" | |
| 185 lsSig[[1]]$data = covY | |
| 186 lsSig[[1]]$factors = "Covariate4" | |
| 187 lsSig[[1]]$metadata = covX4 #update | |
| 188 vdCoef = c(Covariate42=NA) | |
| 189 lsSig[[1]]$value = vdCoef | |
| 190 lsSig[[1]]$std = sd(covX4) #update | |
| 191 lsSig[[1]]$allCoefs = vdCoef | |
| 192 lsSig[[2]] = list() | |
| 193 lsSig[[2]]$name = "Covariate5" | |
| 194 lsSig[[2]]$orig = "Covariate52" | |
| 195 lsSig[[2]]$taxon = "adCur" | |
| 196 lsSig[[2]]$data = covY | |
| 197 lsSig[[2]]$factors = "Covariate5" | |
| 198 lsSig[[2]]$metadata = covX5 #update | |
| 199 vdCoef = c(Covariate52=NA) | |
| 200 lsSig[[2]]$value = vdCoef | |
| 201 lsSig[[2]]$std = sd(covX5) #update | |
| 202 lsSig[[2]]$allCoefs = vdCoef | |
| 203 ret1 = funcMakeContrasts(strFormula=strFormula, strRandomFormula=strRandomFormula, frmeTmp=frmeTmp, iTaxon=iTaxon, | |
| 204 functionContrast=function(x,adCur,dfData) | |
| 205 { | |
| 206 retList = list() | |
| 207 lmodKW = kruskal(adCur,dfData[[x]],group=FALSE,p.adj="holm") | |
| 208 asLevels = levels(dfData[[x]]) | |
| 209 # The names of the generated comparisons, sometimes the control is first sometimes it is not so | |
| 210 # We will just check which is in the names and use that | |
| 211 asComparisons = row.names(lmodKW$comparisons) | |
| 212 #Get the comparison with the control | |
| 213 for(sLevel in asLevels[2:length(asLevels)]) | |
| 214 { | |
| 215 sComparison = intersect(c(paste(asLevels[1],sLevel,sep=" - "),paste(sLevel,asLevels[1],sep=" - ")),asComparisons) | |
| 216 #Returning NA for the coef in a named vector | |
| 217 vdCoef = c() | |
| 218 vdCoef[[paste(x,sLevel,sep="")]]=NA | |
| 219 retList[[length(retList)+1]]=list(p.value=lmodKW$comparisons[sComparison,"p.value"],SD=NA,name=paste(x,sLevel,sep=""),coef=vdCoef) | |
| 220 } | |
| 221 return(retList) | |
| 222 }, lsQCCounts=list()) | |
| 223 ret1$adP = round(ret1$adP,5) | |
| 224 test_that("1. Test that the funcMakeContrasts works on 2 factor covariate with 2 levels.",{ | |
| 225 expect_equal(ret1,list(adP=round(c(0.24434,0.655852),5),lsSig=lsSig,lsQCCounts=list()))}) | |
| 226 | |
| 227 | |
| 228 #Test Model selection | |
| 229 | |
| 230 | |
| 231 context("Test funcBoostModel") | |
| 232 context("Test funcForwardModel") | |
| 233 context("Test funcBackwardsModel") | |
| 234 | |
| 235 | |
| 236 #Test Univariates | |
| 237 context("Test funcSpearman") | |
| 238 strFormula = "adCur ~ Covariate1" | |
| 239 adCur = c(.26, .31, .25, .50, .36, .40, .52, .28, .38) | |
| 240 x = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) | |
| 241 frmeTmp = data.frame(Covariate1=x, adCur=adCur) | |
| 242 iTaxon = 2 | |
| 243 lsQCCounts = list() | |
| 244 lsSig = list() | |
| 245 lsSig[[1]] = list() | |
| 246 lsSig[[1]]$name = "Covariate1" | |
| 247 lsSig[[1]]$orig = "Covariate1" | |
| 248 lsSig[[1]]$taxon = "adCur" | |
| 249 lsSig[[1]]$data = adCur | |
| 250 lsSig[[1]]$factors = "Covariate1" | |
| 251 lsSig[[1]]$metadata = x | |
| 252 vdCoef = c(Covariate1=0.6) | |
| 253 lsSig[[1]]$value = vdCoef | |
| 254 lsSig[[1]]$std = sd(x) | |
| 255 lsSig[[1]]$allCoefs = vdCoef | |
| 256 ret1 = funcSpearman(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsQCCounts=lsQCCounts,strRandomFormula=NULL) | |
| 257 ret1$adP = round(ret1$adP,5) | |
| 258 test_that("Test that the spearman test has the correct results for 1 covariate.",{ | |
| 259 expect_equal(ret1,list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())) | |
| 260 }) | |
| 261 | |
| 262 strFormula = "adCur ~ Covariate1 + Covariate2" | |
| 263 frmeTmp = data.frame(Covariate1=x, Covariate2=x, adCur=adCur) | |
| 264 iTaxon = 3 | |
| 265 lsSig = list() | |
| 266 lsSig[[1]] = list() | |
| 267 lsSig[[1]]$name = "Covariate1" | |
| 268 lsSig[[1]]$orig = "Covariate1" | |
| 269 lsSig[[1]]$taxon = "adCur" | |
| 270 lsSig[[1]]$data = adCur | |
| 271 lsSig[[1]]$factors = "Covariate1" | |
| 272 lsSig[[1]]$metadata = x | |
| 273 vdCoef = c(Covariate1=0.6) | |
| 274 lsSig[[1]]$value = vdCoef | |
| 275 lsSig[[1]]$std = sd(x) | |
| 276 lsSig[[1]]$allCoefs = vdCoef | |
| 277 lsSig[[2]] = list() | |
| 278 lsSig[[2]]$name = "Covariate2" | |
| 279 lsSig[[2]]$orig = "Covariate2" | |
| 280 lsSig[[2]]$taxon = "adCur" | |
| 281 lsSig[[2]]$data = adCur | |
| 282 lsSig[[2]]$factors = "Covariate2" | |
| 283 lsSig[[2]]$metadata = x | |
| 284 vdCoef = c(Covariate2=0.6) | |
| 285 lsSig[[2]]$value = vdCoef | |
| 286 lsSig[[2]]$std = sd(x) | |
| 287 lsSig[[2]]$allCoefs = vdCoef | |
| 288 lsQCCounts = list() | |
| 289 ret1 = funcSpearman(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsQCCounts=lsQCCounts,strRandomFormula=NULL) | |
| 290 ret1$adP = round(ret1$adP,5) | |
| 291 test_that("Test that the spearman test has the correct results for 2 covariates.",{ | |
| 292 expect_equal(ret1,list(adP=round(c(0.09679784,0.09679784),5),lsSig=lsSig,lsQCCounts=list())) | |
| 293 }) | |
| 294 | |
| 295 | |
| 296 context("Test funcWilcoxon") | |
| 297 strFormula = "adCur ~ Covariate1" | |
| 298 x = c(TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE) | |
| 299 frmeTmp = data.frame(Covariate1=x, adCur=adCur) | |
| 300 iTaxon = 2 | |
| 301 lsSig = list() | |
| 302 lsSig[[1]] = list() | |
| 303 lsSig[[1]]$name = "Covariate1" | |
| 304 lsSig[[1]]$orig = "Covariate1" | |
| 305 lsSig[[1]]$taxon = "adCur" | |
| 306 lsSig[[1]]$data = adCur | |
| 307 lsSig[[1]]$factors = "Covariate1" | |
| 308 lsSig[[1]]$metadata = x | |
| 309 vdCoef = c(Covariate1=13) | |
| 310 lsSig[[1]]$value = vdCoef | |
| 311 lsSig[[1]]$std = sd(x) | |
| 312 lsSig[[1]]$allCoefs = vdCoef | |
| 313 lsQCCounts = list() | |
| 314 ret1 = funcWilcoxon(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsQCCounts=lsQCCounts,strRandomFormula=NULL) | |
| 315 ret1$adP = round(ret1$adP,5) | |
| 316 test_that("Test that the wilcoxon test has the correct results for 1 covariate.",{ | |
| 317 expect_equal(ret1,list(adP=round(c(0.55555556),5),lsSig=lsSig,lsQCCounts=list())) | |
| 318 }) | |
| 319 | |
| 320 | |
| 321 context("Test funcKruskalWallis") | |
| 322 strFormula = "adCur ~ Covariate1" | |
| 323 x = as.factor(c("one","two","three","one","one","three","two","three","two")) | |
| 324 frmeTmp = data.frame(Covariate1=x, adCur=adCur) | |
| 325 iTaxon = 2 | |
| 326 lsSig = list() | |
| 327 lsSig[[1]] = list() | |
| 328 lsSig[[1]]$name = "Covariate1" | |
| 329 lsSig[[1]]$orig = "Covariate1three" | |
| 330 lsSig[[1]]$taxon = "adCur" | |
| 331 lsSig[[1]]$data = adCur | |
| 332 lsSig[[1]]$factors = "Covariate1" | |
| 333 lsSig[[1]]$metadata = x | |
| 334 vdCoef = c(Covariate1three=NA) | |
| 335 lsSig[[1]]$value = vdCoef | |
| 336 lsSig[[1]]$std = sd(x) | |
| 337 lsSig[[1]]$allCoefs = vdCoef | |
| 338 lsSig[[2]] = list() | |
| 339 lsSig[[2]]$name = "Covariate1" | |
| 340 lsSig[[2]]$orig = "Covariate1two" | |
| 341 lsSig[[2]]$taxon = "adCur" | |
| 342 lsSig[[2]]$data = adCur | |
| 343 lsSig[[2]]$factors = "Covariate1" | |
| 344 lsSig[[2]]$metadata = x | |
| 345 vdCoef = c(Covariate1two=NA) | |
| 346 lsSig[[2]]$value = vdCoef | |
| 347 lsSig[[2]]$std = sd(x) | |
| 348 lsSig[[2]]$allCoefs = vdCoef | |
| 349 lsQCCounts = list() | |
| 350 ret1 = funcKruskalWallis(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsQCCounts=lsQCCounts,strRandomFormula=NULL) | |
| 351 ret1$adP = round(ret1$adP,5) | |
| 352 test_that("Test that the Kruskal Wallis (Nonparameteric anova) has the correct results for 1 covariate.",{ | |
| 353 expect_equal(ret1,list(adP=c(1.0,1.0),lsSig=lsSig,lsQCCounts=list())) | |
| 354 }) | |
| 355 | |
| 356 | |
| 357 context("test funcDoUnivariate") | |
| 358 covX1 = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) | |
| 359 covX2 = c(144.4, 245.9, 141.9, 253.3, 144.7, 244.1, 150.7, 245.2, 160.1) | |
| 360 covX3 = as.factor(c(1,2,3,1,2,3,1,2,3)) | |
| 361 covX4 = as.factor(c(1,1,1,1,2,2,2,2,2)) | |
| 362 covX5 = as.factor(c(1,2,1,2,1,2,1,2,1)) | |
| 363 covX6 = as.factor(c("one","two","three","one","one","three","two","three","two")) | |
| 364 covY = c(.26, .31, .25, .50, .36, .40, .52, .28, .38) | |
| 365 frmeTmp = data.frame(Covariate1=covX1, Covariate2=covX2, Covariate3=covX3, Covariate4=covX4, Covariate5=covX5, Covariate6=covX6, adCur= covY) | |
| 366 iTaxon = 7 | |
| 367 # 1 cont answer | |
| 368 lsSig = list() | |
| 369 lsSig[[1]] = list() | |
| 370 lsSig[[1]]$name = "Covariate1" | |
| 371 lsSig[[1]]$orig = "Covariate1" | |
| 372 lsSig[[1]]$taxon = "adCur" | |
| 373 lsSig[[1]]$data = adCur | |
| 374 lsSig[[1]]$factors = "Covariate1" | |
| 375 lsSig[[1]]$metadata = frmeTmp[["Covariate1"]] | |
| 376 vdCoef = c(Covariate1=0.6) | |
| 377 lsSig[[1]]$value = vdCoef | |
| 378 lsSig[[1]]$std = sd(frmeTmp[["Covariate1"]]) | |
| 379 lsSig[[1]]$allCoefs = vdCoef | |
| 380 lsHistory = list(adP=c(), lsSig=c(),lsQCCounts=list()) | |
| 381 ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate1",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) | |
| 382 ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate1") | |
| 383 ret1$adP = round(ret1$adP,5) | |
| 384 ret2$adP = round(ret2$adP,5) | |
| 385 print("ret1") | |
| 386 print(ret1) | |
| 387 print("list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())") | |
| 388 print(list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())) | |
| 389 test_that("2. Test that the funcMakeContrasts works on a continuous variable.",{ | |
| 390 expect_equal(ret1,list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())) | |
| 391 expect_equal(ret2,list(adP=round(c(0.09679784),5),lsSig=lsSig,lsQCCounts=list())) | |
| 392 }) | |
| 393 lsSig[[2]] = list() | |
| 394 lsSig[[2]]$name = "Covariate2" | |
| 395 lsSig[[2]]$orig = "Covariate2" | |
| 396 lsSig[[2]]$taxon = "adCur" | |
| 397 lsSig[[2]]$data = adCur | |
| 398 lsSig[[2]]$factors = "Covariate2" | |
| 399 lsSig[[2]]$metadata = frmeTmp[["Covariate2"]] | |
| 400 vdCoef = c(Covariate2=0.46666667) | |
| 401 lsSig[[2]]$value = vdCoef | |
| 402 lsSig[[2]]$std = sd(frmeTmp[["Covariate2"]]) | |
| 403 lsSig[[2]]$allCoefs = vdCoef | |
| 404 ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate1 + Covariate2",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory,strRandomFormula=NULL) | |
| 405 ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate1 + 1|Covariate2") | |
| 406 ret1$adP = round(ret1$adP,5) | |
| 407 ret2$adP = round(ret2$adP,5) | |
| 408 test_that("Test that the funcMakeContrasts works on 2 continuous variables.",{ | |
| 409 expect_equal(ret1,list(adP=round(c(0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 410 expect_equal(ret2,list(adP=round(c(0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 411 }) | |
| 412 lsSig = list() | |
| 413 lsSig[[1]] = list() | |
| 414 lsSig[[1]]$name = "Covariate4" | |
| 415 lsSig[[1]]$orig = "Covariate4" | |
| 416 lsSig[[1]]$taxon = "adCur" | |
| 417 lsSig[[1]]$data = adCur | |
| 418 lsSig[[1]]$factors = "Covariate4" | |
| 419 lsSig[[1]]$metadata = frmeTmp[["Covariate4"]] | |
| 420 vdCoef = c(Covariate4=5) | |
| 421 lsSig[[1]]$value = vdCoef | |
| 422 lsSig[[1]]$std = sd(frmeTmp[["Covariate4"]]) | |
| 423 lsSig[[1]]$allCoefs = vdCoef | |
| 424 ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory,strRandomFormula=NULL) | |
| 425 ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4") | |
| 426 ret1$adP = round(ret1$adP,5) | |
| 427 ret2$adP = round(ret2$adP,5) | |
| 428 test_that("Test that the funcMakeContrasts works on 1 factor covariate with 2 levels.",{ | |
| 429 expect_equal(ret1,list(adP=round(c(0.2857143),5),lsSig=lsSig,lsQCCounts=list())) | |
| 430 expect_equal(ret2,list(adP=round(c(0.2857143),5),lsSig=lsSig,lsQCCounts=list())) | |
| 431 }) | |
| 432 lsSig[[2]] = list() | |
| 433 lsSig[[2]]$name = "Covariate5" | |
| 434 lsSig[[2]]$orig = "Covariate5" | |
| 435 lsSig[[2]]$taxon = "adCur" | |
| 436 lsSig[[2]]$data = adCur | |
| 437 lsSig[[2]]$factors = "Covariate5" | |
| 438 lsSig[[2]]$metadata = frmeTmp[["Covariate5"]] | |
| 439 vdCoef = c(Covariate5=8) | |
| 440 lsSig[[2]]$value = vdCoef | |
| 441 lsSig[[2]]$std = sd(frmeTmp[["Covariate5"]]) | |
| 442 lsSig[[2]]$allCoefs = vdCoef | |
| 443 ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4 + Covariate5",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) | |
| 444 ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4 + 1|Covariate5") | |
| 445 ret3 = funcDoUnivariate(strFormula="adCur ~ Covariate4",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate5") | |
| 446 ret1$adP = round(ret1$adP,5) | |
| 447 ret2$adP = round(ret2$adP,5) | |
| 448 ret3$adP = round(ret3$adP,5) | |
| 449 test_that("2. Test that the funcMakeContrasts works on 2 factor covariate with 2 levels.",{ | |
| 450 expect_equal(ret1,list(adP=round(c(0.2857143,0.73016),5),lsSig=lsSig,lsQCCounts=list())) | |
| 451 expect_equal(ret2,list(adP=round(c(0.2857143,0.73016),5),lsSig=lsSig,lsQCCounts=list())) | |
| 452 expect_equal(ret3,list(adP=round(c(0.2857143,0.73016),5),lsSig=lsSig,lsQCCounts=list())) | |
| 453 }) | |
| 454 lsSig = list() | |
| 455 lsSig[[1]] = list() | |
| 456 lsSig[[1]]$name = "Covariate4" | |
| 457 lsSig[[1]]$orig = "Covariate4" | |
| 458 lsSig[[1]]$taxon = "adCur" | |
| 459 lsSig[[1]]$data = adCur | |
| 460 lsSig[[1]]$factors = "Covariate4" | |
| 461 lsSig[[1]]$metadata = frmeTmp[["Covariate4"]] | |
| 462 vdCoef = c(Covariate4=5) | |
| 463 lsSig[[1]]$value = vdCoef | |
| 464 lsSig[[1]]$std = sd(frmeTmp[["Covariate4"]]) | |
| 465 lsSig[[1]]$allCoefs = vdCoef | |
| 466 lsSig[[2]] = list() | |
| 467 lsSig[[2]]$name = "Covariate1" | |
| 468 lsSig[[2]]$orig = "Covariate1" | |
| 469 lsSig[[2]]$taxon = "adCur" | |
| 470 lsSig[[2]]$data = adCur | |
| 471 lsSig[[2]]$factors = "Covariate1" | |
| 472 lsSig[[2]]$metadata = frmeTmp[["Covariate1"]] | |
| 473 vdCoef = c(Covariate1=0.6) | |
| 474 lsSig[[2]]$value = vdCoef | |
| 475 lsSig[[2]]$std = sd(frmeTmp[["Covariate1"]]) | |
| 476 lsSig[[2]]$allCoefs = vdCoef | |
| 477 ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4 + Covariate1",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) | |
| 478 ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4 + 1|Covariate1") | |
| 479 ret3 = funcDoUnivariate(strFormula="adCur ~ Covariate4",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate1") | |
| 480 ret1$adP = round(ret1$adP,5) | |
| 481 ret2$adP = round(ret2$adP,5) | |
| 482 ret3$adP = round(ret3$adP,5) | |
| 483 test_that("Test that the funcMakeContrasts works on 1 factor covariate with 2 levels and a continuous variable.",{ | |
| 484 expect_equal(ret1,list(adP=round(c(0.2857143,0.09679784),5),lsSig=lsSig,lsQCCounts=list())) | |
| 485 expect_equal(ret2,list(adP=round(c(0.2857143,0.09679784),5),lsSig=lsSig,lsQCCounts=list())) | |
| 486 expect_equal(ret3,list(adP=round(c(0.2857143,0.09679784),5),lsSig=lsSig,lsQCCounts=list())) | |
| 487 }) | |
| 488 lsSig = list() | |
| 489 lsSig[[1]] = list() | |
| 490 lsSig[[1]]$name = "Covariate3" | |
| 491 lsSig[[1]]$orig = "Covariate32" | |
| 492 lsSig[[1]]$taxon = "adCur" | |
| 493 lsSig[[1]]$data = adCur | |
| 494 lsSig[[1]]$factors = "Covariate3" | |
| 495 lsSig[[1]]$metadata = frmeTmp[["Covariate3"]] | |
| 496 vdCoef = c(Covariate32=NA) | |
| 497 lsSig[[1]]$value = vdCoef | |
| 498 lsSig[[1]]$std = sd(frmeTmp[["Covariate3"]]) | |
| 499 lsSig[[1]]$allCoefs = vdCoef | |
| 500 lsSig[[2]] = list() | |
| 501 lsSig[[2]]$name = "Covariate3" | |
| 502 lsSig[[2]]$orig = "Covariate33" | |
| 503 lsSig[[2]]$taxon = "adCur" | |
| 504 lsSig[[2]]$data = adCur | |
| 505 lsSig[[2]]$factors = "Covariate3" | |
| 506 lsSig[[2]]$metadata = frmeTmp[["Covariate3"]] | |
| 507 vdCoef = c(Covariate33=NA) | |
| 508 lsSig[[2]]$value = vdCoef | |
| 509 lsSig[[2]]$std = sd(frmeTmp[["Covariate3"]]) | |
| 510 lsSig[[2]]$allCoefs = vdCoef | |
| 511 lsSig[[3]] = list() | |
| 512 lsSig[[3]]$name = "Covariate1" | |
| 513 lsSig[[3]]$orig = "Covariate1" | |
| 514 lsSig[[3]]$taxon = "adCur" | |
| 515 lsSig[[3]]$data = adCur | |
| 516 lsSig[[3]]$factors = "Covariate1" | |
| 517 lsSig[[3]]$metadata = frmeTmp[["Covariate1"]] | |
| 518 vdCoef = c(Covariate1=0.6) | |
| 519 lsSig[[3]]$value = vdCoef | |
| 520 lsSig[[3]]$std = sd(frmeTmp[["Covariate1"]]) | |
| 521 lsSig[[3]]$allCoefs = vdCoef | |
| 522 lsSig[[4]] = list() | |
| 523 lsSig[[4]]$name = "Covariate2" | |
| 524 lsSig[[4]]$orig = "Covariate2" | |
| 525 lsSig[[4]]$taxon = "adCur" | |
| 526 lsSig[[4]]$data = adCur | |
| 527 lsSig[[4]]$factors = "Covariate2" | |
| 528 lsSig[[4]]$metadata = frmeTmp[["Covariate2"]] | |
| 529 vdCoef = c(Covariate2=0.46666667) | |
| 530 lsSig[[4]]$value = vdCoef | |
| 531 lsSig[[4]]$std = sd(frmeTmp[["Covariate2"]]) | |
| 532 lsSig[[4]]$allCoefs = vdCoef | |
| 533 ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate3 + Covariate1 + Covariate2",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) | |
| 534 ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate3 + 1|Covariate1 + 1|Covariate2") | |
| 535 ret3 = funcDoUnivariate(strFormula="adCur ~ Covariate3 + Covariate1",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate2") | |
| 536 ret1$adP = round(ret1$adP,5) | |
| 537 ret2$adP = round(ret2$adP,5) | |
| 538 ret3$adP = round(ret3$adP,5) | |
| 539 test_that("Test that the funcMakeContrasts works on 1 factor covariate with 3 levels and 2 continuous variables.",{ | |
| 540 expect_equal(ret1,list(adP=round(c(1.0,1.0,0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 541 expect_equal(ret2,list(adP=round(c(1.0,1.0,0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 542 expect_equal(ret3,list(adP=round(c(1.0,1.0,0.09679784,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 543 }) | |
| 544 lsSig = list() | |
| 545 lsSig[[1]] = list() | |
| 546 lsSig[[1]]$name = "Covariate4" | |
| 547 lsSig[[1]]$orig = "Covariate4" | |
| 548 lsSig[[1]]$taxon = "adCur" | |
| 549 lsSig[[1]]$data = adCur | |
| 550 lsSig[[1]]$factors = "Covariate4" | |
| 551 lsSig[[1]]$metadata = frmeTmp[["Covariate4"]] | |
| 552 vdCoef = c(Covariate4=5) | |
| 553 lsSig[[1]]$value = vdCoef | |
| 554 lsSig[[1]]$std = sd(frmeTmp[["Covariate4"]]) | |
| 555 lsSig[[1]]$allCoefs = vdCoef | |
| 556 lsSig[[2]] = list() | |
| 557 lsSig[[2]]$name = "Covariate2" | |
| 558 lsSig[[2]]$orig = "Covariate2" | |
| 559 lsSig[[2]]$taxon = "adCur" | |
| 560 lsSig[[2]]$data = adCur | |
| 561 lsSig[[2]]$factors = "Covariate2" | |
| 562 lsSig[[2]]$metadata = frmeTmp[["Covariate2"]] | |
| 563 vdCoef = c(Covariate2=0.46666667) | |
| 564 lsSig[[2]]$value = vdCoef | |
| 565 lsSig[[2]]$std = sd(frmeTmp[["Covariate2"]]) | |
| 566 lsSig[[2]]$allCoefs = vdCoef | |
| 567 ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4 + Covariate2",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) | |
| 568 ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4 + 1|Covariate2") | |
| 569 ret3 = funcDoUnivariate(strFormula= "adCur ~ Covariate4",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate2") | |
| 570 ret1$adP = round(ret1$adP,5) | |
| 571 ret2$adP = round(ret2$adP,5) | |
| 572 ret3$adP = round(ret3$adP,5) | |
| 573 test_that("3. Test that the funcMakeContrasts works on 2 factor covariate with 2 levels and a continuous variable.",{ | |
| 574 expect_equal(ret1,list(adP=round(c(0.2857143,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 575 expect_equal(ret2,list(adP=round(c(0.2857143,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 576 expect_equal(ret3,list(adP=round(c(0.2857143,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 577 }) | |
| 578 lsSig = list() | |
| 579 lsSig[[1]] = list() | |
| 580 lsSig[[1]]$name = "Covariate4" | |
| 581 lsSig[[1]]$orig = "Covariate4" | |
| 582 lsSig[[1]]$taxon = "adCur" | |
| 583 lsSig[[1]]$data = adCur | |
| 584 lsSig[[1]]$factors = "Covariate4" | |
| 585 lsSig[[1]]$metadata = frmeTmp[["Covariate4"]] | |
| 586 vdCoef = c(Covariate4=5) | |
| 587 lsSig[[1]]$value = vdCoef | |
| 588 lsSig[[1]]$std = sd(frmeTmp[["Covariate4"]]) | |
| 589 lsSig[[1]]$allCoefs = vdCoef | |
| 590 lsSig[[2]] = list() | |
| 591 lsSig[[2]]$name = "Covariate3" | |
| 592 lsSig[[2]]$orig = "Covariate32" | |
| 593 lsSig[[2]]$taxon = "adCur" | |
| 594 lsSig[[2]]$data = adCur | |
| 595 lsSig[[2]]$factors = "Covariate3" | |
| 596 lsSig[[2]]$metadata = frmeTmp[["Covariate3"]] | |
| 597 vdCoef = c(Covariate32=NA) | |
| 598 lsSig[[2]]$value = vdCoef | |
| 599 lsSig[[2]]$std = sd(frmeTmp[["Covariate3"]]) | |
| 600 lsSig[[2]]$allCoefs = vdCoef | |
| 601 lsSig[[3]] = list() | |
| 602 lsSig[[3]]$name = "Covariate3" | |
| 603 lsSig[[3]]$orig = "Covariate33" | |
| 604 lsSig[[3]]$taxon = "adCur" | |
| 605 lsSig[[3]]$data = adCur | |
| 606 lsSig[[3]]$factors = "Covariate3" | |
| 607 lsSig[[3]]$metadata = frmeTmp[["Covariate3"]] | |
| 608 vdCoef = c(Covariate33=NA) | |
| 609 lsSig[[3]]$value = vdCoef | |
| 610 lsSig[[3]]$std = sd(frmeTmp[["Covariate3"]]) | |
| 611 lsSig[[3]]$allCoefs = vdCoef | |
| 612 lsSig[[4]] = list() | |
| 613 lsSig[[4]]$name = "Covariate2" | |
| 614 lsSig[[4]]$orig = "Covariate2" | |
| 615 lsSig[[4]]$taxon = "adCur" | |
| 616 lsSig[[4]]$data = adCur | |
| 617 lsSig[[4]]$factors = "Covariate2" | |
| 618 lsSig[[4]]$metadata = frmeTmp[["Covariate2"]] | |
| 619 vdCoef = c(Covariate2=0.46666667) | |
| 620 lsSig[[4]]$value = vdCoef | |
| 621 lsSig[[4]]$std = sd(frmeTmp[["Covariate2"]]) | |
| 622 lsSig[[4]]$allCoefs = vdCoef | |
| 623 ret1 = funcDoUnivariate(strFormula="adCur ~ Covariate4 + Covariate3 + Covariate2",frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula=NULL) | |
| 624 ret2 = funcDoUnivariate(strFormula=NULL,frmeTmp=frmeTmp,iTaxon=iTaxon, lsHistory=lsHistory, strRandomFormula="adCur ~ 1|Covariate4 +1|Covariate3 + 1|Covariate2") | |
| 625 ret1$adP = round(ret1$adP,5) | |
| 626 ret2$adP = round(ret2$adP,5) | |
| 627 test_that("Test that the funcMakeContrasts works on 1 factor covariate with 2 levels , 1 factor with 3 levels, and a continuous variable.",{ | |
| 628 expect_equal(ret1,list(adP=round(c(0.2857143,1.0,1.0,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 629 expect_equal(ret2,list(adP=round(c(0.2857143,1.0,1.0,0.21252205),5),lsSig=lsSig,lsQCCounts=list())) | |
| 630 }) | |
| 631 | |
| 632 #Test multivariates | |
| 633 context("Test funcLasso") | |
| 634 | |
| 635 | |
| 636 context("Test funcLM") | |
| 637 #This test just makes sure the statistical method is being called correctly for one covariate with the correct return | |
| 638 strFormula = "adCur ~ Covariate1" | |
| 639 strRandomFormula = NULL | |
| 640 x = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) | |
| 641 x2 = c(34.2, 32.5, 22.4, 43, 3.25, 6.4, 7, 87, 9) | |
| 642 xf1 = c(1,1,2,2,1,2,1,1,2) | |
| 643 xf2 = c(1,1,1,1,2,2,2,2,2) | |
| 644 frmeTmp = data.frame(Covariate1=x, Covariate2=x2, FCovariate3=xf1, FCovariate4=xf2, adCur=adCur) | |
| 645 iTaxon = 5 | |
| 646 lmRet = lm(as.formula(strFormula), data=frmeTmp, na.action = c_strNA_Action) | |
| 647 test_that("Test that the lm has the correct results for 1 covariate.",{ | |
| 648 expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 649 }) | |
| 650 #Test for correct call for 2 covariates | |
| 651 strFormula = "adCur ~ Covariate1 + Covariate2" | |
| 652 lmRet = lm(as.formula(strFormula), data=frmeTmp, na.action = c_strNA_Action) | |
| 653 test_that("Test that the lm has the correct results for 2 covariates.",{ | |
| 654 expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 655 }) | |
| 656 ##Test for correct call with 1 random and one fixed covariate | |
| 657 #strFormula = "adCur ~ Covariate1" | |
| 658 #strRandomFormula = "~1|FCovariate3" | |
| 659 #lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=gaussian(link="identity"), data=frmeTmp) | |
| 660 #test_that("Test that the lm has the correct results for 1 random and one fixed covariate.",{ | |
| 661 # expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 662 #}) | |
| 663 ##Test for correct call with 1 random and 2 fixed covariates | |
| 664 #strFormula = "adCur ~ Covariate1 + Covariate2" | |
| 665 #strRandomFormula = "~1|FCovariate3" | |
| 666 #lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=gaussian(link="identity"), data=frmeTmp) | |
| 667 #test_that("Test that the lm has the correct results for 1 random and 2 fixed covariates.",{ | |
| 668 # expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 669 #}) | |
| 670 ##Test for correct call with 2 random and 1 fixed covariates | |
| 671 #strFormula = "adCur ~ Covariate1" | |
| 672 #strRandomFormula = "~1|FCovariate4+1|FCovariate3" | |
| 673 #lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=gaussian(link="identity"), data=frmeTmp) | |
| 674 #test_that("Test that the lm has the correct results for 2 random and 1 fixed covariates.",{ | |
| 675 # expect_equal(funcLM(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 676 #}) | |
| 677 | |
| 678 | |
| 679 context("Test funcBinomialMult") | |
| 680 strFormula = "adCur ~ Covariate1" | |
| 681 strRandomFormula = NULL | |
| 682 x = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) | |
| 683 x2 = c(34.2, 32.5, 22.4, 43, 3.25, 6.4, 7, 87, 9) | |
| 684 xf1 = c(1,1,2,2,1,2,1,1,2) | |
| 685 xf2 = c(1,1,1,1,2,2,2,2,2) | |
| 686 frmeTmp = data.frame(Covariate1=x, Covariate2=x2, FCovariate3=xf1, FCovariate4=xf2, adCur=adCur) | |
| 687 iTaxon = 5 | |
| 688 lmRet = glm(as.formula(strFormula), family=binomial(link=logit), data=frmeTmp, na.action=c_strNA_Action) | |
| 689 test_that("Test that the neg binomial regression has the correct results for 1 covariate.",{ | |
| 690 expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 691 }) | |
| 692 #Test for correct call for 2 covariates | |
| 693 strFormula = "adCur ~ Covariate1 + Covariate2" | |
| 694 iTaxon = 5 | |
| 695 lmRet = glm(as.formula(strFormula), family=binomial(link=logit), data=frmeTmp, na.action=c_strNA_Action) | |
| 696 test_that("Test that the neg binomial regression has the correct results for 2 covariates.",{ | |
| 697 expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 698 }) | |
| 699 ##Test for correct call with 1 random and one fixed covariate | |
| 700 #strFormula = "adCur ~ Covariate1" | |
| 701 #strRandomFormula = "~1|FCovariate3" | |
| 702 #lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=binomial(link=logit), data=frmeTmp) | |
| 703 #test_that("Test that the lm has the correct results for 1 random and one fixed covariate.",{ | |
| 704 # expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 705 #}) | |
| 706 ##Test for correct call with 1 random and 2 fixed covariates | |
| 707 #strFormula = "adCur ~ Covariate1 + Covariate2" | |
| 708 #strRandomFormula = "~1|FCovariate3" | |
| 709 #lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=binomial(link=logit), data=frmeTmp) | |
| 710 #test_that("Test that the lm has the correct results for 1 random and 2 fixed covariates.",{ | |
| 711 # expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 712 #}) | |
| 713 ##Test for correct call with 2 random and 1 fixed covariates | |
| 714 #strFormula = "adCur ~ Covariate1" | |
| 715 #strRandomFormula = "~1|FCovariate4+1|FCovariate3" | |
| 716 #lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=binomial(link=logit), data=frmeTmp) | |
| 717 #test_that("Test that the lm has the correct results for 2 random and 1 fixed covariates.",{ | |
| 718 # expect_equal(funcBinomialMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 719 #}) | |
| 720 | |
| 721 | |
| 722 context("Test funcQuasiMult") | |
| 723 strFormula = "adCur ~ Covariate1" | |
| 724 strRandomFormula = NULL | |
| 725 x = c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1,44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) | |
| 726 x2 = c(34.2, 32.5, 22.4, 43, 3.25, 6.4, 7, 87, 9,34.2, 32.5, 22.4, 43, 3.25, 6.4, 7, 87, 9) | |
| 727 xf1 = c(1,1,2,2,1,1,2,2,2,1,1,2,2,1,1,2,2,2) | |
| 728 xf2 = c(1,1,1,1,2,2,2,2,2,1,1,1,1,2,2,2,2,2) | |
| 729 frmeTmp = data.frame(Covariate1=x, Covariate2=x2, FCovariate3=xf1, FCovariate4=xf2, adCur=adCur) | |
| 730 iTaxon = 5 | |
| 731 lmRet = glm(as.formula(strFormula), family=quasipoisson, data=frmeTmp, na.action=c_strNA_Action) | |
| 732 test_that("Test that the quasi poisson has the correct results for 1 covariate.",{ | |
| 733 expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 734 }) | |
| 735 #Test for correct call for 2 covariates | |
| 736 strFormula = "adCur ~ Covariate1 + Covariate2" | |
| 737 iTaxon = 5 | |
| 738 lmRet = glm(as.formula(strFormula), family=quasipoisson, data=frmeTmp, na.action=c_strNA_Action) | |
| 739 test_that("Test that the quasi poisson has the correct results for 2 covariates.",{ | |
| 740 expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 741 }) | |
| 742 ##Test for correct call with 1 random and one fixed covariate | |
| 743 #strFormula = "adCur ~ Covariate1" | |
| 744 #strRandomFormula = "~1|FCovariate3" | |
| 745 #lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=quasipoisson, data=frmeTmp) | |
| 746 #test_that("Test that the lm has the correct results for 1 random and one fixed covariate.",{ | |
| 747 # expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 748 #}) | |
| 749 ##Test for correct call with 1 random and 2 fixed covariates | |
| 750 #strFormula = "adCur ~ Covariate1 + Covariate2" | |
| 751 #strRandomFormula = "~1|FCovariate3" | |
| 752 #lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=quasipoisson, data=frmeTmp) | |
| 753 #test_that("Test that the lm has the correct results for 1 random and 2 fixed covariates.",{ | |
| 754 # expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 755 #}) | |
| 756 ##Test for correct call with 2 random and 1 fixed covariates | |
| 757 #strFormula = "adCur ~ Covariate1" | |
| 758 #strRandomFormula = "~1|FCovariate4+1|FCovariate3" | |
| 759 #lmRet = glmmPQL(fixed=as.formula(strFormula), random=as.formula(strRandomFormula), family=quasipoisson, data=frmeTmp) | |
| 760 #test_that("Test that the lm has the correct results for 2 random and 1 fixed covariates.",{ | |
| 761 # expect_equal(funcQuasiMult(strFormula=strFormula,frmeTmp=frmeTmp,iTaxon=iTaxon,lsHistory=lsHistory,strRandomFormula=strRandomFormula),lmRet) | |
| 762 #}) | |
| 763 | |
| 764 | |
| 765 #Test transforms | |
| 766 context("Test funcNoTransform") | |
| 767 aTest1 = c(NA) | |
| 768 aTest2 = c(NULL) | |
| 769 aTest3 = c(0.5,1.4,2.4,3332.4,0.0,0.0000003) | |
| 770 aTest4 = c(0.1) | |
| 771 test_that("Test that no transform does not change the data.",{ | |
| 772 expect_equal(funcNoTransform(aTest1), aTest1) | |
| 773 expect_equal(funcNoTransform(aTest2), aTest2) | |
| 774 expect_equal(funcNoTransform(aTest3), aTest3) | |
| 775 expect_equal(funcNoTransform(aTest4), aTest4) | |
| 776 }) | |
| 777 | |
| 778 | |
| 779 context("Test funcArcsinSqrt") | |
| 780 aTest1 = c(NA) | |
| 781 aTest2 = c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0) | |
| 782 aTest3 = c(0.000001) | |
| 783 test_that("Test that funcArcsinSqrt performs the transform correctly.",{ | |
| 784 expect_equal(funcArcsinSqrt(NA), as.numeric(NA)) | |
| 785 expect_equal(funcArcsinSqrt(aTest1), asin(sqrt(aTest1))) | |
| 786 expect_equal(funcArcsinSqrt(aTest2), asin(sqrt(aTest2))) | |
| 787 expect_equal(funcArcsinSqrt(aTest3), asin(sqrt(aTest3))) | |
| 788 }) |
