Mercurial > repos > george-weingart > maaslin
view maaslin-4450aa4ecc84/src/lib/MaaslinPlots.R @ 1:a87d5a5f2776
Uploaded the version running on the prod server
author | george-weingart |
---|---|
date | Sun, 08 Feb 2015 23:08:38 -0500 |
parents | |
children |
line wrap: on
line source
##################################################################################### #Copyright (C) <2012> # #Permission is hereby granted, free of charge, to any person obtaining a copy of #this software and associated documentation files (the "Software"), to deal in the #Software without restriction, including without limitation the rights to use, copy, #modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, #and to permit persons to whom the Software is furnished to do so, subject to #the following conditions: # #The above copyright notice and this permission notice shall be included in all copies #or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # This file is a component of the MaAsLin (Multivariate Associations Using Linear Models), # authored by the Huttenhower lab at the Harvard School of Public Health # (contact Timothy Tickle, ttickle@hsph.harvard.edu). ##################################################################################### inlinedocs <- function( ##author<< Curtis Huttenhower <chuttenh@hsph.harvard.edu> and Timothy Tickle <ttickle@hsph.harvard.edu> ##description<< Holds MaAsLin related plotting ) { return( pArgs ) } funcPDF <- function( ### Function to plot raw data with linear model information. ### Continuous and integer variables are plotted with a line of best fit. ### Other data is plotted as boxplots. frmeTmp, lsCur, ### Linear model information curPValue, ### Pvalue to display curQValue, ### Qvalue to display strFilePDF, ### PDF file to create or to which to append strBaseOut, ### Project directory to place pdf in strName, ### Name of taxon funcUnTransform=NULL, ### If a transform is used the appropriate of that transfor must be used on the residuals in the partial residual plots fDoResidualPlot = TRUE, ### Plot the residual plots fInvert = FALSE, ### Invert the figure so the background is black liNaIndices = c() ### Indices of NA data that was imputed ){ if( is.na( strFilePDF ) ) { strFilePDF <- sprintf( "%s-%s.pdf", strBaseOut, strName ) pdf( strFilePDF, width = 11, useDingbats=FALSE ) } #Invert plots adColorMin <- c(1, 0, 0) adColorMax <- c(0, 1, 0) adColorMed <- c(0, 0, 0) if( fInvert ) { par( bg = "black", fg = "white", col.axis = "white", col.lab = "white", col.main = "white", col.sub = "white" ) adColorMin <- c(1, 1, 0) adColorMax <- c(0, 1, 1) adColorMed <- c(1, 1, 1) } #Create linear model title data string strTitle <- sprintf( "%s (%.3g sd %.3g, p=%.3g, q=%.3g)", lsCur$orig, lsCur$value, lsCur$std, curPValue, curQValue ) adMar <- c(5, 4, 4, 2) + 0.1 dLine <- NA strTaxon <- lsCur$taxon if( nchar( strTaxon ) > 80 ) { dCEX <- 0.75 iLen <- nchar( strTaxon ) if( iLen > 120 ) { dLine <- 2.5 i <- round( iLen / 2 ) strTaxon <- paste( substring( strTaxon, 0, i ), substring( strTaxon, i + 1 ), sep = "\n" ) adMar[2] <- adMar[2] + 1 } } else { dCEX = 1 } #Plot 1x2 graphs per page if(fDoResidualPlot){par(mfrow=c(1,2))} # Plot factor data as boxplot if is descrete data # Otherwise plot as a line adCur <- lsCur$metadata adY <- lsCur$data # Remove NAs from data visualization if set to do so (if liNaIndices is not empty) if(lsCur$name %in% names(liNaIndices)&&(length(liNaIndices[[lsCur$name]])>0)) { adY <- adY[-1*liNaIndices[[lsCur$name]]] adCur = adCur[-1*liNaIndices[[lsCur$name]]] if(class(adCur)=="factor") { adCur = factor(adCur) } } # Set the factor levels to include NA if they still exist # This is so if something is not imputed, then if there are NAs they will be plotted (to show no imputing) if( class( lsCur$metadata ) == "factor" ) { sCurLevels = levels(adCur) adCur = (as.character(adCur)) aiCurNAs = which(is.na(adCur)) if(length(aiCurNAs) > 0) { adCur[aiCurNAs]="NA" sCurLevels = c(sCurLevels,"NA") } adCur = factor(adCur, levels = sCurLevels) } if( class( lsCur$metadata ) == "factor" ) { astrNames <- c() astrColors <- c() dMed <- median( adY[adCur == levels( adCur )[1]], na.rm = TRUE ) adIQR <- quantile( adY, probs = c(0.25, 0.75), na.rm = TRUE ) dIQR <- adIQR[2] - adIQR[1] if( dIQR <= 0 ) { dIQR <- sd( adY, na.rm = TRUE ) } dIQR <- dIQR / 2 #Print boxplots/strip charts of raw data. Add model data to it. for( strLevel in levels( adCur ) ) { c_iLen <- 32 strLength <- strLevel if( nchar( strLength ) > c_iLen ) { iTmp <- ( c_iLen / 2 ) - 2 strLength <- paste( substr( strLength, 1, iTmp ), substring( strLength, nchar( strLength ) - iTmp ), sep = "..." ) } astrNames <- c(astrNames, sprintf( "%s (%d)", strLength, sum( adCur == strLevel, na.rm = TRUE ) )) astrColors <- c(astrColors, sprintf( "%sAA", funcColor( ( median( adY[adCur == strLevel], na.rm = TRUE ) - dMed ) / dIQR, dMax = 3, dMin = -3, adMax = adColorMin, adMin = adColorMax, adMed = adColorMed ) )) } #Controls boxplot labels #(When there are many factor levels some are skipped and not plotted #So this must be reduced) dBoxPlotLabelCex = dCEX if(length(astrNames)>8) { dBoxPlotLabelCex = dBoxPlotLabelCex * 1.5/(length(astrNames)/8) } par(cex.axis = dBoxPlotLabelCex) boxplot( adY ~ adCur, notch = TRUE, names = astrNames, mar = adMar, col = astrColors, main = strTitle, cex.main = 48/nchar(strTitle), xlab = lsCur$name, ylab = NA, cex.lab = dCEX, outpch = 4, outcex = 0.5 ) par(cex.axis = dCEX) stripchart( adY ~ adCur, add = TRUE, col = astrColors, method = "jitter", vertical = TRUE, pch = 20 ) title( ylab = strTaxon, cex.lab = dCEX, line = dLine ) } else { #Plot continuous data plot( adCur, adY, mar = adMar, main = strTitle, xlab = lsCur$name, pch = 20, col = sprintf( "%s99", funcGetColor( ) ), ylab = NA, xaxt = "s" ) title( ylab = strTaxon, cex.lab = dCEX ) lmod <- lm( adY ~ adCur ) dColor <- lmod$coefficients[2] * mean( adCur, na.rm = TRUE ) / mean( adY, na.rm = TRUE ) strColor <- sprintf( "%sDD", funcColor( dColor, adMax = adColorMin, adMin = adColorMax, adMed = adColorMed ) ) abline( reg = lmod, col = strColor, lwd = 3 ) } ### Plot the residual plot if(fDoResidualPlot){funcResidualPlot(lsCur=lsCur, frmeTmp=frmeTmp, adColorMin=adColorMin, adColorMax=adColorMax, adColorMed=adColorMed, adMar, funcUnTransform=funcUnTransform, liNaIndices)} return(strFilePDF) ### File to which the pdf was written } ### Plot 1 # axis 1 gene expression (one bug) # axis 2 PC1 (bugs and metadata)(MFA) # over plot real data vs the residuals (real data verses the prediction) # remove all but 1 bug + metadata ### Plot 2 #residuals (y) PCL1 (1 bug + metadata) #Plot 3 ### Can plot the residuals against all the variables in a grid/lattic funcGetFactorBoxColors = function(adCur,adY,adColorMin,adColorMax,adColorMed) { astrColors = c() if( class( adCur ) == "factor" ) { if( "NA" %in% levels( adCur ) ) { afNA = adCur == "NA" adY = adY[!afNA] adCur = adCur[!afNA] adCur = factor( adCur, levels = setdiff( levels( adCur ), "NA" ) ) } dMed = median( adY[adCur == levels( adCur )[1]], na.rm = TRUE ) adIQR = quantile( adY, probs = c(0.25, 0.75), na.rm = TRUE ) dIQR = adIQR[2] - adIQR[1] if( dIQR <= 0 ) { dIQR <- sd( adY, na.rm = TRUE ) } dIQR <- dIQR / 2 for( strLevel in levels( adCur ) ) { astrColors <- c(astrColors, sprintf( "%sAA", funcColor( ( median( adY[adCur == strLevel], na.rm = TRUE ) - dMed ) / dIQR, dMax = 3, dMin = -3, adMax = adColorMin, adMin = adColorMax, adMed = adColorMed ) )) } } return(astrColors) } funcResidualPlotHelper <- function( frmTmp, ### The dataframe to plot from sResponseFeature, lsFullModelCovariateNames, ### All covariates in lm (Column Names) lsCovariateToControlForNames, ### Y Axis: All the covariate which will be plotted together respectively * their beta with the residuals of the full model added. (These should dummied names for factor data; not column names). sCovariateOfInterest, ### X Axis: raw data of the covariate of interest. (Column Name) adColorMin, ### Min color in color range for markers adColorMax, ### Max color in color range for markers adColorMed, ### Medium color in color range for markers adMar, ### Standardized margins funcUnTransform = NULL, ### If a transform is used the opposite of that transfor must be used on the residuals in the partial residual plots liNaIndices = c() ### Indices of NA data that was imputed ){ # Get model matrix (raw data) adCur = frmTmp[[sResponseFeature]] # Make a formula to calculate the new model to get the full model residuals strFormula = paste("adCur",paste(sprintf( "`%s`", lsFullModelCovariateNames ),sep="", collapse="+"),sep="~") # Calculate lm lmod = (lm(as.formula(strFormula),frmTmp)) # Get all coefficient data in the new model dfdCoefs = coefficients(lmod) # Get all coefficient names in the new model asAllCoefNames = names(dfdCoefs) # Get Y # For each covariate that is being plotted on the y axis # Convert the coefficient name to the column name # If they are equal then the data is not discontinuous and you can use the raw data as is and multiply it by the coefficient in the model # If they are not equal than the data is discontinuous, get the value for the data, set all but the levels equal to it to zero and multiply by the ceofficient from the model. vY = rep(coefficients(lmod)[["(Intercept)"]],dim(frmTmp)[1]) # vY = rep(0,dim(frmTmp)[1]) #Here we are not dealing with column names but, if factor data, the coefficient names for(iCvIndex in 1:length(lsCovariateToControlForNames)) { sCurrentCovariate = lsCovariateToControlForNames[iCvIndex] #Get the column name of the current covariate (this must be used to compare to other column names) sCurCovariateColumnName = funcCoef2Col(sCurrentCovariate, frmTmp) #This is continuous data if(sCurrentCovariate == sCurCovariateColumnName) { vY = vY + dfdCoefs[sCurrentCovariate]*frmTmp[[sCurCovariateColumnName]] } else { #Discontinuous data # Get level xLevel = substr(sCurrentCovariate,nchar(sCurCovariateColumnName)+1,nchar(sCurrentCovariate)) # Get locations where the data = level aiLevelIndices = rep(0,dim(frmTmp)[1]) aiLevelIndices[which(frmTmp[sCurCovariateColumnName] == xLevel)]=1 sCurrentCovariateBeta = dfdCoefs[sCurrentCovariate] if(is.na(sCurrentCovariateBeta)){sCurrentCovariateBeta=0} vY = vY + sCurrentCovariateBeta * aiLevelIndices } } #TODO based on transform vY = vY+sin(residuals(lmod))^2 if(!is.null(funcUnTransform)) { vY = vY + funcUnTransform(residuals(lmod)) } else { vY = vY + residuals(lmod) } # Plot x, raw data ## y label sYLabel = paste(paste("B",lsCovariateToControlForNames,sep="*",collapse="+"),"e",sep="+") sTitle = "Partial Residual Plot" adCurXValues = frmTmp[[sCovariateOfInterest]] # If not plotting metadata that was originally NA then remove the imputed values here if(sCovariateOfInterest %in% names(liNaIndices)&&(length(liNaIndices[[sCovariateOfInterest]])>0)) { adCurXValues = adCurXValues[-1*liNaIndices[[sCovariateOfInterest]]] vY <- vY[-1*liNaIndices[[sCovariateOfInterest]]] if(is.factor(adCurXValues)){adCurXValues = factor(adCurXValues)} } # Set the factor levels to include NA if they still exist # This is so if something is not imputed, then if there are NAs they will be plotted (to show no imputing) # Do not forget to keep te level order incase it was changed by the custom scripts. if( class( adCurXValues ) == "factor" ) { vsLevels = levels(adCurXValues) if(sum(is.na(adCurXValues))>0) { adCurXValues = as.character(adCurXValues) adCurXValues[is.na(adCurXValues)]="NA" adCurXValues = factor(adCurXValues, levels=c(vsLevels,"NA")) } } # Scale to the original range if(!(class( adCurXValues ) == "factor" )) { vY = vY + mean(adCurXValues,rm.na=TRUE) } # Plot Partial Residual Plot # If we are printing discontinuous data # Get the color of the box plots # Plot box plots # Plot data as strip charts if(is.factor(adCurXValues)) { # adCurXValues = factor(adCurXValues) astrColors = funcGetFactorBoxColors(adCurXValues,vY,adColorMin,adColorMax,adColorMed) asNames = c() for(sLevel in levels(adCurXValues)) { asNames = c(asNames,sprintf( "%s (%d)", sLevel, sum( adCurXValues == sLevel, na.rm = TRUE ) )) } plot(adCurXValues, vY, xlab=sCovariateOfInterest, ylab=sYLabel, names=asNames, notch = TRUE,mar = adMar,col = astrColors, main=sTitle, outpch = 4, outcex = 0.5 ) stripchart( vY ~ adCurXValues, add = TRUE, col = astrColors, method = "jitter", vertical = TRUE, pch = 20 ) } else { plot( adCurXValues, vY, mar = adMar, main = sTitle, xlab=sCovariateOfInterest, col = sprintf( "%s99", funcGetColor( ) ), pch = 20,ylab = sYLabel, xaxt = "s" ) lmodLine = lm(vY~adCurXValues) dColor <- lmodLine$coefficients[2] * mean( adCurXValues, na.rm = TRUE ) / mean( vY, na.rm = TRUE ) strColor <- sprintf( "%sDD", funcColor( dColor, adMax = adColorMin, adMin = adColorMax, adMed = adColorMed ) ) abline( reg =lmodLine, col = strColor, lwd = 3 ) } } funcBoostInfluencePlot <- function( # Plot to show the rel.inf from boosting, what to know if the rank order is correct, better ranks for spiked data. # Show the cut off and features identified as uneven. vdRelInf, sFeature, vsPredictorNames, vstrKeepMetadata, vstrUneven = c() ){ vsCol = rep("black",length(vdRelInf)) vsCol[which(vsPredictorNames %in% vstrKeepMetadata)]="green" vsCol[which(vsPredictorNames %in% vstrUneven)] = "orange" plot(vdRelInf, col=vsCol, main=sFeature, xlab="Index", ylab="Relative Influence") legend("topright", pch = paste(1:length(vsPredictorNames)), legend= vsPredictorNames, text.col=vsCol, col=vsCol) } funcResidualPlot <- function( ### Plot to data after confounding. ### That is, in a linear model with significant coefficient b1 for variable x1, ### that's been sparsified to some subset of terms: y = b0 + b1*x1 + sum(bi*xi) ### Plot x1 on the X axis, and instead of y on the Y axis, instead plot: ### y' = b0 + sum(bi*xi) lsCur, ### Assocation to plot frmeTmp, ### Data frame of orginal data adColorMin, ### Min color in color range for markers adColorMax, ### Max color in color range for markers adColorMed, ### Medium color in color range for markers adMar, ### Standardized margins funcUnTransform, ### If a transform is used the opporite of that transfor must be used on the residuals in the partial residual plots liNaIndices = c() ### Indices of NA data that was imputed ){ #Now plot residual hat plot #Get coefficient names asAllCoefs = setdiff(names(lsCur$allCoefs),c("(Intercept)")) asAllColNames = c() for(sCoef in asAllCoefs) { asAllColNames = c(asAllColNames,funcCoef2Col(sCoef,frmeData=frmeTmp)) } asAllColNames = unique(asAllColNames) # All coefficients except for the one of interest lsOtherCoefs = setdiff(asAllColNames, c(lsCur$name)) lsCovariatesToPlot = NULL if(is.factor(lsCur$metadata)) { lsCovariatesToPlot = paste(lsCur$name,levels(lsCur$metadata),sep="") }else{lsCovariatesToPlot=c(lsCur$orig)} # If there are no other coefficients then skip plot # if(!length(lsOtherCoefs)){return()} # Plot residuals funcResidualPlotHelper(frmTmp=frmeTmp, sResponseFeature=lsCur$taxon, lsFullModelCovariateNames=asAllColNames, lsCovariateToControlForNames=lsCovariatesToPlot, sCovariateOfInterest=lsCur$name, adColorMin=adColorMin, adColorMax=adColorMax, adColorMed=adColorMed, adMar=adMar, funcUnTransform=funcUnTransform, liNaIndices=liNaIndices) }