Mercurial > repos > george-weingart > maaslin
view src/lib/SummarizeMaaslin.R @ 0:e0b5980139d9
maaslin
author | george-weingart |
---|---|
date | Tue, 13 May 2014 22:00:40 -0400 |
parents | |
children |
line wrap: on
line source
##################################################################################### #Copyright (C) <2012> # #Permission is hereby granted, free of charge, to any person obtaining a copy of #this software and associated documentation files (the "Software"), to deal in the #Software without restriction, including without limitation the rights to use, copy, #modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, #and to permit persons to whom the Software is furnished to do so, subject to #the following conditions: # #The above copyright notice and this permission notice shall be included in all copies #or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, #INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A #PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT #HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION #OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE #SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # This file is a component of the MaAsLin (Multivariate Associations Using Linear Models), # authored by the Huttenhower lab at the Harvard School of Public Health # (contact Timothy Tickle, ttickle@hsph.harvard.edu). ##################################################################################### inlinedocs <- function( ##author<< Curtis Huttenhower <chuttenh@hsph.harvard.edu> and Timothy Tickle <ttickle@hsph.harvard.edu> ##description<< Creates a summary of association detail files. ) { return( pArgs ) } #Logging class suppressMessages(library(logging, warn.conflicts=FALSE, quietly=TRUE, verbose=FALSE)) # Get logger c_logrMaaslin <- getLogger( "maaslin" ) funcSummarizeDirectory = function( ### Summarizes the massline detail files into one file based on significance. astrOutputDirectory, ### The output directory to find the MaAsLin results. strBaseName, ### The prefix string used in maaslin to start the detail files. astrSummaryFileName, ### The summary file's name, should be a path not a file name astrKeyword, ### The column name of the data to check significance before adding a detail to the summary afSignificanceLevel ### The value of significance the data must be at or below to be included in the summary (0.0 is most significant; like p-values) ){ #Store significant data elements dfSignificantData = NULL #Get detail files in output directory astrlsDetailFiles = list.files(astrOutputDirectory, pattern=paste(strBaseName,"-","[[:print:]]*",c_sDetailFileSuffix,sep=""), full.names=TRUE) logdebug(format(astrlsDetailFiles),c_logrMaaslin) #For each file after the first file for(astrFile in astrlsDetailFiles) { #Read in data and reduce to significance dfDetails = read.table(astrFile, header=TRUE, sep=c_cTableDelimiter) dfDetails = dfDetails[which(dfDetails[astrKeyword] <= afSignificanceLevel),] #Combine with other data if it exists if(is.null(dfSignificantData)) { dfSignificantData = dfDetails } else { dfSignificantData = rbind(dfSignificantData,dfDetails) } } #Write data to file unlink(astrSummaryFileName) if(is.null(dfSignificantData)) { funcWrite("No significant data found.",astrSummaryFileName) return( NULL ) } else { #Sort by metadata and then significance dfSignificantData = dfSignificantData[order(dfSignificantData$Value, dfSignificantData$P.value, decreasing = FALSE),] funcWriteTable( dfSignificantData, astrSummaryFileName, fAppend = FALSE ) # Sort by q.value and return return( dfSignificantData[ order( dfSignificantData$P.value, decreasing = FALSE ), ] ) } }