Mercurial > repos > goeckslab > celesta
view celesta_plot_expression.R @ 3:283636dbfba5 draft default tip
planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/celesta commit 36453551b1045adf20925d4eb6b5816c64475728
author | goeckslab |
---|---|
date | Thu, 19 Sep 2024 17:17:51 +0000 |
parents | 8001319743c0 |
children |
line wrap: on
line source
# -------------------------------------------------------------------------------------------- # Plot marker expression probabilities for cell assignment parameter optimization with CELESTA # -------------------------------------------------------------------------------------------- suppressWarnings(suppressMessages(library(janitor))) suppressWarnings(suppressMessages(library(optparse))) suppressWarnings(suppressMessages(library(dplyr))) suppressWarnings(suppressMessages(library(anndataR))) suppressWarnings(suppressMessages(library(Rmixmod))) suppressWarnings(suppressMessages(library(spdep))) suppressWarnings(suppressMessages(library(ggplot2))) suppressWarnings(suppressMessages(library(reshape2))) suppressWarnings(suppressMessages(library(zeallot))) suppressWarnings(suppressMessages(library(CELESTA))) ### Define command line arguments option_list <- list( make_option(c("-i", "--imagingdata"), action = "store", default = NA, type = "character", help = "Path to imaging data"), make_option(c("-p", "--prior"), action = "store", default = NA, type = "character", help = "Path to prior marker info file"), make_option(c("-x", "--xcol"), action = "store", default = NA, type = "character", help = "Name of column in adata.obs containing X coordinate"), make_option(c("-y", "--ycol"), action = "store", default = NA, type = "character", help = "Name of column in adata.obs containing Y coordinate"), make_option(c("--filter"), action = "store_true", type = "logical", default = FALSE, help = "Boolean to filter cells or not (default: no filtering)"), make_option(c("--highfilter"), action = "store", default = 0.9, type = "double", help = "High marker threshold if filtering cells (default: 0.9)"), make_option(c("--lowfilter"), action = "store", default = 0.4, type = "double", help = "Low marker threshold if filtering cells (default: 0.4)"), make_option(c("-s", "--size"), action = "store", default = 1, type = "double", help = "Point size for plotting"), make_option(c("--width"), action = "store", default = 5, type = "integer", help = "Width of plot (inches)"), make_option(c("--height"), action = "store", default = 4, type = "integer", help = "Height of plot (inches)") ) ### Functions anndata_to_celesta <- function(input_adata, x_col, y_col) { #' Function to convert anndata object to dataframe readable by CELESTA #' Coordinates columns in adata.obs are renamed to "X" and "Y", and placed at beginning of dataframe #' Marker intensities are concatted columnwise to the X and Y coords. cols: X,Y,Marker_1,...Marker N # initialize output as dataframe from adata.obs celesta_input_dataframe <- data.frame(input_adata$obs) # subset to X and Y coordinates from obs only celesta_input_dataframe <- celesta_input_dataframe %>% dplyr::select({{x_col}}, {{y_col}}) # rename X,Y column names to what CELESTA wants colnames(celesta_input_dataframe) <- c("X", "Y") # merge X,Y coords with marker intensities from adata.X x_df <- data.frame(input_adata$X) colnames(x_df) <- input_adata$var_names celesta_input_dataframe <- cbind(celesta_input_dataframe, x_df) return(celesta_input_dataframe) } ### Main # parse args opt <- parse_args(OptionParser(option_list = option_list)) # read anndata, convert to celesta format adata <- read_h5ad(opt$imagingdata) celesta_input_df <- anndata_to_celesta(adata, x_col = opt$xcol, y_col = opt$ycol) # read prior marker info prior <- read.csv(opt$prior, check.names = FALSE) # clean prior names, keeping a copy of originals for writing output prior_original_names <- colnames(prior) prior <- janitor::clean_names(prior, case = "all_caps") # clean input dataframe names celesta_input_df <- janitor::clean_names(celesta_input_df, case = "all_caps") # instantiate celesta object CelestaObj <- CreateCelestaObject( project_title = "", prior_marker_info = prior, imaging_data_file = celesta_input_df ) # if filtering is specified, filter out cells outside high and low thresholds if (opt$filter) { print("filtering cells based on expression") CelestaObj <- FilterCells(CelestaObj, high_marker_threshold = opt$highfilter, low_marker_threshold = opt$lowfilter) } else { print("Proceeding to marker expression plotting without cell filtering") } # create output directory if it does not already exist dir.create("marker_exp_plots") # plot expression probability PlotExpProb(coords = CelestaObj@coords, marker_exp_prob = CelestaObj@marker_exp_prob, prior_marker_info = CelestaObj@prior_info, save_plot = TRUE, output_dir = "./marker_exp_plots")