Mercurial > repos > goeckslab > cell_intensity_processing
comparison process_intensities.xml @ 5:afa3cb2110eb draft
planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/mti-utils commit bc438db690e41823909b32b693f297d942433a43
author | goeckslab |
---|---|
date | Thu, 11 Jul 2024 22:41:26 +0000 |
parents | 5d541df02496 |
children |
comparison
equal
deleted
inserted
replaced
4:5d541df02496 | 5:afa3cb2110eb |
---|---|
25 marker_df = pd.read_csv('$channel_csv') | 25 marker_df = pd.read_csv('$channel_csv') |
26 | 26 |
27 markers_to_normalize = marker_df['marker_name'].to_list() | 27 markers_to_normalize = marker_df['marker_name'].to_list() |
28 | 28 |
29 #if $AF_method.select_method == 'SBR': | 29 #if $AF_method.select_method == 'SBR': |
30 AF_markers = [x for x in list(marker_df['${AF_method.AF_col}'].unique()) if x != 'None'] | 30 AF_markers = [x for x in list(marker_df['${AF_method.AF_col}'].unique()) if x not in ['None',np.nan]] |
31 print(f'Detected {quant[AF_markers].eq(0.0).any(axis=1).sum()} cells with AF values of zero in the dataset') | 31 print(f'Detected {quant[AF_markers].eq(0.0).any(axis=1).sum()} cells with AF values of zero in the dataset') |
32 | 32 |
33 #if $AF_method.AF_filter == 'filter': | 33 #if $AF_method.AF_filter == 'filter': |
34 pre_filter_count = len(quant) | 34 pre_filter_count = len(quant) |
35 quant = quant.loc[quant[AF_markers].ne(0.0).any(axis=1),:] | 35 quant = quant.loc[quant[AF_markers].ne(0.0).any(axis=1),:] |