Mercurial > repos > goeckslab > extract_embeddings
comparison pytorch_embedding.xml @ 1:84f96c952c2c draft default tip
planemo upload for repository https://github.com/goeckslab/gleam.git commit 5b6cd961948137853177b14b0fff80a5d40e8a07
| author | goeckslab |
|---|---|
| date | Sun, 09 Nov 2025 19:03:21 +0000 |
| parents | 38333676a029 |
| children |
comparison
equal
deleted
inserted
replaced
| 0:38333676a029 | 1:84f96c952c2c |
|---|---|
| 48 <option value="efficientnet_b6">EfficientNet-B6</option> | 48 <option value="efficientnet_b6">EfficientNet-B6</option> |
| 49 <option value="efficientnet_b7">EfficientNet-B7</option> | 49 <option value="efficientnet_b7">EfficientNet-B7</option> |
| 50 <option value="efficientnet_v2_s">EfficientNetV2-S</option> | 50 <option value="efficientnet_v2_s">EfficientNetV2-S</option> |
| 51 <option value="efficientnet_v2_m">EfficientNetV2-M</option> | 51 <option value="efficientnet_v2_m">EfficientNetV2-M</option> |
| 52 <option value="efficientnet_v2_l">EfficientNetV2-L</option> | 52 <option value="efficientnet_v2_l">EfficientNetV2-L</option> |
| 53 <option value="gpfm">GPFM (Generalizable Pathology Foundation Model)</option> | |
| 53 <option value="googlenet">GoogLeNet</option> | 54 <option value="googlenet">GoogLeNet</option> |
| 54 <option value="inception_v3">Inception-V3</option> | 55 <option value="inception_v3">Inception-V3</option> |
| 55 <option value="mnasnet0_5">MNASNet-0.5</option> | 56 <option value="mnasnet0_5">MNASNet-0.5</option> |
| 56 <option value="mnasnet0_75">MNASNet-0.75</option> | 57 <option value="mnasnet0_75">MNASNet-0.75</option> |
| 57 <option value="mnasnet1_0">MNASNet-1.0</option> | 58 <option value="mnasnet1_0">MNASNet-1.0</option> |
| 112 <has_text text="sample_name" /> | 113 <has_text text="sample_name" /> |
| 113 <has_n_columns min="1" /> | 114 <has_n_columns min="1" /> |
| 114 </assert_contents> | 115 </assert_contents> |
| 115 </output> | 116 </output> |
| 116 </test> | 117 </test> |
| 118 <test> | |
| 119 <param name="input_zip" value="1_digit.zip" ftype="zip" /> | |
| 120 <param name="model_name" value="gpfm" /> | |
| 121 <param name="apply_normalization" value="true" /> | |
| 122 <param name="transform_type" value="RGB" /> | |
| 123 <output name="output_csv"> | |
| 124 <assert_contents> | |
| 125 <has_text text="sample_name" /> | |
| 126 <has_n_columns min="1" /> | |
| 127 </assert_contents> | |
| 128 </output> | |
| 129 </test> | |
| 117 </tests> | 130 </tests> |
| 118 <help> | 131 <help> |
| 119 <![CDATA[ | 132 <![CDATA[ |
| 120 **What it does** | 133 **What it does** |
| 121 This tool extracts image embeddings using a selected deep learning model. | 134 This tool extracts image embeddings using a selected deep learning model, including specialized pathology models like GPFM. |
| 122 | 135 |
| 123 **Inputs** | 136 **Inputs** |
| 124 - A zip file containing images to process. | 137 - A zip file containing images to process. |
| 125 - A model selection for embedding extraction. | 138 - A model selection for embedding extraction (includes GPFM for pathology images). |
| 126 - An option to apply normalization to the extracted embeddings. | 139 - An option to apply normalization to the extracted embeddings. |
| 127 - A choice of image transformation type before processing. | 140 - A choice of image transformation type before processing. |
| 141 | |
| 142 **Models Available** | |
| 143 - Standard computer vision models (ResNet, EfficientNet, ViT, etc.) | |
| 144 - GPFM: Generalizable Pathology Foundation Model - specialized for medical/pathology images | |
| 145 * Automatically downloads 1.2GB pretrained weights on first use | |
| 146 * Uses DinoVisionTransformer architecture (1024-dimensional embeddings) | |
| 147 * Optimized for histopathology images at 224x224 resolution | |
| 128 | 148 |
| 129 **Outputs** | 149 **Outputs** |
| 130 - A CSV file containing embeddings. Each row corresponds to an image, with the file name in the first column and embedding vectors in the subsequent columns. | 150 - A CSV file containing embeddings. Each row corresponds to an image, with the file name in the first column and embedding vectors in the subsequent columns. |
| 131 ]]> | 151 ]]> |
| 132 </help> | 152 </help> |
