Mercurial > repos > goeckslab > extract_embeddings
comparison pytorch_embedding.xml @ 0:38333676a029 draft default tip
planemo upload for repository https://github.com/goeckslab/gleam.git commit f57ec1ad637e8299db265ee08be0fa9d4d829b93
author | goeckslab |
---|---|
date | Thu, 19 Jun 2025 23:33:23 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:38333676a029 |
---|---|
1 <tool id="extract_embeddings" name="Image Embedding Extraction" version="1.0.0"> | |
2 <description>Extract image embeddings using a deep learning model</description> | |
3 | |
4 <requirements> | |
5 <container type="docker">quay.io/goeckslab/galaxy-ludwig-gpu:0.10.1</container> | |
6 </requirements> | |
7 <stdio> | |
8 <exit_code range="137" level="fatal_oom" description="Out of Memory" /> | |
9 <exit_code range="1:" level="fatal" description="Error occurred. Please check Tool Standard Error" /> | |
10 </stdio> | |
11 <command><![CDATA[ | |
12 mkdir -p "./hf_cache" && | |
13 export HF_HOME="./hf_cache" && | |
14 export TORCH_HOME="./hf_cache" && | |
15 python $__tool_directory__/pytorch_embedding.py | |
16 --zip_file "$input_zip" | |
17 --output_csv "$output_csv" | |
18 --model_name "$model_name" | |
19 #if $apply_normalization | |
20 --normalize | |
21 #end if | |
22 #if $ludwig_format | |
23 --ludwig_format | |
24 #end if | |
25 --transform_type "$transform_type" | |
26 ]]></command> | |
27 <configfiles> | |
28 <inputs name="inputs" /> | |
29 </configfiles> | |
30 <inputs> | |
31 <param argument="input_zip" type="data" format="zip" label="Input Zip File (Images)" help="Provide a zip file containing images to process." /> | |
32 <param argument="model_name" type="select" label="Model for Embedding Extraction" help="Select the model to use for embedding extraction."> | |
33 <option value="alexnet">AlexNet</option> | |
34 <option value="convnext_tiny">ConvNeXt-Tiny</option> | |
35 <option value="convnext_small">ConvNeXt-Small</option> | |
36 <option value="convnext_base">ConvNeXt-Base</option> | |
37 <option value="convnext_large">ConvNeXt-Large</option> | |
38 <option value="densenet121">DenseNet121</option> | |
39 <option value="densenet161">DenseNet161</option> | |
40 <option value="densenet169">DenseNet169</option> | |
41 <option value="densenet201">DenseNet201</option> | |
42 <option value="efficientnet_b0" >EfficientNet-B0</option> | |
43 <option value="efficientnet_b1">EfficientNet-B1</option> | |
44 <option value="efficientnet_b2">EfficientNet-B2</option> | |
45 <option value="efficientnet_b3">EfficientNet-B3</option> | |
46 <option value="efficientnet_b4">EfficientNet-B4</option> | |
47 <option value="efficientnet_b5">EfficientNet-B5</option> | |
48 <option value="efficientnet_b6">EfficientNet-B6</option> | |
49 <option value="efficientnet_b7">EfficientNet-B7</option> | |
50 <option value="efficientnet_v2_s">EfficientNetV2-S</option> | |
51 <option value="efficientnet_v2_m">EfficientNetV2-M</option> | |
52 <option value="efficientnet_v2_l">EfficientNetV2-L</option> | |
53 <option value="googlenet">GoogLeNet</option> | |
54 <option value="inception_v3">Inception-V3</option> | |
55 <option value="mnasnet0_5">MNASNet-0.5</option> | |
56 <option value="mnasnet0_75">MNASNet-0.75</option> | |
57 <option value="mnasnet1_0">MNASNet-1.0</option> | |
58 <option value="mnasnet1_3">MNASNet-1.3</option> | |
59 <option value="mobilenet_v2">MobileNetV2</option> | |
60 <option value="mobilenet_v3_large">MobileNetV3-Large</option> | |
61 <option value="mobilenet_v3_small">MobileNetV3-Small</option> | |
62 <option value="regnet_x_400mf">RegNet-X-400MF</option> | |
63 <option value="regnet_x_800mf">RegNet-X-800MF</option> | |
64 <option value="regnet_x_1_6gf">RegNet-X-1.6GF</option> | |
65 <option value="regnet_x_3_2gf">RegNet-X-3.2GF</option> | |
66 <option value="regnet_x_8gf">RegNet-X-8GF</option> | |
67 <option value="resnet18">ResNet-18</option> | |
68 <option value="resnet34">ResNet-34</option> | |
69 <option value="resnet50" selected="true">ResNet-50</option> | |
70 <option value="resnet101">ResNet-101</option> | |
71 <option value="resnet152">ResNet-152</option> | |
72 <option value="resnext50_32x4d">ResNeXt-50-32x4d</option> | |
73 <option value="resnext101_32x8d">ResNeXt-101-32x8d</option> | |
74 <option value="shufflenet_v2_x0_5">ShuffleNetV2-0.5x</option> | |
75 <option value="shufflenet_v2_x1_0">ShuffleNetV2-1.0x</option> | |
76 <option value="squeezenet1_0">SqueezeNet1.0</option> | |
77 <option value="squeezenet1_1">SqueezeNet1.1</option> | |
78 <option value="swin_b">Swin-B</option> | |
79 <option value="swin_s">Swin-S</option> | |
80 <option value="swin_t">Swin-T</option> | |
81 <option value="vgg11">VGG-11</option> | |
82 <option value="vgg13">VGG-13</option> | |
83 <option value="vgg16">VGG-16</option> | |
84 <option value="vgg19">VGG-19</option> | |
85 <option value="vit_b_16">ViT-B-16</option> | |
86 <option value="vit_b_32">ViT-B-32</option> | |
87 <option value="wide_resnet50_2">Wide-ResNet50-2</option> | |
88 <option value="wide_resnet101_2">Wide-ResNet101-2</option> | |
89 </param> | |
90 <param argument="apply_normalization" type="boolean" label="Apply Normalization" help="Enable or disable normalization of embeddings." checked="true"/> | |
91 <param argument="transform_type" type="select" label="Image Transformation Type" help="Choose the transformation type to apply before extraction."> | |
92 <option value="RGB" selected="true">RGB</option> | |
93 <option value="grayscale">Grayscale</option> | |
94 <option value="rgba_to_rgb">RGBA to RGB</option> | |
95 <option value="clahe">CLAHE (Contrast Limited Adaptive Histogram Equalization)</option> | |
96 <option value="edges">Edge Detection</option> | |
97 </param> | |
98 <param name="ludwig_format" type="boolean" optional="true" label="Convert vectors (stored as columns) into a single string column (Ludwig Format)?"/> | |
99 </inputs> | |
100 <outputs> | |
101 <data name="output_csv" format="csv" label="Extracted Embeddings" /> | |
102 </outputs> | |
103 | |
104 <tests> | |
105 <test> | |
106 <param name="input_zip" value="1_digit.zip" ftype="zip" /> | |
107 <param name="model_name" value="resnet50" /> | |
108 <param name="apply_normalization" value="true" /> | |
109 <param name="transform_type" value="RGB" /> | |
110 <output name="output_csv"> | |
111 <assert_contents> | |
112 <has_text text="sample_name" /> | |
113 <has_n_columns min="1" /> | |
114 </assert_contents> | |
115 </output> | |
116 </test> | |
117 </tests> | |
118 <help> | |
119 <![CDATA[ | |
120 **What it does** | |
121 This tool extracts image embeddings using a selected deep learning model. | |
122 | |
123 **Inputs** | |
124 - A zip file containing images to process. | |
125 - A model selection for embedding extraction. | |
126 - An option to apply normalization to the extracted embeddings. | |
127 - A choice of image transformation type before processing. | |
128 | |
129 **Outputs** | |
130 - A CSV file containing embeddings. Each row corresponds to an image, with the file name in the first column and embedding vectors in the subsequent columns. | |
131 ]]> | |
132 </help> | |
133 </tool> |