Mercurial > repos > goeckslab > galaxy_pycaret
comparison pycaret_predict.xml @ 0:1bc26b9636d2 draft default tip
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit 5089a5dffc154c8202624cfbd5f1be0f36a9f0cc
| author | goeckslab |
|---|---|
| date | Wed, 11 Dec 2024 03:29:00 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:1bc26b9636d2 |
|---|---|
| 1 <tool id="pycaret_predict" name="PyCaret Predictor/Evaluator" version="@VERSION@" profile="@PROFILE@"> | |
| 2 <description>predicts/evaluates your pycaret ML model on a dataset. </description> | |
| 3 <macros> | |
| 4 <import>pycaret_macros.xml</import> | |
| 5 </macros> | |
| 6 <expand macro="python_requirements" /> | |
| 7 <command> | |
| 8 <![CDATA[ | |
| 9 echo $target_feature && | |
| 10 python $__tool_directory__/pycaret_predict.py --model_path $input_model --data_path $input_dataset --task $model_type | |
| 11 #if $target_feature | |
| 12 --target $target_feature | |
| 13 #end if | |
| 14 ]]> | |
| 15 </command> | |
| 16 <inputs> | |
| 17 <param name="input_model" type="data" format="h5" label="Model you want to use to predict/evaluate:" /> | |
| 18 <param name="input_dataset" type="data" format="csv,tabular" label="Dataset you use to predict/evaluate" /> | |
| 19 <param name="model_type" type="select" label="Task"> | |
| 20 <option value="classification">classification</option> | |
| 21 <option value="regression">regression</option> | |
| 22 </param> | |
| 23 <param name="target_feature" multiple="false" type="data_column" use_header_names="true" data_ref="input_dataset" optional="true" label="Does your uploaded data include a target column? If so, please select the target column:" /> | |
| 24 </inputs> | |
| 25 <outputs> | |
| 26 <data name="prediction" format="csv" from_work_dir="predictions.csv" label="${tool.name} prediction results on ${on_string}" /> | |
| 27 <data name="report" format="html" from_work_dir="evaluation_report.html" label="${tool.name} evaluation report on ${on_string}"> | |
| 28 <filter>target_feature</filter> | |
| 29 </data> | |
| 30 </outputs> | |
| 31 <tests> | |
| 32 <test expect_num_outputs="2"> | |
| 33 <param name="input_model" value="expected_model_classification.h5" /> | |
| 34 <param name="input_dataset" value="pcr.tsv" /> | |
| 35 <param name="model_type" value="classification" /> | |
| 36 <param name="target_feature" value="11" /> | |
| 37 <output name="prediction" file="predictions_classification.csv" /> | |
| 38 <output name="report" file="evaluation_report_classification.html" compare="sim_size" /> | |
| 39 </test> | |
| 40 <test expect_num_outputs="2"> | |
| 41 <param name="input_model" value="expected_model_regression.h5" /> | |
| 42 <param name="input_dataset" value="auto-mpg.tsv" /> | |
| 43 <param name="model_type" value="regression" /> | |
| 44 <param name="target_feature" value="1" /> | |
| 45 <output name="prediction" file="predictions_regression.csv" /> | |
| 46 <output name="report" file="evaluation_report_regression.html" compare="sim_size" /> | |
| 47 </test> | |
| 48 </tests> | |
| 49 <help> | |
| 50 This tool uses PyCaret to evaluate a machine learning model or do prediction. | |
| 51 | |
| 52 **Outputs**: | |
| 53 | |
| 54 - **prediction**: The prediction results on the dataset in a csv format. | |
| 55 | |
| 56 - **report**: The evaluation report is generated in HTML format. | |
| 57 if you upload a dataset with a target column and select the target column in the target_feature input field. | |
| 58 | |
| 59 </help> | |
| 60 <expand macro="macro_citations" /> | |
| 61 </tool> |
