Mercurial > repos > goeckslab > image_learner
comparison constants.py @ 2:186424a7eca7 draft
planemo upload for repository https://github.com/goeckslab/gleam.git commit 91fa4aba245520fc0680088a07cead66bcfd4ed2
| author | goeckslab |
|---|---|
| date | Thu, 03 Jul 2025 20:43:24 +0000 |
| parents | |
| children | 2c3a3dfaf1a9 |
comparison
equal
deleted
inserted
replaced
| 1:39202fe5cf97 | 2:186424a7eca7 |
|---|---|
| 1 from typing import Any, Dict | |
| 2 | |
| 3 # --- Constants --- | |
| 4 SPLIT_COLUMN_NAME = "split" | |
| 5 LABEL_COLUMN_NAME = "label" | |
| 6 IMAGE_PATH_COLUMN_NAME = "image_path" | |
| 7 DEFAULT_SPLIT_PROBABILITIES = [0.7, 0.1, 0.2] | |
| 8 TEMP_CSV_FILENAME = "processed_data_for_ludwig.csv" | |
| 9 TEMP_CONFIG_FILENAME = "ludwig_config.yaml" | |
| 10 TEMP_DIR_PREFIX = "ludwig_api_work_" | |
| 11 MODEL_ENCODER_TEMPLATES: Dict[str, Any] = { | |
| 12 "stacked_cnn": "stacked_cnn", | |
| 13 "resnet18": {"type": "resnet", "model_variant": 18}, | |
| 14 "resnet34": {"type": "resnet", "model_variant": 34}, | |
| 15 "resnet50": {"type": "resnet", "model_variant": 50}, | |
| 16 "resnet101": {"type": "resnet", "model_variant": 101}, | |
| 17 "resnet152": {"type": "resnet", "model_variant": 152}, | |
| 18 "resnext50_32x4d": {"type": "resnext", "model_variant": "50_32x4d"}, | |
| 19 "resnext101_32x8d": {"type": "resnext", "model_variant": "101_32x8d"}, | |
| 20 "resnext101_64x4d": {"type": "resnext", "model_variant": "101_64x4d"}, | |
| 21 "resnext152_32x8d": {"type": "resnext", "model_variant": "152_32x8d"}, | |
| 22 "wide_resnet50_2": {"type": "wide_resnet", "model_variant": "50_2"}, | |
| 23 "wide_resnet101_2": {"type": "wide_resnet", "model_variant": "101_2"}, | |
| 24 "wide_resnet103_2": {"type": "wide_resnet", "model_variant": "103_2"}, | |
| 25 "efficientnet_b0": {"type": "efficientnet", "model_variant": "b0"}, | |
| 26 "efficientnet_b1": {"type": "efficientnet", "model_variant": "b1"}, | |
| 27 "efficientnet_b2": {"type": "efficientnet", "model_variant": "b2"}, | |
| 28 "efficientnet_b3": {"type": "efficientnet", "model_variant": "b3"}, | |
| 29 "efficientnet_b4": {"type": "efficientnet", "model_variant": "b4"}, | |
| 30 "efficientnet_b5": {"type": "efficientnet", "model_variant": "b5"}, | |
| 31 "efficientnet_b6": {"type": "efficientnet", "model_variant": "b6"}, | |
| 32 "efficientnet_b7": {"type": "efficientnet", "model_variant": "b7"}, | |
| 33 "efficientnet_v2_s": {"type": "efficientnet", "model_variant": "v2_s"}, | |
| 34 "efficientnet_v2_m": {"type": "efficientnet", "model_variant": "v2_m"}, | |
| 35 "efficientnet_v2_l": {"type": "efficientnet", "model_variant": "v2_l"}, | |
| 36 "regnet_y_400mf": {"type": "regnet", "model_variant": "y_400mf"}, | |
| 37 "regnet_y_800mf": {"type": "regnet", "model_variant": "y_800mf"}, | |
| 38 "regnet_y_1_6gf": {"type": "regnet", "model_variant": "y_1_6gf"}, | |
| 39 "regnet_y_3_2gf": {"type": "regnet", "model_variant": "y_3_2gf"}, | |
| 40 "regnet_y_8gf": {"type": "regnet", "model_variant": "y_8gf"}, | |
| 41 "regnet_y_16gf": {"type": "regnet", "model_variant": "y_16gf"}, | |
| 42 "regnet_y_32gf": {"type": "regnet", "model_variant": "y_32gf"}, | |
| 43 "regnet_y_128gf": {"type": "regnet", "model_variant": "y_128gf"}, | |
| 44 "regnet_x_400mf": {"type": "regnet", "model_variant": "x_400mf"}, | |
| 45 "regnet_x_800mf": {"type": "regnet", "model_variant": "x_800mf"}, | |
| 46 "regnet_x_1_6gf": {"type": "regnet", "model_variant": "x_1_6gf"}, | |
| 47 "regnet_x_3_2gf": {"type": "regnet", "model_variant": "x_3_2gf"}, | |
| 48 "regnet_x_8gf": {"type": "regnet", "model_variant": "x_8gf"}, | |
| 49 "regnet_x_16gf": {"type": "regnet", "model_variant": "x_16gf"}, | |
| 50 "regnet_x_32gf": {"type": "regnet", "model_variant": "x_32gf"}, | |
| 51 "vgg11": {"type": "vgg", "model_variant": 11}, | |
| 52 "vgg11_bn": {"type": "vgg", "model_variant": "11_bn"}, | |
| 53 "vgg13": {"type": "vgg", "model_variant": 13}, | |
| 54 "vgg13_bn": {"type": "vgg", "model_variant": "13_bn"}, | |
| 55 "vgg16": {"type": "vgg", "model_variant": 16}, | |
| 56 "vgg16_bn": {"type": "vgg", "model_variant": "16_bn"}, | |
| 57 "vgg19": {"type": "vgg", "model_variant": 19}, | |
| 58 "vgg19_bn": {"type": "vgg", "model_variant": "19_bn"}, | |
| 59 "shufflenet_v2_x0_5": {"type": "shufflenet_v2", "model_variant": "x0_5"}, | |
| 60 "shufflenet_v2_x1_0": {"type": "shufflenet_v2", "model_variant": "x1_0"}, | |
| 61 "shufflenet_v2_x1_5": {"type": "shufflenet_v2", "model_variant": "x1_5"}, | |
| 62 "shufflenet_v2_x2_0": {"type": "shufflenet_v2", "model_variant": "x2_0"}, | |
| 63 "squeezenet1_0": {"type": "squeezenet", "model_variant": "1_0"}, | |
| 64 "squeezenet1_1": {"type": "squeezenet", "model_variant": "1_1"}, | |
| 65 "swin_t": {"type": "swin_transformer", "model_variant": "t"}, | |
| 66 "swin_s": {"type": "swin_transformer", "model_variant": "s"}, | |
| 67 "swin_b": {"type": "swin_transformer", "model_variant": "b"}, | |
| 68 "swin_v2_t": {"type": "swin_transformer", "model_variant": "v2_t"}, | |
| 69 "swin_v2_s": {"type": "swin_transformer", "model_variant": "v2_s"}, | |
| 70 "swin_v2_b": {"type": "swin_transformer", "model_variant": "v2_b"}, | |
| 71 "vit_b_16": {"type": "vision_transformer", "model_variant": "b_16"}, | |
| 72 "vit_b_32": {"type": "vision_transformer", "model_variant": "b_32"}, | |
| 73 "vit_l_16": {"type": "vision_transformer", "model_variant": "l_16"}, | |
| 74 "vit_l_32": {"type": "vision_transformer", "model_variant": "l_32"}, | |
| 75 "vit_h_14": {"type": "vision_transformer", "model_variant": "h_14"}, | |
| 76 "convnext_tiny": {"type": "convnext", "model_variant": "tiny"}, | |
| 77 "convnext_small": {"type": "convnext", "model_variant": "small"}, | |
| 78 "convnext_base": {"type": "convnext", "model_variant": "base"}, | |
| 79 "convnext_large": {"type": "convnext", "model_variant": "large"}, | |
| 80 "maxvit_t": {"type": "maxvit", "model_variant": "t"}, | |
| 81 "alexnet": {"type": "alexnet"}, | |
| 82 "googlenet": {"type": "googlenet"}, | |
| 83 "inception_v3": {"type": "inception_v3"}, | |
| 84 "mobilenet_v2": {"type": "mobilenet_v2"}, | |
| 85 "mobilenet_v3_large": {"type": "mobilenet_v3_large"}, | |
| 86 "mobilenet_v3_small": {"type": "mobilenet_v3_small"}, | |
| 87 } | |
| 88 METRIC_DISPLAY_NAMES = { | |
| 89 "accuracy": "Accuracy", | |
| 90 "accuracy_micro": "Accuracy-Micro", | |
| 91 "loss": "Loss", | |
| 92 "roc_auc": "ROC-AUC", | |
| 93 "roc_auc_macro": "ROC-AUC-Macro", | |
| 94 "roc_auc_micro": "ROC-AUC-Micro", | |
| 95 "hits_at_k": "Hits at K", | |
| 96 "precision": "Precision", | |
| 97 "recall": "Recall", | |
| 98 "specificity": "Specificity", | |
| 99 "kappa_score": "Cohen's Kappa", | |
| 100 "token_accuracy": "Token Accuracy", | |
| 101 "avg_precision_macro": "Precision-Macro", | |
| 102 "avg_recall_macro": "Recall-Macro", | |
| 103 "avg_f1_score_macro": "F1-score-Macro", | |
| 104 "avg_precision_micro": "Precision-Micro", | |
| 105 "avg_recall_micro": "Recall-Micro", | |
| 106 "avg_f1_score_micro": "F1-score-Micro", | |
| 107 "avg_precision_weighted": "Precision-Weighted", | |
| 108 "avg_recall_weighted": "Recall-Weighted", | |
| 109 "avg_f1_score_weighted": "F1-score-Weighted", | |
| 110 "average_precision_macro": "Precision-Average-Macro", | |
| 111 "average_precision_micro": "Precision-Average-Micro", | |
| 112 "average_precision_samples": "Precision-Average-Samples", | |
| 113 "mean_squared_error": "Mean Squared Error", | |
| 114 "mean_absolute_error": "Mean Absolute Error", | |
| 115 "r2": "R² Score", | |
| 116 "root_mean_squared_error": "Root Mean Squared Error", | |
| 117 "mean_absolute_percentage_error": "Mean Absolute % Error", | |
| 118 "root_mean_squared_percentage_error": "Root Mean Squared % Error", | |
| 119 } |
