Mercurial > repos > goeckslab > image_learner
comparison image_learner.xml @ 9:9e912fce264c draft
planemo upload for repository https://github.com/goeckslab/gleam.git commit eace0d7c2b2939029c052991d238a54947d2e191
author | goeckslab |
---|---|
date | Wed, 27 Aug 2025 21:02:48 +0000 |
parents | 85e6f4b2ad18 |
children |
comparison
equal
deleted
inserted
replaced
8:85e6f4b2ad18 | 9:9e912fce264c |
---|---|
1 <tool id="image_learner" name="Image Learner for Classification" version="0.1.2" profile="22.05"> | 1 <tool id="image_learner" name="Image Learner" version="0.1.2" profile="22.05"> |
2 <description>trains and evaluates a image classification model</description> | 2 <description>trains and evaluates an image classification/regression model</description> |
3 <requirements> | 3 <requirements> |
4 <container type="docker">quay.io/goeckslab/galaxy-ludwig-gpu:latest</container> | 4 <container type="docker">quay.io/goeckslab/galaxy-ludwig-gpu:latest</container> |
5 </requirements> | 5 </requirements> |
6 <required_files> | 6 <required_files> |
7 <include path="utils.py" /> | 7 <include path="utils.py" /> |
44 #end if | 44 #end if |
45 #if $batch_size_define == "true" | 45 #if $batch_size_define == "true" |
46 --batch-size "$batch_size" | 46 --batch-size "$batch_size" |
47 #end if | 47 #end if |
48 --split-probabilities "$train_split" "$val_split" "$test_split" | 48 --split-probabilities "$train_split" "$val_split" "$test_split" |
49 #if $threshold | |
50 --threshold "$threshold" | |
51 #end if | |
49 #end if | 52 #end if |
50 #if $augmentation | 53 #if $augmentation |
51 --augmentation "$augmentation" | 54 --augmentation "$augmentation" |
52 #end if | 55 #end if |
53 --random-seed "$random_seed" | 56 --random-seed "$random_seed" |
142 </param> | 145 </param> |
143 | 146 |
144 <conditional name="scratch_fine_tune"> | 147 <conditional name="scratch_fine_tune"> |
145 <param name="use_pretrained" type="select" | 148 <param name="use_pretrained" type="select" |
146 label="Use pretrained weights?" | 149 label="Use pretrained weights?" |
147 help="If select no, the encoder, combiner, and decoder will all be initialized and trained from scratch. | 150 help="If select no, the encoder, combiner, and decoder will all be initialized and trained from scratch. (e.g. when your images are very different from ImageNet or no suitable pretrained model exists.)"> |
148 (e.g. when your images are very different from ImageNet or no suitable pretrained model exists.)"> | |
149 <option value="false">No</option> | 151 <option value="false">No</option> |
150 <option value="true" selected="true">Yes</option> | 152 <option value="true" selected="true">Yes</option> |
151 </param> | 153 </param> |
152 <when value="true"> | 154 <when value="true"> |
153 <param name="fine_tune" type="select" label="Fine tune the encoder?" | 155 <param name="fine_tune" type="select" label="Fine tune the encoder?" |
315 <has_n_columns n="1" /> | 317 <has_n_columns n="1" /> |
316 </assert_contents> | 318 </assert_contents> |
317 </element> | 319 </element> |
318 </output_collection> | 320 </output_collection> |
319 </test> | 321 </test> |
320 </tests> | 322 </tests> |
321 <help> | 323 <help> |
322 <![CDATA[ | 324 <![CDATA[ |
323 **What it does** | 325 **What it does** |
324 Image Learner for Classification: trains and evaluates a image classification model. | 326 Image Learner for Classification/regression: trains and evaluates a image classification/regression model. |
325 It uses the metadata csv to find the image paths and labels. | 327 It uses the metadata csv to find the image paths and labels. |
326 The metadata csv should contain a column with the name 'image_path' and a column with the name 'label'. | 328 The metadata csv should contain a column with the name 'image_path' and a column with the name 'label'. |
327 Optionally, you can also add a column with the name 'split' to specify which split each row belongs to (train, val, test). | 329 Optionally, you can also add a column with the name 'split' to specify which split each row belongs to (train, val, test). |
328 If you do not provide a split column, the tool will automatically split the data into train, val, and test sets based on the proportions you specify or [0.7, 0.1, 0.2] by default. | 330 If you do not provide a split column, the tool will automatically split the data into train, val, and test sets based on the proportions you specify or [0.7, 0.1, 0.2] by default. |
329 | 331 |
332 **If the selected label column has more than 10 unique values, the tool will automatically treat the task as a regression problem and apply appropriate metrics (e.g., MSE, RMSE, R²).** | |
330 | 333 |
331 **Outputs** | 334 **Outputs** |
332 The tool will output a trained model in the form of a ludwig_model file, | 335 The tool will output a trained model in the form of a ludwig_model file, |
333 a report in the form of an HTML file, and a collection of CSV/json/png files containing the predictions, experiment stats and visualizations. | 336 a report in the form of an HTML file, and a collection of CSV/json/png files containing the predictions, experiment stats and visualizations. |
334 The html report will contain metrics&experiment setup parameters, train&val plots and test plots. | 337 The html report will contain metrics&experiment setup parameters, train&val plots and test plots. |