comparison image_learner.xml @ 9:9e912fce264c draft

planemo upload for repository https://github.com/goeckslab/gleam.git commit eace0d7c2b2939029c052991d238a54947d2e191
author goeckslab
date Wed, 27 Aug 2025 21:02:48 +0000
parents 85e6f4b2ad18
children
comparison
equal deleted inserted replaced
8:85e6f4b2ad18 9:9e912fce264c
1 <tool id="image_learner" name="Image Learner for Classification" version="0.1.2" profile="22.05"> 1 <tool id="image_learner" name="Image Learner" version="0.1.2" profile="22.05">
2 <description>trains and evaluates a image classification model</description> 2 <description>trains and evaluates an image classification/regression model</description>
3 <requirements> 3 <requirements>
4 <container type="docker">quay.io/goeckslab/galaxy-ludwig-gpu:latest</container> 4 <container type="docker">quay.io/goeckslab/galaxy-ludwig-gpu:latest</container>
5 </requirements> 5 </requirements>
6 <required_files> 6 <required_files>
7 <include path="utils.py" /> 7 <include path="utils.py" />
44 #end if 44 #end if
45 #if $batch_size_define == "true" 45 #if $batch_size_define == "true"
46 --batch-size "$batch_size" 46 --batch-size "$batch_size"
47 #end if 47 #end if
48 --split-probabilities "$train_split" "$val_split" "$test_split" 48 --split-probabilities "$train_split" "$val_split" "$test_split"
49 #if $threshold
50 --threshold "$threshold"
51 #end if
49 #end if 52 #end if
50 #if $augmentation 53 #if $augmentation
51 --augmentation "$augmentation" 54 --augmentation "$augmentation"
52 #end if 55 #end if
53 --random-seed "$random_seed" 56 --random-seed "$random_seed"
142 </param> 145 </param>
143 146
144 <conditional name="scratch_fine_tune"> 147 <conditional name="scratch_fine_tune">
145 <param name="use_pretrained" type="select" 148 <param name="use_pretrained" type="select"
146 label="Use pretrained weights?" 149 label="Use pretrained weights?"
147 help="If select no, the encoder, combiner, and decoder will all be initialized and trained from scratch. 150 help="If select no, the encoder, combiner, and decoder will all be initialized and trained from scratch. (e.g. when your images are very different from ImageNet or no suitable pretrained model exists.)">
148 (e.g. when your images are very different from ImageNet or no suitable pretrained model exists.)">
149 <option value="false">No</option> 151 <option value="false">No</option>
150 <option value="true" selected="true">Yes</option> 152 <option value="true" selected="true">Yes</option>
151 </param> 153 </param>
152 <when value="true"> 154 <when value="true">
153 <param name="fine_tune" type="select" label="Fine tune the encoder?" 155 <param name="fine_tune" type="select" label="Fine tune the encoder?"
315 <has_n_columns n="1" /> 317 <has_n_columns n="1" />
316 </assert_contents> 318 </assert_contents>
317 </element> 319 </element>
318 </output_collection> 320 </output_collection>
319 </test> 321 </test>
320 </tests> 322 </tests>
321 <help> 323 <help>
322 <![CDATA[ 324 <![CDATA[
323 **What it does** 325 **What it does**
324 Image Learner for Classification: trains and evaluates a image classification model. 326 Image Learner for Classification/regression: trains and evaluates a image classification/regression model.
325 It uses the metadata csv to find the image paths and labels. 327 It uses the metadata csv to find the image paths and labels.
326 The metadata csv should contain a column with the name 'image_path' and a column with the name 'label'. 328 The metadata csv should contain a column with the name 'image_path' and a column with the name 'label'.
327 Optionally, you can also add a column with the name 'split' to specify which split each row belongs to (train, val, test). 329 Optionally, you can also add a column with the name 'split' to specify which split each row belongs to (train, val, test).
328 If you do not provide a split column, the tool will automatically split the data into train, val, and test sets based on the proportions you specify or [0.7, 0.1, 0.2] by default. 330 If you do not provide a split column, the tool will automatically split the data into train, val, and test sets based on the proportions you specify or [0.7, 0.1, 0.2] by default.
329 331
332 **If the selected label column has more than 10 unique values, the tool will automatically treat the task as a regression problem and apply appropriate metrics (e.g., MSE, RMSE, R²).**
330 333
331 **Outputs** 334 **Outputs**
332 The tool will output a trained model in the form of a ludwig_model file, 335 The tool will output a trained model in the form of a ludwig_model file,
333 a report in the form of an HTML file, and a collection of CSV/json/png files containing the predictions, experiment stats and visualizations. 336 a report in the form of an HTML file, and a collection of CSV/json/png files containing the predictions, experiment stats and visualizations.
334 The html report will contain metrics&experiment setup parameters, train&val plots and test plots. 337 The html report will contain metrics&experiment setup parameters, train&val plots and test plots.