diff image_learner.xml @ 16:8729f69e9207 draft default tip

planemo upload for repository https://github.com/goeckslab/gleam.git commit bb4bcdc888d73bbfd85d78ce8999a1080fe813ff
author goeckslab
date Wed, 03 Dec 2025 01:28:52 +0000
parents d17e3a1b8659
children
line wrap: on
line diff
--- a/image_learner.xml	Fri Nov 28 15:45:49 2025 +0000
+++ b/image_learner.xml	Wed Dec 03 01:28:52 2025 +0000
@@ -1,4 +1,4 @@
-<tool id="image_learner" name="Image Learner" version="0.1.4" profile="22.05">
+<tool id="image_learner" name="Image Learner" version="0.1.4.1" profile="22.01">
     <description>trains and evaluates an image classification/regression model</description>
     <requirements>
         <container type="docker">quay.io/goeckslab/galaxy-ludwig-gpu:0.10.1</container>
@@ -43,9 +43,9 @@
                 --csv-file "./${sanitized_input_csv}"
                 --image-zip "$image_zip"
                 --model-name "$model_name"
-                #if $use_pretrained == "true"
+                #if $scratch_fine_tune.use_pretrained == "true"
                     --use-pretrained
-                    #if $fine_tune == "true"
+                    #if $scratch_fine_tune.fine_tune == "true"
                         --fine-tune
                     #end if
                 #end if
@@ -488,7 +488,7 @@
             </output_collection>
         </test>
         <!-- Test 7: MetaFormer with 384x384 input - verifies model correctly handles non-224x224 dimensions -->
-        <test expect_num_outputs="3">
+        <!-- <test expect_num_outputs="3">
             <param name="input_csv" value="mnist_subset.csv" ftype="csv" />
             <param name="image_zip" value="mnist_subset.zip" ftype="zip" />
             <param name="model_name" value="caformer_s18_384" />
@@ -512,7 +512,7 @@
                     </assert_contents>
                 </element>
             </output_collection>
-        </test>
+        </test> -->
         <!-- Test 8: Binary classification with custom threshold - verifies ROC curve generation for binary tasks; need to find a test dataset -->
         <!-- <test expect_num_outputs="3">
             <param name="input_csv" value="binary_classification.csv" ftype="csv" />