Mercurial > repos > goeckslab > image_learner
diff html_structure.py @ 19:c460abae83eb draft default tip
planemo upload for repository https://github.com/goeckslab/gleam.git commit b47f0fd63d8d5d18d602d45bb21ebbe36ba4fcfe
| author | goeckslab |
|---|---|
| date | Thu, 18 Dec 2025 16:59:58 +0000 |
| parents | db9be962dc13 |
| children |
line wrap: on
line diff
--- a/html_structure.py Sun Dec 14 03:27:12 2025 +0000 +++ b/html_structure.py Thu Dec 18 16:59:58 2025 +0000 @@ -231,7 +231,7 @@ <html> <head> <meta charset="UTF-8"> - <title>Galaxy-Ludwig Report</title> + <title>Image Learner Report</title> <style> body { font-family: Arial, sans-serif; @@ -719,6 +719,16 @@ ' <li><strong>Detailed Analysis:</strong> Use <strong>Confusion Matrix stats</strong> ' 'for class-wise performance in classification.</li>' ' </ul>' + ' <h3>11) Grad-CAM Heatmaps (When Available)</h3>' + ' <p><strong>Paper:</strong> <em>Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization</em> ' + '(Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra; ICCV 2017).</p>' + ' <p><strong>What it shows:</strong> A heatmap highlighting image regions that most influenced the model’s prediction ' + 'for a small subset of evaluation samples (we prefer the test split when available).</p>' + ' <p><strong>How it is computed (high level):</strong> We use the encoder’s preprocessing (resize + normalization), ' + 'take activations from the last convolution layer, weight them by globally-averaged gradients of the target logits, apply ReLU, ' + 'upsample to input resolution, and overlay on the input image.</p>' + ' <p><strong>Availability:</strong> Only supported for convolutional encoders. Models without convolution layers may not ' + 'produce Grad-CAM outputs.</p>' ' </div>' ' </div>' '</div>'
