Mercurial > repos > goeckslab > image_learner
view ludwig_backend.py @ 17:db9be962dc13 draft default tip
planemo upload for repository https://github.com/goeckslab/gleam.git commit 9db874612b0c3e4f53d639459fe789b762660cd6
| author | goeckslab |
|---|---|
| date | Wed, 10 Dec 2025 00:24:13 +0000 |
| parents | 8729f69e9207 |
| children |
line wrap: on
line source
import inspect import json import logging import os from pathlib import Path from typing import Any, Dict, List, Optional, Protocol, Tuple import pandas as pd import pandas.api.types as ptypes import yaml from constants import ( IMAGE_PATH_COLUMN_NAME, LABEL_COLUMN_NAME, MODEL_ENCODER_TEMPLATES, SPLIT_COLUMN_NAME, ) from html_structure import ( build_tabbed_html, encode_image_to_base64, format_config_table_html, format_dataset_overview_table, format_stats_table_html, format_test_merged_stats_table_html, format_train_val_stats_table_html, get_html_closing, get_html_template, get_metrics_help_modal, ) from ludwig.globals import ( DESCRIPTION_FILE_NAME, PREDICTIONS_PARQUET_FILE_NAME, TEST_STATISTICS_FILE_NAME, TRAIN_SET_METADATA_FILE_NAME, ) from ludwig.utils.data_utils import get_split_path from metaformer_setup import get_visualizations_registry, META_DEFAULT_CFGS from plotly_plots import ( build_binary_threshold_plot, build_classification_plots, build_multiclass_metric_plots, build_prediction_diagnostics, build_regression_test_plots, build_regression_train_val_plots, build_train_validation_plots, ) from utils import detect_output_type, extract_metrics_from_json logger = logging.getLogger("ImageLearner") class Backend(Protocol): """Interface for a machine learning backend.""" def prepare_config( self, config_params: Dict[str, Any], split_config: Dict[str, Any], ) -> str: ... def run_experiment( self, dataset_path: Path, config_path: Path, output_dir: Path, random_seed: int, ) -> None: ... def generate_plots(self, output_dir: Path) -> None: ... def generate_html_report( self, title: str, output_dir: str, config: Dict[str, Any], split_info: str, ) -> Path: ... class LudwigDirectBackend: """Backend for running Ludwig experiments directly via the internal experiment_cli function.""" _torchvision_patched = False def _detect_image_dimensions(self, image_zip_path: str) -> Tuple[int, int]: """Detect image dimensions from the first image in the dataset.""" try: import zipfile from PIL import Image import io # Check if image_zip is provided if not image_zip_path: logger.warning("No image zip provided, using default 224x224") return 224, 224 # Extract first image to detect dimensions with zipfile.ZipFile(image_zip_path, 'r') as z: image_files = [f for f in z.namelist() if f.lower().endswith(('.png', '.jpg', '.jpeg'))] if not image_files: logger.warning("No image files found in zip, using default 224x224") return 224, 224 # Check first image with z.open(image_files[0]) as f: img = Image.open(io.BytesIO(f.read())) width, height = img.size logger.info(f"Detected image dimensions: {width}x{height}") return height, width # Return as (height, width) to match encoder config except Exception as e: logger.warning(f"Error detecting image dimensions: {e}, using default 224x224") return 224, 224 def prepare_config( self, config_params: Dict[str, Any], split_config: Dict[str, Any], ) -> str: logger.info("LudwigDirectBackend: Preparing YAML configuration.") model_name = config_params.get("model_name", "resnet18") use_pretrained = config_params.get("use_pretrained", False) fine_tune = config_params.get("fine_tune", False) if use_pretrained: trainable = bool(fine_tune) else: trainable = True epochs = config_params.get("epochs", 10) batch_size = config_params.get("batch_size") num_processes = config_params.get("preprocessing_num_processes", 1) early_stop = config_params.get("early_stop", None) learning_rate = config_params.get("learning_rate") learning_rate = "auto" if learning_rate is None else float(learning_rate) raw_encoder = MODEL_ENCODER_TEMPLATES.get(model_name, model_name) # --- MetaFormer detection and config logic --- def _is_metaformer(name: str) -> bool: return isinstance(name, str) and name.startswith( ( "identityformer_", "randformer_", "poolformerv2_", "convformer_", "caformer_", ) ) # Check if this is a MetaFormer model (either direct name or in custom_model) is_metaformer = ( _is_metaformer(model_name) or (isinstance(raw_encoder, dict) and "custom_model" in raw_encoder and _is_metaformer(raw_encoder["custom_model"])) ) metaformer_resize: Optional[Tuple[int, int]] = None metaformer_channels = 3 if is_metaformer: # Handle MetaFormer models custom_model = None if isinstance(raw_encoder, dict) and "custom_model" in raw_encoder: custom_model = raw_encoder["custom_model"] else: custom_model = model_name logger.info(f"DETECTED MetaFormer model: {custom_model}") # Stash the model name for patched Stacked2DCNN in case Ludwig drops custom_model from kwargs try: from MetaFormer.metaformer_stacked_cnn import set_current_metaformer_model set_current_metaformer_model(custom_model) except Exception: logger.debug("Could not set current MetaFormer model hint; proceeding without global override") # Also pass via environment to survive process boundaries (e.g., Ray workers) os.environ["GLEAM_META_FORMER_MODEL"] = custom_model cfg_channels, cfg_height, cfg_width = 3, 224, 224 model_cfg = {} if META_DEFAULT_CFGS: model_cfg = META_DEFAULT_CFGS.get(custom_model, {}) input_size = model_cfg.get("input_size") if isinstance(input_size, (list, tuple)) and len(input_size) == 3: cfg_channels, cfg_height, cfg_width = ( int(input_size[0]), int(input_size[1]), int(input_size[2]), ) weights_url = None if isinstance(model_cfg, dict): weights_url = model_cfg.get("url") logger.info( "MetaFormer cfg lookup: model=%s has_cfg=%s url=%s use_pretrained=%s", custom_model, bool(model_cfg), weights_url, use_pretrained, ) if use_pretrained and not weights_url: logger.warning( "MetaFormer pretrained requested for %s but no URL found in default cfgs; model will be randomly initialized", custom_model, ) resize_value = config_params.get("image_resize") if resize_value and resize_value != "original": try: dimensions = resize_value.split("x") if len(dimensions) == 2: target_height, target_width = int(dimensions[0]), int(dimensions[1]) if target_height <= 0 or target_width <= 0: raise ValueError( f"Image resize must be positive integers, received {resize_value}." ) logger.info(f"MetaFormer explicit resize: {target_height}x{target_width}") else: raise ValueError(resize_value) except (ValueError, IndexError): logger.warning( "Invalid image resize format '%s'; falling back to model default %sx%s", resize_value, cfg_height, cfg_width, ) target_height, target_width = cfg_height, cfg_width else: image_zip_path = config_params.get("image_zip", "") detected_height, detected_width = self._detect_image_dimensions(image_zip_path) target_height, target_width = detected_height, detected_width if use_pretrained and (detected_height, detected_width) != (cfg_height, cfg_width): logger.info( "MetaFormer pretrained weights expect %sx%s; proceeding with detected %sx%s", cfg_height, cfg_width, detected_height, detected_width, ) if target_height <= 0 or target_width <= 0: raise ValueError( f"Invalid detected image dimensions for MetaFormer: {target_height}x{target_width}." ) metaformer_channels = cfg_channels metaformer_resize = (target_height, target_width) encoder_config = { "type": "stacked_cnn", "height": target_height, "width": target_width, "num_channels": metaformer_channels, "output_size": 128, "use_pretrained": use_pretrained, "trainable": trainable, "custom_model": custom_model, } elif isinstance(raw_encoder, dict): # Handle image resize for regular encoders # Note: Standard encoders like ResNet don't support height/width parameters # Resize will be handled at the preprocessing level by Ludwig if config_params.get("image_resize") and config_params["image_resize"] != "original": logger.info(f"Resize requested: {config_params['image_resize']} for standard encoder. Resize will be handled at preprocessing level.") encoder_config = { **raw_encoder, "use_pretrained": use_pretrained, "trainable": trainable, } else: encoder_config = {"type": raw_encoder} # Set a human-friendly architecture string for reporting arch_display = None if is_metaformer and custom_model: arch_display = str(custom_model) elif isinstance(raw_encoder, dict): enc_type = raw_encoder.get("type") enc_variant = raw_encoder.get("model_variant") if enc_type: base = str(enc_type).replace("_", " ").title() arch_display = f"{base} {enc_variant}" if enc_variant is not None else base else: arch_display = str(raw_encoder).replace("_", " ").title() if not arch_display: arch_display = str(model_name) config_params["architecture"] = arch_display batch_size_cfg = batch_size or "auto" label_column_path = config_params.get("label_column_data_path") label_series = None label_metadata_hint = config_params.get("label_metadata") or {} output_type_hint = config_params.get("output_type_hint") num_unique_labels = int(label_metadata_hint.get("num_unique", 2)) numeric_binary_labels = bool(label_metadata_hint.get("is_numeric_binary", False)) likely_regression = bool(label_metadata_hint.get("likely_regression", False)) if label_column_path is not None and Path(label_column_path).exists(): try: label_series = pd.read_csv(label_column_path)[LABEL_COLUMN_NAME] non_na = label_series.dropna() if not non_na.empty: num_unique_labels = non_na.nunique() is_numeric = ptypes.is_numeric_dtype(label_series.dtype) numeric_binary_labels = is_numeric and num_unique_labels == 2 likely_regression = ( is_numeric and not numeric_binary_labels and num_unique_labels > 10 ) if numeric_binary_labels: logger.info( "Detected numeric binary labels in '%s'; configuring Ludwig for binary classification.", LABEL_COLUMN_NAME, ) except Exception as e: logger.warning(f"Could not read label column for task detection: {e}") if output_type_hint == "binary": num_unique_labels = 2 numeric_binary_labels = numeric_binary_labels or bool( label_metadata_hint.get("is_numeric", False) ) if numeric_binary_labels: task_type = "classification" elif likely_regression: task_type = "regression" else: task_type = "classification" if task_type == "regression" and numeric_binary_labels: logger.warning( "Numeric binary labels detected but regression task chosen; forcing classification to avoid invalid Ludwig config." ) task_type = "classification" config_params["task_type"] = task_type image_feat: Dict[str, Any] = { "name": IMAGE_PATH_COLUMN_NAME, "type": "image", } # Set preprocessing dimensions FIRST for MetaFormer models if is_metaformer: if metaformer_resize is None: metaformer_resize = (224, 224) height, width = metaformer_resize # CRITICAL: Set preprocessing dimensions FIRST for MetaFormer models # This is essential for MetaFormer models to work properly if "preprocessing" not in image_feat: image_feat["preprocessing"] = {} image_feat["preprocessing"]["height"] = height image_feat["preprocessing"]["width"] = width # Use infer_image_dimensions=True to allow Ludwig to read images for validation # but set explicit max dimensions to control the output size image_feat["preprocessing"]["infer_image_dimensions"] = True image_feat["preprocessing"]["infer_image_max_height"] = height image_feat["preprocessing"]["infer_image_max_width"] = width image_feat["preprocessing"]["num_channels"] = metaformer_channels image_feat["preprocessing"]["resize_method"] = "interpolate" # Use interpolation for better quality image_feat["preprocessing"]["standardize_image"] = "imagenet1k" # Use ImageNet standardization # Force Ludwig to respect our dimensions by setting additional parameters image_feat["preprocessing"]["requires_equal_dimensions"] = False logger.info(f"Set preprocessing dimensions for MetaFormer: {height}x{width} (infer_dimensions=True with max dimensions to allow validation)") config_params["image_size"] = f"{height}x{width}" # Now set the encoder configuration image_feat["encoder"] = encoder_config if config_params.get("augmentation") is not None: image_feat["augmentation"] = config_params["augmentation"] # Add resize configuration for standard encoders (ResNet, etc.) # FIXED: MetaFormer models now respect user dimensions completely # Previously there was a double resize issue where MetaFormer would force 224x224 # Now both MetaFormer and standard encoders respect user's resize choice if (not is_metaformer) and config_params.get("image_resize") and config_params["image_resize"] != "original": try: dimensions = config_params["image_resize"].split("x") if len(dimensions) == 2: height, width = int(dimensions[0]), int(dimensions[1]) if height <= 0 or width <= 0: raise ValueError( f"Image resize must be positive integers, received {config_params['image_resize']}." ) # Add resize to preprocessing for standard encoders if "preprocessing" not in image_feat: image_feat["preprocessing"] = {} image_feat["preprocessing"]["height"] = height image_feat["preprocessing"]["width"] = width # Use infer_image_dimensions=True to allow Ludwig to read images for validation # but set explicit max dimensions to control the output size image_feat["preprocessing"]["infer_image_dimensions"] = True image_feat["preprocessing"]["infer_image_max_height"] = height image_feat["preprocessing"]["infer_image_max_width"] = width logger.info(f"Added resize preprocessing: {height}x{width} for standard encoder with infer_image_dimensions=True and max dimensions") config_params["image_size"] = f"{height}x{width}" except (ValueError, IndexError): logger.warning(f"Invalid image resize format: {config_params['image_resize']}, skipping resize preprocessing") elif not is_metaformer: # No explicit resize provided; keep for reporting purposes config_params.setdefault("image_size", "original") def _resolve_validation_metric(task: str, requested: Optional[str]) -> Optional[str]: """Pick a validation metric that Ludwig will accept for the resolved task.""" default_map = { "regression": "pearson_r", "binary": "roc_auc", "category": "accuracy", } allowed_map = { "regression": { "pearson_r", "mean_absolute_error", "mean_squared_error", "root_mean_squared_error", "mean_absolute_percentage_error", "r2", "explained_variance", "loss", }, # Ludwig rejects f1 and balanced_accuracy for binary outputs; keep to known-safe set. "binary": { "roc_auc", "accuracy", "precision", "recall", "specificity", "log_loss", "loss", }, "category": { "accuracy", "balanced_accuracy", "precision", "recall", "f1", "specificity", "log_loss", "loss", }, } alias_map = { "regression": { "mae": "mean_absolute_error", "mse": "mean_squared_error", "rmse": "root_mean_squared_error", "mape": "mean_absolute_percentage_error", }, } default_metric = default_map.get(task) allowed = allowed_map.get(task, set()) metric = requested or default_metric if metric is None: return None metric = alias_map.get(task, {}).get(metric, metric) if metric not in allowed: if requested: logger.warning( f"Validation metric '{requested}' is not supported for {task} outputs; using '{default_metric}' instead." ) metric = default_metric return metric if task_type == "regression": output_feat = { "name": LABEL_COLUMN_NAME, "type": "number", "decoder": {"type": "regressor"}, "loss": {"type": "mean_squared_error"}, } val_metric = _resolve_validation_metric("regression", config_params.get("validation_metric")) else: if num_unique_labels == 2: output_feat = { "name": LABEL_COLUMN_NAME, "type": "binary", "loss": {"type": "binary_weighted_cross_entropy"}, } if config_params.get("threshold") is not None: output_feat["threshold"] = float(config_params["threshold"]) else: output_feat = { "name": LABEL_COLUMN_NAME, "type": "category", "loss": {"type": "softmax_cross_entropy"}, } val_metric = _resolve_validation_metric( "binary" if num_unique_labels == 2 else "category", config_params.get("validation_metric"), ) # Propagate the resolved validation metric (including any task-based fallback or alias normalization) config_params["validation_metric"] = val_metric conf: Dict[str, Any] = { "model_type": "ecd", "input_features": [image_feat], "output_features": [output_feat], "combiner": {"type": "concat"}, "trainer": { "epochs": epochs, "early_stop": early_stop, "batch_size": batch_size_cfg, "learning_rate": learning_rate, # set validation_metric when provided **({"validation_metric": val_metric} if val_metric else {}), }, "preprocessing": { "split": split_config, "num_processes": num_processes, "in_memory": False, }, } logger.debug("LudwigDirectBackend: Config dict built.") try: yaml_str = yaml.dump(conf, sort_keys=False, indent=2) logger.info("LudwigDirectBackend: YAML config generated.") return yaml_str except Exception: logger.error( "LudwigDirectBackend: Failed to serialize YAML.", exc_info=True, ) raise def _patch_torchvision_download(self) -> None: """ Torchvision weight downloads sometimes fail checksum validation behind corporate proxies that rewrite binaries. Skip hash checking to allow pre-trained weights to load in those environments. """ if LudwigDirectBackend._torchvision_patched: return try: import torch.hub as torch_hub original = torch_hub.load_state_dict_from_url original_download = torch_hub.download_url_to_file def _no_hash(url, model_dir=None, map_location=None, progress=True, check_hash=False, file_name=None): return original( url, model_dir=model_dir, map_location=map_location, progress=progress, check_hash=False, file_name=file_name, ) def _download_no_hash(url, dst, hash_prefix=None, progress=True): # Torchvision's download_url_to_file signature does not accept check_hash in older versions. return original_download(url, dst, hash_prefix=None, progress=progress) torch_hub.load_state_dict_from_url = _no_hash # type: ignore[assignment] torch_hub.download_url_to_file = _download_no_hash # type: ignore[assignment] LudwigDirectBackend._torchvision_patched = True logger.info("Disabled torchvision weight hash verification to avoid proxy-corrupted downloads.") except Exception as exc: logger.warning(f"Could not patch torchvision download hash check: {exc}") def run_experiment( self, dataset_path: Path, config_path: Path, output_dir: Path, random_seed: int = 42, ) -> None: """Invoke Ludwig's internal experiment_cli function to run the experiment.""" logger.info("LudwigDirectBackend: Starting experiment execution.") # Avoid strict hash validation for torchvision weights (common in proxied environments) self._patch_torchvision_download() try: from ludwig.experiment import experiment_cli except ImportError as e: logger.error( "LudwigDirectBackend: Could not import experiment_cli.", exc_info=True, ) raise RuntimeError("Ludwig import failed.") from e output_dir.mkdir(parents=True, exist_ok=True) try: experiment_cli( dataset=str(dataset_path), config=str(config_path), output_directory=str(output_dir), random_seed=random_seed, skip_preprocessing=True, ) logger.info( f"LudwigDirectBackend: Experiment completed. Results in {output_dir}" ) except TypeError as e: logger.error( "LudwigDirectBackend: Argument mismatch in experiment_cli call.", exc_info=True, ) raise RuntimeError("Ludwig argument error.") from e except Exception: logger.error( "LudwigDirectBackend: Experiment execution error.", exc_info=True, ) raise def get_training_process(self, output_dir) -> Optional[Dict[str, Any]]: """Retrieve the learning rate used in the most recent Ludwig run.""" output_dir = Path(output_dir) exp_dirs = sorted( output_dir.glob("experiment_run*"), key=lambda p: p.stat().st_mtime, ) if not exp_dirs: logger.warning(f"No experiment run directories found in {output_dir}") return None progress_file = exp_dirs[-1] / "model" / "training_progress.json" if not progress_file.exists(): logger.warning(f"No training_progress.json found in {progress_file}") return None try: with progress_file.open("r", encoding="utf-8") as f: data = json.load(f) return { "learning_rate": data.get("learning_rate"), "batch_size": data.get("batch_size"), "epoch": data.get("epoch"), } except Exception as e: logger.warning(f"Failed to read training progress info: {e}") return {} def convert_parquet_to_csv(self, output_dir: Path): """Convert the predictions Parquet file to CSV.""" output_dir = Path(output_dir) exp_dirs = sorted( output_dir.glob("experiment_run*"), key=lambda p: p.stat().st_mtime, ) if not exp_dirs: logger.warning(f"No experiment run dirs found in {output_dir}") return exp_dir = exp_dirs[-1] parquet_path = exp_dir / PREDICTIONS_PARQUET_FILE_NAME csv_path = exp_dir / "predictions.csv" # Check if parquet file exists before trying to convert if not parquet_path.exists(): logger.info(f"Predictions parquet file not found at {parquet_path}, skipping conversion") return try: df = pd.read_parquet(parquet_path) df.to_csv(csv_path, index=False) logger.info(f"Converted Parquet to CSV: {csv_path}") except Exception as e: logger.error(f"Error converting Parquet to CSV: {e}") @staticmethod def _extract_metric_series(stats: Dict[str, Any], split: str, prefer: Optional[str] = None) -> Tuple[Optional[str], Optional[List[float]]]: """Pull the first numeric metric list we can find for the requested split.""" if not isinstance(stats, dict): return None, None split_stats = stats.get(split, {}) ordered_metrics: List[Tuple[str, List[float]]] = [] def _append_metrics(metric_map: Dict[str, Any]) -> None: for metric_name, values in metric_map.items(): if isinstance(values, list) and any(isinstance(v, (int, float)) for v in values): ordered_metrics.append((metric_name, values)) if isinstance(split_stats, dict): combined = split_stats.get("combined") if isinstance(combined, dict): _append_metrics(combined) for feature_name, feature_metrics in split_stats.items(): if feature_name == "combined" or not isinstance(feature_metrics, dict): continue _append_metrics(feature_metrics) if prefer: for metric_name, values in ordered_metrics: if metric_name == prefer: return metric_name, values return ordered_metrics[0] if ordered_metrics else (None, None) def generate_plots(self, output_dir: Path) -> None: """Generate Ludwig visualizations (train/val + test) for the latest experiment run.""" logger.info("Generating Ludwig visualizations (train/val + test)…") # Train/validation visualizations train_plots = { "learning_curves", } # Test visualizations (multi-class transparency) test_plots = { "confusion_matrix", "compare_performance", "compare_classifiers_multiclass_multimetric", "frequency_vs_f1", "confidence_thresholding", "confidence_thresholding_data_vs_acc", "confidence_thresholding_data_vs_acc_subset", "confidence_thresholding_data_vs_acc_subset_per_class", # Binary-only visualizations will still be attempted; multi-class replacements handled elsewhere "binary_threshold_vs_metric", "roc_curves", "precision_recall_curves", "calibration_1_vs_all", "calibration_multiclass", } output_dir = Path(output_dir) exp_dirs = sorted( output_dir.glob("experiment_run*"), key=lambda p: p.stat().st_mtime, ) if not exp_dirs: logger.warning(f"No experiment run dirs found in {output_dir}") return exp_dir = exp_dirs[-1] viz_dir = exp_dir / "visualizations" viz_dir.mkdir(exist_ok=True) train_viz = viz_dir / "train" test_viz = viz_dir / "test" train_viz.mkdir(parents=True, exist_ok=True) test_viz.mkdir(parents=True, exist_ok=True) def _check(p: Path) -> Optional[str]: return str(p) if p.exists() else None training_stats = _check(exp_dir / "training_statistics.json") test_stats = _check(exp_dir / TEST_STATISTICS_FILE_NAME) gt_metadata = _check(exp_dir / "model" / TRAIN_SET_METADATA_FILE_NAME) dataset_path = None split_file = None desc = exp_dir / DESCRIPTION_FILE_NAME if desc.exists(): with open(desc, "r") as f: cfg = json.load(f) dataset_path = _check(Path(cfg.get("dataset", ""))) split_file = _check(Path(get_split_path(cfg.get("dataset", "")))) model_name = cfg.get("model_name", "model") else: model_name = "model" output_feature = "" if desc.exists(): try: output_feature = cfg["config"]["output_features"][0]["name"] except Exception: pass if not output_feature and test_stats: with open(test_stats, "r") as f: stats = json.load(f) output_feature = next(iter(stats.keys()), "") probs_path = None prob_candidates = [ exp_dir / f"{LABEL_COLUMN_NAME}_probabilities.csv", exp_dir / f"{output_feature}_probabilities.csv" if output_feature else None, exp_dir / "probabilities.csv", exp_dir / "predictions.csv", exp_dir / PREDICTIONS_PARQUET_FILE_NAME, ] for cand in prob_candidates: if cand and Path(cand).exists(): probs_path = str(cand) break viz_registry = get_visualizations_registry() if not viz_registry: logger.warning( "Ludwig visualizations registry not available; train/test PNGs will be skipped." ) return base_kwargs = { "training_statistics": [training_stats] if training_stats else [], "test_statistics": [test_stats] if test_stats else [], "probabilities": [probs_path] if probs_path else [], "output_feature_name": output_feature, "ground_truth_split": 2, "top_n_classes": [20], "top_k": 3, "metrics": ["f1", "precision", "recall", "accuracy"], "positive_label": 0, "ground_truth_metadata": gt_metadata, "ground_truth": dataset_path, "split_file": split_file, "output_directory": None, # set per plot below "normalize": False, "file_format": "png", "model_names": [model_name], } for viz_name, viz_func in viz_registry.items(): if viz_name in train_plots: viz_dir_plot = train_viz elif viz_name in test_plots: viz_dir_plot = test_viz else: continue try: # Build per-viz kwargs based on the function signature to avoid unexpected args sig_params = set(inspect.signature(viz_func).parameters.keys()) call_kwargs = { k: v for k, v in base_kwargs.items() if k in sig_params and v is not None } if "output_directory" in sig_params: call_kwargs["output_directory"] = str(viz_dir_plot) viz_func( **call_kwargs, ) logger.info(f"✔ Generated {viz_name}") except Exception as e: logger.warning(f"✘ Skipped {viz_name}: {e}") logger.info(f"All visualizations written to {viz_dir}") def generate_html_report( self, title: str, output_dir: str, config: dict, split_info: str, ) -> Path: """Assemble an HTML report from visualizations under train_val/ and test/ folders.""" cwd = Path.cwd() report_name = title.lower().replace(" ", "_") + "_report.html" report_path = cwd / report_name output_dir = Path(output_dir) output_type = None exp_dirs = sorted( output_dir.glob("experiment_run*"), key=lambda p: p.stat().st_mtime, ) if not exp_dirs: raise RuntimeError(f"No 'experiment*' dirs found in {output_dir}") exp_dir = exp_dirs[-1] train_set_metadata_path = exp_dir / "model" / TRAIN_SET_METADATA_FILE_NAME label_metadata_path = config.get("label_column_data_path") if label_metadata_path: label_metadata_path = Path(label_metadata_path) dataset_path_from_desc: Optional[Path] = None # Pull additional config details from description.json if available config_for_summary = dict(config) if "target_column" not in config_for_summary or not config_for_summary.get("target_column"): config_for_summary["target_column"] = LABEL_COLUMN_NAME desc_path = exp_dir / DESCRIPTION_FILE_NAME if desc_path.exists(): try: with open(desc_path, "r") as f: desc_json = json.load(f) desc_cfg = desc_json.get("config", {}) if isinstance(desc_json, dict) else {} encoder_cfg = ( desc_cfg.get("input_features", [{}])[0].get("encoder", {}) if isinstance(desc_cfg.get("input_features", [{}]), list) else {} ) output_cfg = ( desc_cfg.get("output_features", [{}])[0] if isinstance(desc_cfg.get("output_features", [{}]), list) else {} ) trainer_cfg = desc_cfg.get("trainer", {}) if isinstance(desc_cfg, dict) else {} loss_cfg = output_cfg.get("loss", {}) if isinstance(output_cfg, dict) else {} opt_cfg = trainer_cfg.get("optimizer", {}) if isinstance(trainer_cfg, dict) else {} clip_cfg = trainer_cfg.get("gradient_clipping", {}) if isinstance(trainer_cfg, dict) else {} arch_type = encoder_cfg.get("type") arch_variant = encoder_cfg.get("model_variant") arch_custom = encoder_cfg.get("custom_model") arch_name = None if arch_custom: arch_name = str(arch_custom) if arch_type: arch_base = str(arch_type).replace("_", " ").title() arch_type_name = ( f"{arch_base} {arch_variant}" if arch_variant is not None else arch_base ) # Prefer explicit custom model names (e.g., MetaFormer) but fall back to encoder type arch_name = arch_name or arch_type_name if not arch_name and config.get("model_name"): # As a last resort, show the user-selected model name (handles custom/MetaFormer cases) arch_name = str(config.get("model_name")) summary_fields = { "architecture": arch_name, "model_variant": arch_variant, "pretrained": encoder_cfg.get("use_pretrained"), "trainable": encoder_cfg.get("trainable"), "target_column": output_cfg.get("column"), "task_type": output_cfg.get("type"), "validation_metric": trainer_cfg.get("validation_metric"), "loss_function": loss_cfg.get("type"), "threshold": output_cfg.get("threshold"), "total_epochs": trainer_cfg.get("epochs"), "early_stop": trainer_cfg.get("early_stop"), "batch_size": trainer_cfg.get("batch_size"), "optimizer": opt_cfg.get("type"), "learning_rate": trainer_cfg.get("learning_rate"), "random_seed": desc_cfg.get("random_seed") or config.get("random_seed"), "use_mixed_precision": trainer_cfg.get("use_mixed_precision"), "gradient_clipping": clip_cfg.get("clipglobalnorm"), } for k, v in summary_fields.items(): if v is None: continue # Do not override user-passed target/image column names in config if k in {"target_column", "image_column"} and config_for_summary.get(k): continue config_for_summary.setdefault(k, v) dataset_field = None if isinstance(desc_json, dict): dataset_field = desc_json.get("dataset") or desc_cfg.get("dataset") if dataset_field: try: dataset_path_from_desc = Path(dataset_field) except TypeError: dataset_path_from_desc = None if dataset_path_from_desc and (not label_metadata_path or not label_metadata_path.exists()): label_metadata_path = dataset_path_from_desc except Exception as e: # pragma: no cover - defensive logger.warning(f"Could not merge description.json into config summary: {e}") base_viz_dir = exp_dir / "visualizations" train_viz_dir = base_viz_dir / "train" html = get_html_template() # Extra CSS & JS: center Plotly and enable CSV download for predictions table html += """ <style> /* Center Plotly figures (both wrapper and native classes) */ .plotly-center { display: flex; justify-content: center; } .plotly-center .plotly-graph-div, .plotly-center .js-plotly-plot { margin: 0 auto !important; } .js-plotly-plot, .plotly-graph-div { margin-left: auto !important; margin-right: auto !important; } /* Download button for predictions table */ .download-btn { padding: 8px 12px; border: 1px solid #4CAF50; background: #4CAF50; color: white; border-radius: 6px; cursor: pointer; } .download-btn:hover { filter: brightness(0.95); } .preds-controls { display: flex; justify-content: flex-end; gap: 8px; margin: 8px 0; } </style> <script> function tableToCSV(table){ const rows = Array.from(table.querySelectorAll('tr')); return rows.map(row => Array.from(row.querySelectorAll('th,td')).map(cell => { let text = cell.innerText.replace(/\\r?\\n|\\r/g,' ').trim(); if (text.includes('"') || text.includes(',')) { text = '"' + text.replace(/"/g,'""') + '"'; } return text; }).join(',') ).join('\\n'); } document.addEventListener('DOMContentLoaded', function(){ const btn = document.getElementById('downloadPredsCsv'); if(btn){ btn.addEventListener('click', function(){ const tbl = document.querySelector('.predictions-table'); if(!tbl){ alert('Predictions table not found.'); return; } const csv = tableToCSV(tbl); const blob = new Blob([csv], {type: 'text/csv;charset=utf-8;'}); const url = URL.createObjectURL(blob); const a = document.createElement('a'); a.href = url; a.download = 'ground_truth_vs_predictions.csv'; document.body.appendChild(a); a.click(); document.body.removeChild(a); URL.revokeObjectURL(url); }); } }); </script> """ html += f"<h1>{title}</h1>" def append_plot_blocks(tab_html: str, plots: List[Dict[str, str]], title_suffix: str = "") -> str: """Append Plotly blocks to a tab with consistent markup.""" if not plots: return tab_html suffix = title_suffix or "" for plot in plots: tab_html += ( f"<h2 style='text-align: center;'>{plot['title']}{suffix}</h2>" f"<div class='plotly-center'>{plot['html']}</div>" ) return tab_html def build_dataset_overview( label_metadata: Optional[Path], output_type: Optional[str], split_probabilities: Optional[List[float]], label_split_counts: Optional[List[Dict[str, int]]] = None, split_counts: Optional[Dict[int, int]] = None, fallback_dataset: Optional[Path] = None, ) -> str: """Summarize dataset distribution across splits using the actual split config.""" if label_split_counts: # Use the actual counts captured during data prep instead of heuristics. return format_dataset_overview_table(label_split_counts, regression_mode=False) if output_type == "regression" and split_counts: rows = [ {"split": "train", "count": int(split_counts.get(0, 0))}, {"split": "validation", "count": int(split_counts.get(1, 0))}, {"split": "test", "count": int(split_counts.get(2, 0))}, ] return format_dataset_overview_table(rows, regression_mode=True) candidate_paths: List[Path] = [] if label_metadata and label_metadata.exists(): candidate_paths.append(label_metadata) if fallback_dataset and fallback_dataset.exists(): candidate_paths.append(fallback_dataset) if not candidate_paths: return format_dataset_overview_table([]) def _normalize_split_probabilities( probs: Optional[List[float]], ) -> Optional[List[float]]: if not probs or len(probs) != 3: return None try: probs = [float(p) for p in probs] except (TypeError, ValueError): return None total = sum(probs) if total <= 0: return None return [p / total for p in probs] def _split_counts_from_column(df: pd.DataFrame) -> Dict[int, int]: if SPLIT_COLUMN_NAME not in df.columns: return {} split_series = pd.to_numeric( df[SPLIT_COLUMN_NAME], errors="coerce" ).dropna() if split_series.empty: return {} split_series = split_series.astype(int) return split_series.value_counts().to_dict() def _split_counts_from_probs(total: int, probs: List[float]) -> Dict[int, int]: train_n = int(total * probs[0]) val_n = int(total * probs[1]) test_n = max(0, total - train_n - val_n) return {0: train_n, 1: val_n, 2: test_n} fallback_rows: Optional[List[Dict[str, int]]] = None for meta_path in candidate_paths: try: df_labels = pd.read_csv(meta_path) probs = _normalize_split_probabilities(split_probabilities) # Regression (or missing label column): only need split counts if output_type == "regression" or LABEL_COLUMN_NAME not in df_labels.columns: split_counts_found = _split_counts_from_column(df_labels) if split_counts_found: rows = [ {"split": "train", "count": int(split_counts_found.get(0, 0))}, {"split": "validation", "count": int(split_counts_found.get(1, 0))}, {"split": "test", "count": int(split_counts_found.get(2, 0))}, ] return format_dataset_overview_table(rows, regression_mode=True) if probs and fallback_rows is None: split_counts_found = _split_counts_from_probs(len(df_labels), probs) fallback_rows = [ {"split": "train", "count": int(split_counts_found.get(0, 0))}, {"split": "validation", "count": int(split_counts_found.get(1, 0))}, {"split": "test", "count": int(split_counts_found.get(2, 0))}, ] continue # Classification: prefer actual split assignments; fall back to configured probabilities if SPLIT_COLUMN_NAME in df_labels.columns: df_counts = df_labels[[LABEL_COLUMN_NAME, SPLIT_COLUMN_NAME]].copy() df_counts[SPLIT_COLUMN_NAME] = pd.to_numeric( df_counts[SPLIT_COLUMN_NAME], errors="coerce" ) df_counts = df_counts.dropna(subset=[SPLIT_COLUMN_NAME]) if df_counts.empty: continue df_counts[SPLIT_COLUMN_NAME] = df_counts[SPLIT_COLUMN_NAME].astype(int) df_counts = df_counts.dropna(subset=[LABEL_COLUMN_NAME]) counts = ( df_counts.groupby([LABEL_COLUMN_NAME, SPLIT_COLUMN_NAME]) .size() .unstack(fill_value=0) .sort_index() ) rows = [] for lbl, row in counts.iterrows(): rows.append( { "label": str(lbl), "train": int(row.get(0, 0)), "validation": int(row.get(1, 0)), "test": int(row.get(2, 0)), } ) return format_dataset_overview_table(rows) if probs: label_series = df_labels[LABEL_COLUMN_NAME].dropna() label_counts = label_series.value_counts().sort_index() if label_counts.empty: continue rows = [] for lbl, count in label_counts.items(): train_n = int(count * probs[0]) val_n = int(count * probs[1]) test_n = max(0, count - train_n - val_n) rows.append( { "label": str(lbl), "train": train_n, "validation": val_n, "test": test_n, } ) fallback_rows = fallback_rows or rows except Exception as exc: logger.warning("Failed to build dataset overview from %s: %s", meta_path, exc) continue if fallback_rows: return format_dataset_overview_table(fallback_rows, regression_mode=output_type == "regression") return format_dataset_overview_table([]) metrics_html = "" train_val_metrics_html = "" test_metrics_html = "" output_type = None train_stats_path = exp_dir / "training_statistics.json" test_stats_path = exp_dir / TEST_STATISTICS_FILE_NAME try: if train_stats_path.exists() and test_stats_path.exists(): with open(train_stats_path) as f: train_stats = json.load(f) with open(test_stats_path) as f: test_stats = json.load(f) output_type = detect_output_type(test_stats) metrics_html = format_stats_table_html(train_stats, test_stats, output_type) train_val_metrics_html = format_train_val_stats_table_html( train_stats, test_stats ) test_metrics_html = format_test_merged_stats_table_html( extract_metrics_from_json(train_stats, test_stats, output_type)[ "test" ], output_type ) except Exception as e: logger.warning( f"Could not load stats for HTML report: {type(e).__name__}: {e}" ) if not output_type: # Fallback to configured task type when stats are unavailable (e.g., failed run). output_type = ( str(config_for_summary.get("task_type")).lower() if config_for_summary.get("task_type") else None ) dataset_overview_html = build_dataset_overview( label_metadata_path, output_type, config.get("split_probabilities"), config.get("label_split_counts"), config.get("split_counts"), dataset_path_from_desc, ) config_html = "" training_progress = self.get_training_process(output_dir) try: config_html = format_config_table_html( config_for_summary, split_info, training_progress, output_type ) except Exception as e: logger.warning(f"Could not load config for HTML report: {e}") config_html = ( "<h2 style='text-align: center;'>Model and Training Summary</h2>" "<p style='text-align:center; color:#666;'>Configuration details unavailable.</p>" ) if not config_html: config_html = ( "<h2 style='text-align: center;'>Model and Training Summary</h2>" "<p style='text-align:center; color:#666;'>No configuration details found.</p>" ) # ---------- image rendering with exclusions ---------- def render_img_section( title: str, dir_path: Path, output_type: str = None, exclude_names: Optional[set] = None, ) -> str: if not dir_path.exists(): return "" exclude_names = exclude_names or set() # Search recursively because Ludwig can nest figures under per-feature folders imgs = list(dir_path.rglob("*.png")) # Exclude ROC curves and standard confusion matrices (keep only entropy version) default_exclude = { # "roc_curves.png", # Remove ROC curves from test tab "confusion_matrix__label_top5.png", # Remove standard confusion matrix "confusion_matrix__label_top10.png", # Remove duplicate "confusion_matrix__label_top6.png", # Remove duplicate "confusion_matrix_entropy__label_top10.png", # Keep only top5 "confusion_matrix_entropy__label_top6.png", # Keep only top5 } title_is_test = title.lower().startswith("test") if title_is_test and output_type == "binary": default_exclude.update( { "confusion_matrix__label_top2.png", "confusion_matrix_entropy__label_top2.png", "roc_curves_from_prediction_statistics.png", } ) elif title_is_test and output_type == "category": default_exclude.update( { "compare_classifiers_multiclass_multimetric__label_best10.png", "compare_classifiers_multiclass_multimetric__label_sorted.png", "compare_classifiers_multiclass_multimetric__label_worst10.png", } ) imgs = [ img for img in imgs if img.name not in default_exclude and img.name not in exclude_names and not ( "learning_curves" in img.stem and "loss" in img.stem and "label" in img.stem ) ] if not imgs: return "" # Sort images by name for consistent ordering (works with string and numeric labels) imgs = sorted(imgs, key=lambda x: x.name) html_section = "" custom_titles = { "compare_classifiers_multiclass_multimetric__label_top10": "Metric Comparison by Label", "compare_classifiers_performance_from_prob": "Label Metric Comparison by Probability", } for img in imgs: b64 = encode_image_to_base64(str(img)) default_title = img.stem.replace("_", " ").title() img_title = custom_titles.get(img.stem, default_title) html_section += ( f"<h2 style='text-align: center;'>{img_title}</h2>" f'<div class="plot" style="margin-bottom:20px;text-align:center;">' f'<img src="data:image/png;base64,{b64}" ' f'style="max-width:90%;max-height:600px;border:1px solid #ddd;" />' f"</div>" ) return html_section # Show dataset overview, performance first, then config predictions_csv_path = exp_dir / "predictions.csv" tab1_content = dataset_overview_html + metrics_html + config_html tab2_content = train_val_metrics_html # Preload binary threshold plot so it appears first in Train/Val tab threshold_plot = None threshold_value = ( config_for_summary.get("threshold") if config_for_summary.get("threshold") is not None else config.get("threshold") ) if threshold_value is None and output_type == "binary": threshold_value = 0.5 if output_type == "binary" and predictions_csv_path.exists(): try: threshold_plot = build_binary_threshold_plot( str(predictions_csv_path), label_data_path=str(config.get("label_column_data_path")) if config.get("label_column_data_path") else None, split_value=1, ) except Exception as e: logger.warning(f"Could not generate validation threshold plot: {e}") if train_stats_path.exists(): try: if output_type == "regression": tv_plots = build_regression_train_val_plots(str(train_stats_path)) tab2_content = append_plot_blocks(tab2_content, tv_plots) else: tv_plots = build_train_validation_plots(str(train_stats_path)) # Add threshold plot first, then other train/val plots if threshold_plot: tab2_content = append_plot_blocks(tab2_content, [threshold_plot]) # Only append once; avoid duplicates if added elsewhere threshold_plot = None tab2_content = append_plot_blocks(tab2_content, tv_plots) if threshold_plot or tv_plots: logger.info( f"Added {len(tv_plots) + (1 if threshold_plot else 0)} train/val diagnostic plots" ) except Exception as e: logger.warning(f"Could not generate train/val plots: {e}") # Only include training PNGs for regression; classification is handled by filtered Plotly plots if output_type == "regression": tab2_content += render_img_section( "Training and Validation Visualizations", train_viz_dir, output_type, exclude_names={ "compare_classifiers_performance_from_prob.png", "roc_curves_from_prediction_statistics.png", "precision_recall_curves_from_prediction_statistics.png", "precision_recall_curve.png", }, ) # Validation diagnostics (calibration/threshold) from predictions.csv, using split=1 if output_type in ("binary", "category") and predictions_csv_path.exists(): try: val_diag_plots = build_prediction_diagnostics( str(predictions_csv_path), label_data_path=str(config.get("label_column_data_path")) if config.get("label_column_data_path") else None, split_value=1, ) val_conf_plots = [ p for p in val_diag_plots if "Prediction Confidence Distribution" in p.get("title", "") ] tab2_content = append_plot_blocks( tab2_content, val_conf_plots, " (Validation)" ) except Exception as e: logger.warning(f"Could not generate validation diagnostics: {e}") # --- Predictions vs Ground Truth table (REGRESSION ONLY) --- preds_section = "" parquet_path = exp_dir / PREDICTIONS_PARQUET_FILE_NAME if output_type == "regression" and parquet_path.exists(): try: # 1) load predictions from Parquet df_preds = pd.read_parquet(parquet_path).reset_index(drop=True) # assume the column containing your model's prediction is named "prediction" # or contains that substring: pred_col = next( (c for c in df_preds.columns if "prediction" in c.lower()), None, ) if pred_col is None: raise ValueError("No prediction column found in Parquet output") df_pred = df_preds[[pred_col]].rename(columns={pred_col: "prediction"}) # 2) load ground truth for the test split from prepared CSV df_all = pd.read_csv(config["label_column_data_path"]) df_gt = df_all[df_all[SPLIT_COLUMN_NAME] == 2][ LABEL_COLUMN_NAME ].reset_index(drop=True) # 3) concatenate side-by-side df_table = pd.concat([df_gt, df_pred], axis=1) df_table.columns = [LABEL_COLUMN_NAME, "prediction"] # 4) render as HTML preds_html = df_table.to_html(index=False, classes="predictions-table") preds_section = ( "<h2 style='text-align: center;'>Ground Truth vs. Predictions</h2>" "<div class='preds-controls'>" "<button id='downloadPredsCsv' class='download-btn'>Download CSV</button>" "</div>" "<div class='scroll-rows-30' style='overflow-x:auto; overflow-y:auto; max-height:350px; margin-bottom:20px;'>" + preds_html + "</div>" ) except Exception as e: logger.warning(f"Could not build Predictions vs GT table: {e}") tab3_content = test_metrics_html + preds_section if output_type == "regression" and train_stats_path.exists(): try: test_plots = build_regression_test_plots(str(train_stats_path)) tab3_content = append_plot_blocks(tab3_content, test_plots) if test_plots: logger.info(f"Generated {len(test_plots)} regression test plots") except Exception as e: logger.warning(f"Could not generate regression test plots: {e}") if output_type in ("binary", "category") and test_stats_path.exists(): try: interactive_plots = build_classification_plots( str(test_stats_path), str(train_stats_path) if train_stats_path.exists() else None, metadata_csv_path=str(label_metadata_path) if label_metadata_path and label_metadata_path.exists() else None, train_set_metadata_path=str(train_set_metadata_path) if train_set_metadata_path.exists() else None, threshold=threshold_value, ) tab3_content = append_plot_blocks(tab3_content, interactive_plots) if interactive_plots: logger.info(f"Generated {len(interactive_plots)} interactive Plotly plots") except Exception as e: logger.warning(f"Could not generate Plotly plots: {e}") # Multi-class transparency plots from test stats (replace ROC/PR for multi-class) if output_type == "category" and test_stats_path.exists(): try: multi_curves = build_multiclass_metric_plots(str(test_stats_path)) tab3_content = append_plot_blocks(tab3_content, multi_curves) if multi_curves: logger.info("Added multi-class per-class metric plots to test tab") except Exception as e: logger.warning(f"Could not generate multi-class metric plots: {e}") # Test diagnostics (confidence histogram) from predictions.csv, using split=2 if predictions_csv_path.exists(): try: test_diag_plots = build_prediction_diagnostics( str(predictions_csv_path), label_data_path=str(config.get("label_column_data_path")) if config.get("label_column_data_path") else None, split_value=2, ) test_conf_plots = [ p for p in test_diag_plots if "Prediction Confidence Distribution" in p.get("title", "") ] if test_conf_plots: tab3_content = append_plot_blocks(tab3_content, test_conf_plots) logger.info("Added test prediction confidence plot") except Exception as e: logger.warning(f"Could not generate test diagnostics: {e}") # Add static TEST PNGs (with default dedupe/exclusions) tabbed_html = build_tabbed_html(tab1_content, tab2_content, tab3_content) modal_html = get_metrics_help_modal() html += tabbed_html + modal_html + get_html_closing() try: with open(report_path, "w") as f: f.write(html) logger.info(f"HTML report generated at: {report_path}") except Exception as e: logger.error(f"Failed to write HTML report: {e}") raise return report_path
