comparison split_logic.py @ 0:375c36923da1 draft default tip

planemo upload for repository https://github.com/goeckslab/gleam.git commit 1c6c1ad7a1b2bd3645aa0eafa2167784820b52e0
author goeckslab
date Tue, 09 Dec 2025 23:49:47 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:375c36923da1
1 import logging
2 from typing import List, Optional
3
4 import pandas as pd
5 from sklearn.model_selection import train_test_split
6
7 logger = logging.getLogger(__name__)
8 SPLIT_COL = "split"
9
10
11 def _can_stratify(y: pd.Series) -> bool:
12 return y.nunique() >= 2 and (y.value_counts() >= 2).all()
13
14
15 def split_dataset(
16 train_dataset: pd.DataFrame,
17 test_dataset: Optional[pd.DataFrame],
18 target_column: str,
19 split_probabilities: List[float],
20 validation_size: float,
21 random_seed: int = 42,
22 ) -> None:
23 if target_column not in train_dataset.columns:
24 raise ValueError(f"Target column '{target_column}' not found")
25
26 # Drop NaN labels early
27 before = len(train_dataset)
28 train_dataset.dropna(subset=[target_column], inplace=True)
29 if len(train_dataset) == 0:
30 raise ValueError("No rows remain after dropping NaN targets")
31 if before != len(train_dataset):
32 logger.warning(f"Dropped {before - len(train_dataset)} rows with NaN target")
33 y = train_dataset[target_column]
34
35 # Respect existing valid split column
36 if SPLIT_COL in train_dataset.columns:
37 unique = set(train_dataset[SPLIT_COL].dropna().unique())
38 valid = {"train", "val", "validation", "test"}
39 if unique.issubset(valid | {"validation"}):
40 train_dataset[SPLIT_COL] = train_dataset[SPLIT_COL].replace("validation", "val")
41 logger.info(f"Using pre-existing 'split' column: {sorted(unique)}")
42 return
43
44 train_dataset[SPLIT_COL] = "train"
45
46 if test_dataset is not None:
47 stratify = y if _can_stratify(y) else None
48 train_idx, val_idx = train_test_split(
49 train_dataset.index, test_size=validation_size,
50 random_state=random_seed, stratify=stratify
51 )
52 train_dataset.loc[val_idx, SPLIT_COL] = "val"
53 logger.info(f"External test set → created val split ({validation_size:.0%})")
54
55 else:
56 p_train, p_val, p_test = split_probabilities
57 if abs(p_train + p_val + p_test - 1.0) > 1e-6:
58 raise ValueError("split_probabilities must sum to 1.0")
59
60 stratify = y if _can_stratify(y) else None
61 tv_idx, test_idx = train_test_split(
62 train_dataset.index, test_size=p_test,
63 random_state=random_seed, stratify=stratify
64 )
65 rel_val = p_val / (p_train + p_val) if (p_train + p_val) > 0 else 0
66 strat_tv = y.loc[tv_idx] if _can_stratify(y.loc[tv_idx]) else None
67 train_idx, val_idx = train_test_split(
68 tv_idx, test_size=rel_val,
69 random_state=random_seed, stratify=strat_tv
70 )
71
72 train_dataset.loc[val_idx, SPLIT_COL] = "val"
73 train_dataset.loc[test_idx, SPLIT_COL] = "test"
74 logger.info(f"3-way split → train:{len(train_idx)}, val:{len(val_idx)}, test:{len(test_idx)}")
75
76 logger.info(f"Final split distribution:\n{train_dataset[SPLIT_COL].value_counts().sort_index()}")