Mercurial > repos > goeckslab > pycaret_compare
view feature_importance.py @ 0:915447b14520 draft
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit d79b0f722b7d09505a526d1a4332f87e548a3df1
author | goeckslab |
---|---|
date | Wed, 11 Dec 2024 05:00:00 +0000 |
parents | |
children |
line wrap: on
line source
import base64 import logging import os import matplotlib.pyplot as plt import pandas as pd from pycaret.classification import ClassificationExperiment from pycaret.regression import RegressionExperiment logging.basicConfig(level=logging.DEBUG) LOG = logging.getLogger(__name__) class FeatureImportanceAnalyzer: def __init__( self, task_type, output_dir, data_path=None, data=None, target_col=None): if data is not None: self.data = data LOG.info("Data loaded from memory") else: self.target_col = target_col self.data = pd.read_csv(data_path, sep=None, engine='python') self.data.columns = self.data.columns.str.replace('.', '_') self.data = self.data.fillna(self.data.median(numeric_only=True)) self.task_type = task_type self.target = self.data.columns[int(target_col) - 1] self.exp = ClassificationExperiment() \ if task_type == 'classification' \ else RegressionExperiment() self.plots = {} self.output_dir = output_dir def setup_pycaret(self): LOG.info("Initializing PyCaret") setup_params = { 'target': self.target, 'session_id': 123, 'html': True, 'log_experiment': False, 'system_log': False } LOG.info(self.task_type) LOG.info(self.exp) self.exp.setup(self.data, **setup_params) # def save_coefficients(self): # model = self.exp.create_model('lr') # coef_df = pd.DataFrame({ # 'Feature': self.data.columns.drop(self.target), # 'Coefficient': model.coef_[0] # }) # coef_html = coef_df.to_html(index=False) # return coef_html def save_tree_importance(self): model = self.exp.create_model('rf') importances = model.feature_importances_ processed_features = self.exp.get_config('X_transformed').columns LOG.debug(f"Feature importances: {importances}") LOG.debug(f"Features: {processed_features}") feature_importances = pd.DataFrame({ 'Feature': processed_features, 'Importance': importances }).sort_values(by='Importance', ascending=False) plt.figure(figsize=(10, 6)) plt.barh( feature_importances['Feature'], feature_importances['Importance']) plt.xlabel('Importance') plt.title('Feature Importance (Random Forest)') plot_path = os.path.join( self.output_dir, 'tree_importance.png') plt.savefig(plot_path) plt.close() self.plots['tree_importance'] = plot_path def save_shap_values(self): model = self.exp.create_model('lightgbm') import shap explainer = shap.Explainer(model) shap_values = explainer.shap_values( self.exp.get_config('X_transformed')) shap.summary_plot(shap_values, self.exp.get_config('X_transformed'), show=False) plt.title('Shap (LightGBM)') plot_path = os.path.join( self.output_dir, 'shap_summary.png') plt.savefig(plot_path) plt.close() self.plots['shap_summary'] = plot_path def generate_feature_importance(self): # coef_html = self.save_coefficients() self.save_tree_importance() self.save_shap_values() def encode_image_to_base64(self, img_path): with open(img_path, 'rb') as img_file: return base64.b64encode(img_file.read()).decode('utf-8') def generate_html_report(self): LOG.info("Generating HTML report") # Read and encode plot images plots_html = "" for plot_name, plot_path in self.plots.items(): encoded_image = self.encode_image_to_base64(plot_path) plots_html += f""" <div class="plot" id="{plot_name}"> <h2>{'Feature importance analysis from a' 'trained Random Forest' if plot_name == 'tree_importance' else 'SHAP Summary from a trained lightgbm'}</h2> <h3>{'Use gini impurity for' 'calculating feature importance for classification' 'and Variance Reduction for regression' if plot_name == 'tree_importance' else ''}</h3> <img src="data:image/png;base64, {encoded_image}" alt="{plot_name}"> </div> """ # Generate HTML content with tabs html_content = f""" <h1>PyCaret Feature Importance Report</h1> {plots_html} """ return html_content def run(self): LOG.info("Running feature importance analysis") self.setup_pycaret() self.generate_feature_importance() html_content = self.generate_html_report() LOG.info("Feature importance analysis completed") return html_content if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Feature Importance Analysis") parser.add_argument( "--data_path", type=str, help="Path to the dataset") parser.add_argument( "--target_col", type=int, help="Index of the target column (1-based)") parser.add_argument( "--task_type", type=str, choices=["classification", "regression"], help="Task type: classification or regression") parser.add_argument( "--output_dir", type=str, help="Directory to save the outputs") args = parser.parse_args() analyzer = FeatureImportanceAnalyzer( args.data_path, args.target_col, args.task_type, args.output_dir) analyzer.run()