Mercurial > repos > goeckslab > pycaret_predict
comparison dashboard.py @ 0:1f20fe57fdee draft
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit d79b0f722b7d09505a526d1a4332f87e548a3df1
author | goeckslab |
---|---|
date | Wed, 11 Dec 2024 04:59:43 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:1f20fe57fdee |
---|---|
1 import logging | |
2 from typing import Any, Dict, Optional | |
3 | |
4 from pycaret.utils.generic import get_label_encoder | |
5 | |
6 logging.basicConfig(level=logging.DEBUG) | |
7 LOG = logging.getLogger(__name__) | |
8 | |
9 | |
10 def generate_classifier_explainer_dashboard( | |
11 exp, | |
12 estimator, | |
13 display_format: str = "dash", | |
14 dashboard_kwargs: Optional[Dict[str, Any]] = None, | |
15 run_kwargs: Optional[Dict[str, Any]] = None, | |
16 **kwargs,): | |
17 | |
18 """ | |
19 This function is changed from pycaret.classification.oop.dashboard() | |
20 | |
21 This function generates the interactive dashboard for a trained model. | |
22 The dashboard is implemented using | |
23 ExplainerDashboard (explainerdashboard.readthedocs.io) | |
24 | |
25 | |
26 estimator: scikit-learn compatible object | |
27 Trained model object | |
28 | |
29 | |
30 display_format: str, default = 'dash' | |
31 Render mode for the dashboard. The default is set to ``dash`` | |
32 which will | |
33 render a dashboard in browser. There are four possible options: | |
34 | |
35 - 'dash' - displays the dashboard in browser | |
36 - 'inline' - displays the dashboard in the jupyter notebook cell. | |
37 - 'jupyterlab' - displays the dashboard in jupyterlab pane. | |
38 - 'external' - displays the dashboard in a separate tab. | |
39 (use in Colab) | |
40 | |
41 | |
42 dashboard_kwargs: dict, default = {} (empty dict) | |
43 Dictionary of arguments passed to the ``ExplainerDashboard`` class. | |
44 | |
45 | |
46 run_kwargs: dict, default = {} (empty dict) | |
47 Dictionary of arguments passed to the ``run`` | |
48 method of ``ExplainerDashboard``. | |
49 | |
50 | |
51 **kwargs: | |
52 Additional keyword arguments to pass to the ``ClassifierExplainer`` | |
53 or ``RegressionExplainer`` class. | |
54 | |
55 | |
56 Returns: | |
57 ExplainerDashboard | |
58 """ | |
59 | |
60 dashboard_kwargs = dashboard_kwargs or {} | |
61 run_kwargs = run_kwargs or {} | |
62 | |
63 from explainerdashboard import ClassifierExplainer, ExplainerDashboard | |
64 | |
65 le = get_label_encoder(exp.pipeline) | |
66 if le: | |
67 labels_ = list(le.classes_) | |
68 else: | |
69 labels_ = None | |
70 | |
71 # Replaceing chars which dash doesnt accept for column name `.` , `{`, `}` | |
72 | |
73 X_test_df = exp.X_test_transformed.copy() | |
74 LOG.info(X_test_df) | |
75 X_test_df.columns = [ | |
76 col.replace(".", "__").replace("{", "__").replace("}", "__") | |
77 for col in X_test_df.columns | |
78 ] | |
79 | |
80 explainer = ClassifierExplainer( | |
81 estimator, X_test_df, exp.y_test_transformed, labels=labels_, **kwargs | |
82 ) | |
83 return ExplainerDashboard( | |
84 explainer, mode=display_format, | |
85 contributions=False, whatif=False, | |
86 **dashboard_kwargs | |
87 ) | |
88 | |
89 | |
90 def generate_regression_explainer_dashboard( | |
91 exp, | |
92 estimator, | |
93 display_format: str = "dash", | |
94 dashboard_kwargs: Optional[Dict[str, Any]] = None, | |
95 run_kwargs: Optional[Dict[str, Any]] = None, | |
96 **kwargs,): | |
97 | |
98 """ | |
99 This function is changed from pycaret.regression.oop.dashboard() | |
100 | |
101 This function generates the interactive dashboard for a trained model. | |
102 The dashboard is implemented using ExplainerDashboard | |
103 (explainerdashboard.readthedocs.io) | |
104 | |
105 | |
106 estimator: scikit-learn compatible object | |
107 Trained model object | |
108 | |
109 | |
110 display_format: str, default = 'dash' | |
111 Render mode for the dashboard. The default is set to ``dash`` | |
112 which will | |
113 render a dashboard in browser. There are four possible options: | |
114 | |
115 - 'dash' - displays the dashboard in browser | |
116 - 'inline' - displays the dashboard in the jupyter notebook cell. | |
117 - 'jupyterlab' - displays the dashboard in jupyterlab pane. | |
118 - 'external' - displays the dashboard in a separate tab. | |
119 (use in Colab) | |
120 | |
121 | |
122 dashboard_kwargs: dict, default = {} (empty dict) | |
123 Dictionary of arguments passed to the ``ExplainerDashboard`` class. | |
124 | |
125 | |
126 run_kwargs: dict, default = {} (empty dict) | |
127 Dictionary of arguments passed to the ``run`` method | |
128 of ``ExplainerDashboard``. | |
129 | |
130 | |
131 **kwargs: | |
132 Additional keyword arguments to pass to the | |
133 ``ClassifierExplainer`` or | |
134 ``RegressionExplainer`` class. | |
135 | |
136 | |
137 Returns: | |
138 ExplainerDashboard | |
139 """ | |
140 | |
141 dashboard_kwargs = dashboard_kwargs or {} | |
142 run_kwargs = run_kwargs or {} | |
143 | |
144 from explainerdashboard import ExplainerDashboard, RegressionExplainer | |
145 | |
146 # Replaceing chars which dash doesnt accept for column name `.` , `{`, `}` | |
147 X_test_df = exp.X_test_transformed.copy() | |
148 X_test_df.columns = [ | |
149 col.replace(".", "__").replace("{", "__").replace("}", "__") | |
150 for col in X_test_df.columns | |
151 ] | |
152 explainer = RegressionExplainer( | |
153 estimator, X_test_df, exp.y_test_transformed, **kwargs | |
154 ) | |
155 return ExplainerDashboard( | |
156 explainer, mode=display_format, contributions=False, | |
157 whatif=False, shap_interaction=False, decision_trees=False, | |
158 **dashboard_kwargs | |
159 ) |