Mercurial > repos > goeckslab > pycaret_predict
view pycaret_regression.py @ 0:1f20fe57fdee draft
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit d79b0f722b7d09505a526d1a4332f87e548a3df1
author | goeckslab |
---|---|
date | Wed, 11 Dec 2024 04:59:43 +0000 |
parents | |
children |
line wrap: on
line source
import logging from base_model_trainer import BaseModelTrainer from dashboard import generate_regression_explainer_dashboard from pycaret.regression import RegressionExperiment from utils import add_hr_to_html, add_plot_to_html LOG = logging.getLogger(__name__) class RegressionModelTrainer(BaseModelTrainer): def __init__( self, input_file, target_col, output_dir, task_type, random_seed, test_file=None, **kwargs): super().__init__( input_file, target_col, output_dir, task_type, random_seed, test_file, **kwargs) self.exp = RegressionExperiment() def save_dashboard(self): LOG.info("Saving explainer dashboard") dashboard = generate_regression_explainer_dashboard(self.exp, self.best_model) dashboard.save_html("dashboard.html") def generate_plots(self): LOG.info("Generating and saving plots") plots = ['residuals', 'error', 'cooks', 'learning', 'vc', 'manifold', 'rfe', 'feature', 'feature_all'] for plot_name in plots: try: plot_path = self.exp.plot_model(self.best_model, plot=plot_name, save=True) self.plots[plot_name] = plot_path except Exception as e: LOG.error(f"Error generating plot {plot_name}: {e}") continue def generate_plots_explainer(self): LOG.info("Generating and saving plots from explainer") from explainerdashboard import RegressionExplainer X_test = self.exp.X_test_transformed.copy() y_test = self.exp.y_test_transformed explainer = RegressionExplainer(self.best_model, X_test, y_test) self.expaliner = explainer plots_explainer_html = "" try: fig_importance = explainer.plot_importances() plots_explainer_html += add_plot_to_html(fig_importance) plots_explainer_html += add_hr_to_html() except Exception as e: LOG.error(f"Error generating plot importance: {e}") try: fig_importance_permutation = \ explainer.plot_importances_permutation( kind="permutation") plots_explainer_html += add_plot_to_html( fig_importance_permutation) plots_explainer_html += add_hr_to_html() except Exception as e: LOG.error(f"Error generating plot importance permutation: {e}") try: for feature in self.features_name: fig_shap = explainer.plot_pdp(feature) plots_explainer_html += add_plot_to_html(fig_shap) plots_explainer_html += add_hr_to_html() except Exception as e: LOG.error(f"Error generating plot shap dependence: {e}") # try: # for feature in self.features_name: # fig_interaction = explainer.plot_interaction(col=feature) # plots_explainer_html += add_plot_to_html(fig_interaction) # except Exception as e: # LOG.error(f"Error generating plot shap interaction: {e}") try: for feature in self.features_name: fig_interactions_importance = \ explainer.plot_interactions_importance( col=feature) plots_explainer_html += add_plot_to_html( fig_interactions_importance) plots_explainer_html += add_hr_to_html() except Exception as e: LOG.error(f"Error generating plot shap summary: {e}") # Regression specific plots try: fig_pred_actual = explainer.plot_predicted_vs_actual() plots_explainer_html += add_plot_to_html(fig_pred_actual) plots_explainer_html += add_hr_to_html() except Exception as e: LOG.error(f"Error generating plot prediction vs actual: {e}") try: fig_residuals = explainer.plot_residuals() plots_explainer_html += add_plot_to_html(fig_residuals) plots_explainer_html += add_hr_to_html() except Exception as e: LOG.error(f"Error generating plot residuals: {e}") try: for feature in self.features_name: fig_residuals_vs_feature = \ explainer.plot_residuals_vs_feature(feature) plots_explainer_html += add_plot_to_html( fig_residuals_vs_feature) plots_explainer_html += add_hr_to_html() except Exception as e: LOG.error(f"Error generating plot residuals vs feature: {e}") self.plots_explainer_html = plots_explainer_html