comparison squidpy_spatial.py @ 0:6fe0d4f464f4 draft

planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/squidpy commit 721eaced787aa3b04d96ad91f6b4540f26b23949
author goeckslab
date Thu, 11 Jul 2024 22:22:53 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:6fe0d4f464f4
1 import argparse
2 import ast
3 import json
4 import warnings
5
6 import pandas as pd
7 import squidpy as sq
8 from anndata import read_h5ad
9
10
11 def main(inputs, anndata, output, output_plot):
12 """
13 Parameter
14 ---------
15 inputs : str
16 File path to galaxy tool parameter.
17 anndata : str
18 File path to anndata containing phenotyping info.
19 output : str
20 File path to output.
21 output_plot: str or None
22 File path to save the plotting image.
23 """
24 warnings.simplefilter('ignore')
25
26 with open(inputs, 'r') as param_handler:
27 params = json.load(param_handler)
28
29 adata = read_h5ad(anndata)
30
31 if 'spatial' not in adata.obsm:
32 try:
33 adata.obsm['spatial'] = adata.obs[['X_centroid', 'Y_centroid']].values
34 except Exception as e:
35 print(e)
36
37 tool = params['analyses']['selected_tool']
38 tool_func = getattr(sq.gr, tool)
39
40 options = params['analyses']['options']
41
42 for k, v in options.items():
43 if not isinstance(v, str):
44 continue
45
46 if v in ('', 'none'):
47 options[k] = None
48 continue
49
50 if k == 'genes': # for spatial_autocorr and sepal
51 options[k] = [e.strip() for e in v.split(',')]
52 elif k == 'radius': # for spatial_neighbors
53 options[k] = ast.literal_eval(v)
54 elif k == 'interactions': # for ligrec
55 options[k] = pd.read_csv(v, sep="\t")
56 elif k == 'max_neighs':
57 options[k] = int(v) # for sepal
58
59 cluster_key = params['analyses'].get('cluster_key')
60 if cluster_key:
61 tool_func(adata, cluster_key, **options)
62 else:
63 tool_func(adata, **options)
64
65 if output_plot:
66 plotting_options = params['analyses']['plotting_options']
67 for k, v in plotting_options.items():
68 if not isinstance(v, str):
69 continue
70
71 if v in ('', 'none'):
72 plotting_options[k] = None
73 continue
74
75 if k == 'figsize':
76 options[k] = ast.literal_eval(v)
77 elif k in ('palette', 'score', 'source_groups', 'target_groups'):
78 options[k] = [e.strip() for e in v.split(',')]
79 elif k == 'means_range': # ligrec
80 v = v.strip()
81 if v[0] == '(':
82 v = v[1:]
83 if v[-1] == ')':
84 v = v[:-1]
85 options[k] = tuple([float(e.strip()) for e in v.split(',', 1)])
86
87 plotting_func = getattr(sq.pl, tool)
88 if cluster_key:
89 plotting_func(adata, cluster_key, save=output_plot, **plotting_options)
90 else: # TODO Remove this, since all plottings need cluster key
91 plotting_func(adata, save=output_plot, **plotting_options)
92
93 adata.write(output)
94
95
96 if __name__ == '__main__':
97 aparser = argparse.ArgumentParser()
98 aparser.add_argument("-i", "--inputs", dest="inputs", required=True)
99 aparser.add_argument("-e", "--output", dest="output", required=True)
100 aparser.add_argument("-a", "--anndata", dest="anndata", required=True)
101 aparser.add_argument("-p", "--output_plot", dest="output_plot", required=False)
102
103 args = aparser.parse_args()
104
105 main(args.inputs, args.anndata, args.output, args.output_plot)