comparison squidpy_spatial.xml @ 0:5b17a47d1ade draft

planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/squidpy commit 721eaced787aa3b04d96ad91f6b4540f26b23949
author goeckslab
date Thu, 11 Jul 2024 22:22:41 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:5b17a47d1ade
1 <tool id="squidpy_spatial" name="Analyze and visualize spatial multi-omics data" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@">
2 <description>with Squidpy</description>
3 <macros>
4 <import>main_macros.xml</import>
5 </macros>
6 <edam_operations>
7 <edam_operation>operation_3443</edam_operation>
8 </edam_operations>
9 <expand macro="squidpy_requirements"/>
10 <expand macro="macro_stdio" />
11 <version_command>echo "@TOOL_VERSION@"</version_command>
12 <command detect_errors="aggressive">
13 <![CDATA[
14 export TQDM_DISABLE=True &&
15 python '$__tool_directory__/squidpy_spatial.py'
16 --inputs '$inputs'
17 --anndata '$anndata'
18 --output '$output'
19 #if $analyses.selected_tool in ['nhood_enrichment', 'centrality_scores', 'interaction_matrix', 'ligrec', 'ripley', 'co_occurrence']:
20 --output_plot image.png
21 #end if
22 ]]>
23 </command>
24 <configfiles>
25 <inputs name="inputs" data_style="paths"/>
26 </configfiles>
27 <inputs>
28 <param name="anndata" type="data" format="h5ad" label="Select the input anndata" />
29 <conditional name="analyses">
30 <param name="selected_tool" type="select" label="Select an analysis">
31 <option value="spatial_neighbors" selected="true">Spatial neighbors -- Create a graph from spatial coordinates</option>
32 <option value="nhood_enrichment">nhood_enrichment -- Compute neighborhood enrichment by permutation test.</option>
33 <option value="co_occurrence" >co_occurrence -- Compute co-occurrence probability of clusters</option>
34 <option value="centrality_scores">centrality_scores -- Compute centrality scores per cluster or cell type</option>
35 <option value="interaction_matrix">interaction_matrix -- Compute interaction matrix for clusters</option>
36 <option value="ripley">ripley -- Calculate various Ripley’s statistics for point processes</option>
37 <option value="ligrec">ligrec -- Perform the permutation test as described in [Efremova et al., 2020]</option>
38 <option value="spatial_autocorr">spatial_autocorr -- Calculate Global Autocorrelation Statistic (Moran’s I or Geary’s C)</option>
39 <option value="sepal">sepal -- Identify spatially variable genes with Sepal</option>
40 </param>
41 <when value="spatial_neighbors">
42 <expand macro="squidpy_spatial_options">
43 <param argument="spatial_key" type="text" value="spatial" optional="false" label="The Key where spatial coordinates are stored" help="Key in `anndata.AnnData.obsm`." />
44 <param argument="coord_type" type="select" label="Type of coordinate system">
45 <option value="grid" selected="true">grid</option>
46 <option value="generic">generic</option>
47 <option value="none">None - use `grid` when `spatial_key` is in `anndata.AnnData.uns with `n_neighs` = 6 (Visium), otherwise `generic`</option>
48 </param>
49 <param argument="n_neighs" type="integer" value="6" label="Number of neighboring tiles" help="When the `coord_type` is generic, this's number of neighborhoods for non-grid data and only used when `delaunay` is False." />
50 <param argument="radius" type="text" value="" optional="true" label="Radius" help="Only available when coord_type = 'generic'. If float, this is the neighborhood radius to compute the graph; if tuple, this is edge range [min(radius), max(radius)] used prune the final graph." />
51 <param argument="delaunay" type="boolean" checked="false" optional="true" label="Whether to compute the graph from Delaunay triangulation" help="Only used when coord_type = 'generic'." />
52 <param argument="n_rings" type="integer" value="1" label="Number of rings of neighbors for grid data" help="Only used when coord_type = 'grid'." />
53 <param argument="transform" type="select" label="Type of adjacency matrix transform">
54 <option value="none" selected="true">None</option>
55 <option value="spectral">spectral</option>
56 <option value="cosine">cosine</option>
57 </param>
58 <param argument="set_diag" type="boolean" checked="false" label="Whether to set the diagonal of the spatial connectivities to 1.0" />
59 <param argument="key_added" type="text" value="spatial" label="The column name used in anndata to store the returned data" />
60 </expand>
61 </when>
62 <when value="nhood_enrichment">
63 <param argument="cluster_key" type="text" value="" optional="false" label="Key in anndata.AnnData.obs where clustering is stored" />
64 <expand macro="squidpy_spatial_options">
65 <param argument="connectivity_key" type="text" value="" optional="true" label="Key in anndata.AnnData.obsp where spatial connectivities are stored" />
66 <param argument="n_perms" type="integer" value="1000" label="Number of permutations for the permutation test" />
67 <param argument="seed" type="integer" value="" optional="true" label="Randomness seed" />
68 </expand>
69 <expand macro="squidpy_plotting_options_more">
70 <param argument="mode" type="select" label="Choose one result from gr.nhood_enrichment to plot">
71 <option value="zscore" selected="true">zscore</option>
72 <option value="count">count</option>
73 </param>
74 </expand>
75 </when>
76 <when value="co_occurrence">
77 <param argument="cluster_key" type="text" value="" optional="false" label="Key in anndata.AnnData.obs where clustering is stored" />
78 <expand macro="squidpy_spatial_options">
79 <param argument="spatial_key" type="text" value="spatial" optional="false" label="The Key where spatial coordinates are stored" help="Key in `anndata.AnnData.obsm`." />
80 <param argument="interval" type="integer" value="50" label="Number of distance thresholds at which co-occurrence is computed" />
81 <param argument="n_splits" type="integer" value="" optional="true" label="Number of splits in which to divide the spatial coordinates" help="In anndata.AnnData.obsm ['{spatial_key}']." />
82 </expand>
83 <expand macro="squidpy_plotting_options">
84 <expand macro="squidpy_plotting_option_palette" />
85 </expand>
86 </when>
87 <when value="centrality_scores">
88 <param argument="cluster_key" type="text" value="" optional="false" label="Key in anndata.AnnData.obs where clustering is stored" />
89 <expand macro="squidpy_spatial_options">
90 <param argument="score" type="select" label="Centrality measures as described in networkx.algorithms.centrality" help="Refer to [Hagberg et al., 2008]." >
91 <option value="none" selected="true">None</option>
92 <option value="closeness_centrality">closeness_centrality -- measure of how close the group is to other nodes</option>
93 <option value="average_clustering">average_clustering -- measure of the degree to which nodes cluster together</option>
94 <option value="degree_centrality">degree_centrality -- fraction of non-group members connected to group members</option>
95 </param>
96 <param argument="connectivity_key" type="text" value="" optional="true" label="Key in anndata.AnnData.obsp where spatial connectivities are stored" />
97 </expand>
98 <expand macro="squidpy_plotting_options">
99 <param argument="score" type="text" value="" optional="true" label="The scores to plot" help="Comma delimited for multiple. If None, plot all scores." />
100 <expand macro="squidpy_plotting_option_palette" />
101 </expand>
102 </when>
103 <when value="interaction_matrix">
104 <param argument="cluster_key" type="text" value="" optional="false" label="Key in anndata.AnnData.obs where clustering is stored" />
105 <expand macro="squidpy_spatial_options">
106 <param argument="connectivity_key" type="text" value="" optional="true" label="Key in anndata.AnnData.obsp where spatial connectivities are stored" />
107 <param argument="normalized" type="boolean" checked="false" label="Whether to normalize the sum of each row to 1" />
108 <param argument="weights" type="boolean" checked="false" label="Whether to use edge weights or binarize" />
109 </expand>
110 <expand macro="squidpy_plotting_options_more"/>
111 </when>
112 <when value="ripley">
113 <param argument="cluster_key" type="text" value="" optional="false" label="Key in anndata.AnnData.obs where clustering is stored" />
114 <expand macro="squidpy_spatial_options">
115 <param argument="mode" type="select" label="Which Ripley’s statistic to compute">
116 <option value="F" selected="true">F</option>
117 <option value="G">G</option>
118 <option value="L">L</option>
119 </param>
120 <param argument="spatial_key" type="text" value="spatial" optional="false" label="The Key where spatial coordinates are stored" help="Key in `anndata.AnnData.obsm`." />
121 <param argument="metric" type="select" label="Which metric to use for computing distances" help="Refer to `sklearn.neighbors.DistanceMetric`." >
122 <option value="euclidean" selected="true">euclidean</option>
123 <option value="manhattan">manhattan</option>
124 <option value="chebyshev">chebyshev</option>
125 <option value="minkowski">minkowski</option>
126 <option value="wminkowski">wminkowski</option>
127 <option value="seuclidean">seuclidean</option>
128 <option value="mahalanobis">mahalanobis</option>
129 <option value="haversine">haversine</option>
130 <option value="hamming">hamming</option>
131 <option value="canberra">canberra</option>
132 <option value="braycurtis">braycurtis</option>
133 </param>
134 <param argument="n_neigh" type="integer" value="2" label="Number of neighbors to consider for the KNN graph" />
135 <param argument="n_simulations" type="integer" value="100" label="Number of simulations to run for computing p-values" />
136 <param argument="n_observations" type="integer" value="1000" label="Number of observations to generate for the Spatial Poisson Point Process" />
137 <param argument="max_dist" type="float" value="" optional="true" label="Maximum distances for the support" help="If None, max_dist is the square root of area/2."/>
138 <param argument="n_steps" type="integer" value="50" label="Number of steps for the support" />
139 <param argument="seed" type="integer" value="" optional="true" label="Randomness seed" />
140 </expand>
141 <expand macro="squidpy_plotting_options">
142 <param argument="mode" type="select" label="Ripley’s statistics to be plotted">
143 <option value="F" selected="true">F</option>
144 <option value="G">G</option>
145 <option value="L">L</option>
146 </param>
147 <param argument="plot_sims" type="boolean" checked="true" label="Whether to overlay simulations in the plot" />
148 <expand macro="squidpy_plotting_option_palette" />
149 </expand>
150 </when>
151 <when value="ligrec">
152 <param argument="cluster_key" type="text" value="" optional="false" label="Key in anndata.AnnData.obs where clustering is stored" />
153 <expand macro="squidpy_spatial_options">
154 <param argument="use_raw" type="boolean" checked="true" label="Whether to access anndata.AnnData.raw" />
155 <param argument="interactions" type="data" format="tabular" optional="true" label="Select the dataset containing interaction to test" help="Must contain at least 2 columns named ‘source’ and ‘target’. Can be null, a condition under which the interactions are extracted from omnipath." />
156 <param argument="complex_policy" type="select" label="Policy on how to handle complexes">
157 <option value="min" selected="true">min -- select gene with the minimum average expression</option>
158 <option value="all">all -- select all possible combinations between ‘source’ and ‘target’ complexes</option>
159 </param>
160 <param argument="n_perms" type="integer" value="" optional="true" label="Number of permutations for the permutation test." />
161 <param argument="threshold" type="float" value="0.01" label="Do not perform permutation test if any of the interacting components is being expressed in less than threshold percent of cells within a given cluster" />
162 <param argument="corr_method" type="select" label="Correction method for multiple testing">
163 <option value="none" selected="true">None</option>
164 <option value="bonferroni">bonferroni</option>
165 <option value="sidak">sidak</option>
166 <option value="holm-sidak">holm-sidak</option>
167 <option value="holm">holm</option>
168 <option value="simes-hochberg">simes-hochberg</option>
169 <option value="hommel">hommel</option>
170 <option value="fdr_bh">fdr_bh</option>
171 <option value="fdr_by">fdr_by</option>
172 <option value="fdr_tsbh">fdr_tsbh</option>
173 <option value="fdr_tsbky">fdr_tsbky</option>
174 </param>
175 <param argument="corr_axis" type="select" label="Axis over which to perform the FDR correction" help="Only used when corr_method != None.">
176 <option value="clusters" selected="true">clusters -- correct clusters by performing FDR correction across the interactions</option>
177 <option value="interactions">interactions -- correct interactions by performing FDR correction across the clusters</option>
178 </param>
179 <param argument="key_added" type="text" value="" optional="true" label="Key in anndata to store the result" help="In `anndata.AnnData.uns`. If None, '{cluster_key}_ligrec' will be used." />
180 <param argument="gene_symbols" type="text" value="" optional="true" label="Key in anndata.AnnData.var to use instead of anndata.AnnData.var_names" help="Optional." />
181 <param argument="seed" type="integer" value="" label="Randomness seed" />
182 </expand>
183 <expand macro="squidpy_plotting_options">
184 <param argument="source_groups" type="text" value="" optional="true" label="Source interaction clusters" help="Comma delimited. If None, select all clusters." />
185 <param argument="target_groups" type="text" value="" optional="true" label="Target interaction clusters" help="Comma delimited. If None, select all clusters." />
186 <param argument="means_range" type="text" value="(-inf, inf)" label="Only show interactions whose means are within this closed interval" help="Tuple of floats. e.g.: (-10, 10)." />
187 <param argument="pvalue_threshold" type="float" value="1.0" label="Only show interactions with p-value less than this threshold" />
188 <param argument="remove_empty_interactions" type="boolean" checked="true" label="Whether to remove rows and columns that only contain interactions with NaN values?" />
189 <param argument="remove_nonsig_interactions" type="boolean" checked="false" label="Whether to remove rows and columns that only contain interactions that are larger than `alpha`? " />
190 <param argument="dendrogram" type="select" label="How to cluster based on the p-values?">
191 <option value="none" selected="true">None</option>
192 <option value="interacting_molecules">interacting_molecules</option>
193 <option value="interacting_clusters">interacting_clusters</option>
194 <option value="both">both</option>
195 </param>
196 <param argument="alpha" type="float" value="0.001" label="Significance threshold" help="All elements with p-values less than alpha will be marked by tori instead of dots." />
197 <param argument="swap_axes" type="boolean" checked="false" label="Whether to show the cluster combinations as rows and the interacting pairs as columns" />
198 </expand>
199 </when>
200 <when value="spatial_autocorr">
201 <expand macro="squidpy_spatial_options">
202 <param argument="connectivity_key" type="text" value="spatial_connectivities" label="Key in anndata.AnnData.obsp where spatial connectivities are stored" />
203 <param argument="genes" type="text" value="" optional="true" label="List of gene names, as stored in anndata.AnnData.var_names" help="Comma delitimited. Used to compute global spatial autocorrelation statistic. If None, it’s computed anndata.AnnData.var ['highly_variable']." />
204 <param argument="mode" type="select">
205 <option value="moran" selected="true">moran</option>
206 <option value="geary">geary</option>
207 </param>
208 <param argument="transformation" type="boolean" checked="true" label="Whether to perform row-normalization on weights in anndata.AnnData.obsp ['spatial_connectivities']" />
209 <param argument="n_perms" type="integer" value="" optional="true" label="Number of permutations for the permutation test." help="If None, only p-values under normality assumption are computed"/>
210 <param argument="two_tailed" type="boolean" checked="false" label="Are the p-values two-tailed?" help="One-tailed, if False." />
211 <param argument="corr_method" type="select" label="Correction method for multiple testing">
212 <option value="none" selected="true">None</option>
213 <option value="bonferroni">bonferroni</option>
214 <option value="sidak">sidak</option>
215 <option value="holm-sidak">holm-sidak</option>
216 <option value="holm">holm</option>
217 <option value="simes-hochberg">simes-hochberg</option>
218 <option value="hommel">hommel</option>
219 <option value="fdr_bh">fdr_bh</option>
220 <option value="fdr_by">fdr_by</option>
221 <option value="fdr_tsbh">fdr_tsbh</option>
222 <option value="fdr_tsbky">fdr_tsbky</option>
223 </param>
224 <param argument="layer" type="text" value="" optional="true" label="Layer in anndata.AnnData.layers to use" help="If None, use anndata.AnnData.X." />
225 <param argument="seed" type="integer" value="" optional="true" label="Randomness seed" />
226 </expand>
227 </when>
228 <when value="sepal">
229 <expand macro="squidpy_spatial_options">
230 <param argument="max_neighs" type="select" label="Maximum number of neighbors of a node in the graph">
231 <option value="4" selected="true">4 -- for a square-grid (ST, Dbit-seq)</option>
232 <option value="6">6 -- for a hexagonal-grid (Visium)</option>
233 </param>
234 <param argument="genes" type="text" value="" optional="true" label="List of gene names, as stored in anndata.AnnData.var_names" help="Comma delitimited. Used to compute global spatial autocorrelation statistic. If None, it’s computed anndata.AnnData.var ['highly_variable']." />
235 <param argument="n_iter" type="integer" value="30000" optional="true" label="Maximum number of iterations for the diffusion simulation" />
236 <param argument="dt" type="float" value="0.001" label="Time step in diffusion simulation" />
237 <param argument="thresh" type="float" value="1e-8" label="Entropy threshold for convergence of diffusion simulation" />
238 <param argument="spatial_key" type="text" value="spatial" optional="false" label="The Key where spatial coordinates are stored" help="Key in `anndata.AnnData.obsm`." />
239 <param argument="connectivity_key" type="text" value="spatial_connectivities" label="Key in anndata.AnnData.obsp where spatial connectivities are stored" />
240 <param argument="layer" type="text" value="" optional="true" label="Layer in anndata.AnnData.layers to use" help="If None, use anndata.AnnData.X." />
241 <param argument="use_raw" type="boolean" checked="true" label="Whether to access anndata.AnnData.raw" />
242 </expand>
243 </when>
244 </conditional>
245 </inputs>
246 <outputs>
247 <data format="h5ad" name="output" label="Squidpy.gr.${analyses.selected_tool} on ${on_string}" />
248 <data from_work_dir="figures/image.png" format="png" name="output_plot" label="Squidpy.pl.${analyses.selected_tool} on ${on_string}" >
249 <filter>analyses['selected_tool'] in ['nhood_enrichment', 'centrality_scores', 'interaction_matrix', 'ligrec', 'ripley', 'co_occurrence']</filter>
250 </data>
251 </outputs>
252 <tests>
253 <test expect_num_outputs="1">
254 <param name="anndata" value="imc.h5ad" ftype="h5ad" />
255 <param name="selected_tool" value="spatial_neighbors" />
256 <output name="output">
257 <assert_contents>
258 <has_h5_keys keys="uns/spatial_neighbors" />
259 </assert_contents>
260 </output>
261 </test>
262 <test expect_num_outputs="2">
263 <param name="anndata" value="imc_sn.h5ad" ftype="h5ad" />
264 <param name="selected_tool" value="nhood_enrichment" />
265 <param name="cluster_key" value="cell type" />
266 <output name="output">
267 <assert_contents>
268 <has_h5_keys keys="uns/cell type_nhood_enrichment" />
269 </assert_contents>
270 </output>
271 <output name="output_plot" file="imc_nhood_enrichment.png" compare="sim_size" delta="2000" />
272 </test>
273 <test expect_num_outputs="2">
274 <param name="anndata" value="imc_sn.h5ad" ftype="h5ad" />
275 <param name="selected_tool" value="co_occurrence" />
276 <param name="cluster_key" value="cell type" />
277 <output name="output">
278 <assert_contents>
279 <has_h5_keys keys="uns/cell type_co_occurrence" />
280 </assert_contents>
281 </output>
282 <output name="output_plot" file="imc_co_occurrence.png" compare="sim_size" delta="2000" />
283 </test>
284 <test expect_num_outputs="2">
285 <param name="anndata" value="imc_sn.h5ad" ftype="h5ad" />
286 <param name="selected_tool" value="centrality_scores" />
287 <param name="cluster_key" value="cell type" />
288 <output name="output">
289 <assert_contents>
290 <has_h5_keys keys="uns/cell type_centrality_scores" />
291 </assert_contents>
292 </output>
293 <output name="output_plot" file="imc_centrality_scores.png" compare="sim_size" delta="2000" />
294 </test>
295 <test expect_num_outputs="2">
296 <param name="anndata" value="imc_sn.h5ad" ftype="h5ad" />
297 <param name="selected_tool" value="interaction_matrix" />
298 <param name="cluster_key" value="cell type" />
299 <output name="output">
300 <assert_contents>
301 <has_h5_keys keys="uns/cell type_interactions" />
302 </assert_contents>
303 </output>
304 <output name="output_plot" file="imc_interaction_matrix.png" compare="sim_size" delta="2000" />
305 </test>
306 <test expect_num_outputs="2">
307 <param name="anndata" value="imc_sn.h5ad" ftype="h5ad" />
308 <param name="selected_tool" value="ripley" />
309 <param name="cluster_key" value="cell type" />
310 <output name="output">
311 <assert_contents>
312 <has_h5_keys keys="uns/cell type_ripley_F" />
313 </assert_contents>
314 </output>
315 <output name="output_plot" file="imc_ripley.png" compare="sim_size" delta="2000" />
316 </test>
317 </tests>
318 <help>
319 <![CDATA[
320 **What it does**
321
322 This tool includes various of single cell spatial analysis utils provided by Squidpy.
323
324 **Input**
325
326 *AnnData*
327
328 **Output**
329
330 *Anndata*
331
332 *Plotting (PNG) if applicable*
333
334
335 ]]>
336 </help>
337 <expand macro="citations" />
338 </tool>