Mercurial > repos > goeckslab > tabular_learner
comparison pycaret_regression.py @ 4:11fdac5affb3 draft
planemo upload for repository https://github.com/goeckslab/gleam commit 8112548ac44b7a4769093d76c722c8fcdeaaef54
| author | goeckslab |
|---|---|
| date | Fri, 25 Jul 2025 19:02:12 +0000 |
| parents | 209b663a4f62 |
| children |
comparison
equal
deleted
inserted
replaced
| 3:f6a65e05d6ec | 4:11fdac5affb3 |
|---|---|
| 1 import logging | 1 import logging |
| 2 | 2 |
| 3 from base_model_trainer import BaseModelTrainer | 3 from base_model_trainer import BaseModelTrainer |
| 4 from dashboard import generate_regression_explainer_dashboard | 4 from dashboard import generate_regression_explainer_dashboard |
| 5 from pycaret.regression import RegressionExperiment | 5 from pycaret.regression import RegressionExperiment |
| 6 from utils import add_hr_to_html, add_plot_to_html | |
| 7 | 6 |
| 8 LOG = logging.getLogger(__name__) | 7 LOG = logging.getLogger(__name__) |
| 9 | 8 |
| 10 | 9 |
| 11 class RegressionModelTrainer(BaseModelTrainer): | 10 class RegressionModelTrainer(BaseModelTrainer): |
| 12 def __init__( | 11 def __init__( |
| 13 self, | 12 self, |
| 14 input_file, | 13 input_file, |
| 15 target_col, | 14 target_col, |
| 16 output_dir, | 15 output_dir, |
| 17 task_type, | 16 task_type, |
| 18 random_seed, | 17 random_seed, |
| 19 test_file=None, | 18 test_file=None, |
| 20 **kwargs): | 19 **kwargs, |
| 20 ): | |
| 21 super().__init__( | 21 super().__init__( |
| 22 input_file, | 22 input_file, |
| 23 target_col, | 23 target_col, |
| 24 output_dir, | 24 output_dir, |
| 25 task_type, | 25 task_type, |
| 26 random_seed, | 26 random_seed, |
| 27 test_file, | 27 test_file, |
| 28 **kwargs) | 28 **kwargs, |
| 29 ) | |
| 30 # The BaseModelTrainer.setup_pycaret will set self.exp appropriately | |
| 31 # But we reassign here for clarity | |
| 29 self.exp = RegressionExperiment() | 32 self.exp = RegressionExperiment() |
| 30 | 33 |
| 31 def save_dashboard(self): | 34 def save_dashboard(self): |
| 32 LOG.info("Saving explainer dashboard") | 35 LOG.info("Saving explainer dashboard") |
| 33 dashboard = generate_regression_explainer_dashboard(self.exp, | 36 dashboard = generate_regression_explainer_dashboard(self.exp, self.best_model) |
| 34 self.best_model) | |
| 35 dashboard.save_html("dashboard.html") | 37 dashboard.save_html("dashboard.html") |
| 36 | 38 |
| 37 def generate_plots(self): | 39 def generate_plots(self): |
| 38 LOG.info("Generating and saving plots") | 40 LOG.info("Generating and saving plots") |
| 39 plots = ['residuals', 'error', 'cooks', | 41 plots = [ |
| 40 'learning', 'vc', 'manifold', | 42 "residuals", |
| 41 'rfe', 'feature', 'feature_all'] | 43 "error", |
| 44 "cooks", | |
| 45 "learning", | |
| 46 "vc", | |
| 47 "manifold", | |
| 48 "rfe", | |
| 49 "feature", | |
| 50 "feature_all", | |
| 51 ] | |
| 42 for plot_name in plots: | 52 for plot_name in plots: |
| 43 try: | 53 try: |
| 44 plot_path = self.exp.plot_model(self.best_model, | 54 plot_path = self.exp.plot_model( |
| 45 plot=plot_name, save=True) | 55 self.best_model, plot=plot_name, save=True |
| 56 ) | |
| 46 self.plots[plot_name] = plot_path | 57 self.plots[plot_name] = plot_path |
| 47 except Exception as e: | 58 except Exception as e: |
| 48 LOG.error(f"Error generating plot {plot_name}: {e}") | 59 LOG.error(f"Error generating plot {plot_name}: {e}") |
| 49 continue | 60 continue |
| 50 | 61 |
| 56 X_test = self.exp.X_test_transformed.copy() | 67 X_test = self.exp.X_test_transformed.copy() |
| 57 y_test = self.exp.y_test_transformed | 68 y_test = self.exp.y_test_transformed |
| 58 | 69 |
| 59 try: | 70 try: |
| 60 explainer = RegressionExplainer(self.best_model, X_test, y_test) | 71 explainer = RegressionExplainer(self.best_model, X_test, y_test) |
| 61 self.expaliner = explainer | |
| 62 plots_explainer_html = "" | |
| 63 except Exception as e: | 72 except Exception as e: |
| 64 LOG.error(f"Error creating explainer: {e}") | 73 LOG.error(f"Error creating explainer: {e}") |
| 65 self.plots_explainer_html = None | |
| 66 return | 74 return |
| 67 | 75 |
| 76 # --- 1) SHAP mean impact (average absolute SHAP values) --- | |
| 68 try: | 77 try: |
| 69 fig_importance = explainer.plot_importances() | 78 self.explainer_plots["shap_mean"] = explainer.plot_importances() |
| 70 plots_explainer_html += add_plot_to_html(fig_importance) | |
| 71 plots_explainer_html += add_hr_to_html() | |
| 72 except Exception as e: | 79 except Exception as e: |
| 73 LOG.error(f"Error generating plot importance: {e}") | 80 LOG.error(f"Error generating SHAP mean importance: {e}") |
| 74 | 81 |
| 82 # --- 2) SHAP permutation importance --- | |
| 75 try: | 83 try: |
| 76 fig_importance_permutation = \ | 84 self.explainer_plots["shap_perm"] = explainer.plot_importances_permutation( |
| 77 explainer.plot_importances_permutation( | 85 kind="permutation" |
| 78 kind="permutation") | 86 ) |
| 79 plots_explainer_html += add_plot_to_html( | |
| 80 fig_importance_permutation) | |
| 81 plots_explainer_html += add_hr_to_html() | |
| 82 except Exception as e: | 87 except Exception as e: |
| 83 LOG.error(f"Error generating plot importance permutation: {e}") | 88 LOG.error(f"Error generating SHAP permutation importance: {e}") |
| 84 | 89 |
| 90 # Pre-filter features so we never call PDP or residual-vs-feature on missing cols | |
| 91 valid_feats = [] | |
| 92 for feat in self.features_name: | |
| 93 if feat in explainer.X.columns or feat in explainer.onehot_cols: | |
| 94 valid_feats.append(feat) | |
| 95 else: | |
| 96 LOG.warning(f"Skipping feature {feat!r}: not found in explainer data") | |
| 97 | |
| 98 # --- 3) Partial Dependence Plots (PDPs) per feature --- | |
| 99 for feature in valid_feats: | |
| 100 try: | |
| 101 fig_pdp = explainer.plot_pdp(feature) | |
| 102 self.explainer_plots[f"pdp__{feature}"] = fig_pdp | |
| 103 except AssertionError as ae: | |
| 104 LOG.warning(f"PDP AssertionError for {feature!r}: {ae}") | |
| 105 except Exception as e: | |
| 106 LOG.error(f"Error generating PDP for {feature}: {e}") | |
| 107 | |
| 108 # --- 4) Predicted vs Actual plot --- | |
| 85 try: | 109 try: |
| 86 for feature in self.features_name: | 110 self.explainer_plots["predicted_vs_actual"] = explainer.plot_predicted_vs_actual() |
| 87 fig_shap = explainer.plot_pdp(feature) | |
| 88 plots_explainer_html += add_plot_to_html(fig_shap) | |
| 89 plots_explainer_html += add_hr_to_html() | |
| 90 except Exception as e: | 111 except Exception as e: |
| 91 LOG.error(f"Error generating plot shap dependence: {e}") | 112 LOG.error(f"Error generating Predicted vs Actual plot: {e}") |
| 92 | 113 |
| 93 # try: | 114 # --- 5) Global residuals distribution --- |
| 94 # for feature in self.features_name: | 115 try: |
| 95 # fig_interaction = explainer.plot_interaction(col=feature) | 116 self.explainer_plots["residuals"] = explainer.plot_residuals() |
| 96 # plots_explainer_html += add_plot_to_html(fig_interaction) | 117 except Exception as e: |
| 97 # except Exception as e: | 118 LOG.error(f"Error generating Residuals plot: {e}") |
| 98 # LOG.error(f"Error generating plot shap interaction: {e}") | |
| 99 | 119 |
| 100 try: | 120 # --- 6) Residuals vs each feature --- |
| 101 for feature in self.features_name: | 121 for feature in valid_feats: |
| 102 fig_interactions_importance = \ | 122 try: |
| 103 explainer.plot_interactions_importance( | 123 fig_res_vs_feat = explainer.plot_residuals_vs_feature(feature) |
| 104 col=feature) | 124 self.explainer_plots[f"residuals_vs_feature__{feature}"] = fig_res_vs_feat |
| 105 plots_explainer_html += add_plot_to_html( | 125 except AssertionError as ae: |
| 106 fig_interactions_importance) | 126 LOG.warning(f"Residuals-vs-feature AssertionError for {feature!r}: {ae}") |
| 107 plots_explainer_html += add_hr_to_html() | 127 except Exception as e: |
| 108 except Exception as e: | 128 LOG.error(f"Error generating Residuals vs {feature}: {e}") |
| 109 LOG.error(f"Error generating plot shap summary: {e}") | |
| 110 | |
| 111 # Regression specific plots | |
| 112 try: | |
| 113 fig_pred_actual = explainer.plot_predicted_vs_actual() | |
| 114 plots_explainer_html += add_plot_to_html(fig_pred_actual) | |
| 115 plots_explainer_html += add_hr_to_html() | |
| 116 except Exception as e: | |
| 117 LOG.error(f"Error generating plot prediction vs actual: {e}") | |
| 118 | |
| 119 try: | |
| 120 fig_residuals = explainer.plot_residuals() | |
| 121 plots_explainer_html += add_plot_to_html(fig_residuals) | |
| 122 plots_explainer_html += add_hr_to_html() | |
| 123 except Exception as e: | |
| 124 LOG.error(f"Error generating plot residuals: {e}") | |
| 125 | |
| 126 try: | |
| 127 for feature in self.features_name: | |
| 128 fig_residuals_vs_feature = \ | |
| 129 explainer.plot_residuals_vs_feature(feature) | |
| 130 plots_explainer_html += add_plot_to_html( | |
| 131 fig_residuals_vs_feature) | |
| 132 plots_explainer_html += add_hr_to_html() | |
| 133 except Exception as e: | |
| 134 LOG.error(f"Error generating plot residuals vs feature: {e}") | |
| 135 | |
| 136 self.plots_explainer_html = plots_explainer_html |
