comparison tabular_learner.xml @ 9:e7dd78077b72 draft default tip

planemo upload for repository https://github.com/goeckslab/gleam commit 84d5cd0b1fa5c1ff0ad892bc39c95dad1ceb4920
author goeckslab
date Sat, 08 Nov 2025 14:20:19 +0000
parents ba45bc057d70
children
comparison
equal deleted inserted replaced
8:ba45bc057d70 9:e7dd78077b72
57 #end if 57 #end if
58 #if $has_test_file == "yes" 58 #if $has_test_file == "yes"
59 --test_file '$test_file' 59 --test_file '$test_file'
60 #end if 60 #end if
61 --model_type '$model_type' 61 --model_type '$model_type'
62 #if $best_model_metric
63 --best_model_metric '$best_model_metric'
64 #end if
62 ]]> 65 ]]>
63 </command> 66 </command>
64 <inputs> 67 <inputs>
65 <param name="input_file" type="data" format="csv,tabular" label="Tabular Input Dataset" /> 68 <param name="input_file" type="data" format="csv,tabular" label="Tabular Input Dataset" />
66 <conditional name="test_data_choice"> 69 <conditional name="test_data_choice">
102 <option value="et">Extra Trees Classifier</option> 105 <option value="et">Extra Trees Classifier</option>
103 <option value="xgboost">Extreme Gradient Boosting</option> 106 <option value="xgboost">Extreme Gradient Boosting</option>
104 <option value="lightgbm">Light Gradient Boosting Machine</option> 107 <option value="lightgbm">Light Gradient Boosting Machine</option>
105 <option value="catboost">CatBoost Classifier</option> 108 <option value="catboost">CatBoost Classifier</option>
106 </param> 109 </param>
110 <param name="best_model_metric" type="select" label="Select metric to pick the best model" help="PyCaret will rank models by this metric. Default is Accuracy.">
111 <option value="Accuracy" selected="true">Accuracy</option>
112 <option value="AUC">ROC-AUC</option>
113 <option value="Precision">Precision</option>
114 <option value="Recall">Recall</option>
115 <option value="F1">F1</option>
116 <option value="Kappa">Cohen’s Kappa</option>
117 <option value="Log Loss">Log Loss (lower is better)</option>
118 <option value="PR-AUC-Weighted">PR-AUC (weighted)</option>
119 </param>
107 </when> 120 </when>
108 <when value="regression"> 121 <when value="regression">
109 <param name="regression_models" type="select" multiple="true" label="Only Select Regression Models if you don't want to compare all models"> 122 <param name="regression_models" type="select" multiple="true" label="Only Select Regression Models if you don't want to compare all models">
110 <option value="lr">Linear Regression</option> 123 <option value="lr">Linear Regression</option>
111 <option value="lasso">Lasso Regression</option> 124 <option value="lasso">Lasso Regression</option>
130 <option value="gbr">Gradient Boosting Regressor</option> 143 <option value="gbr">Gradient Boosting Regressor</option>
131 <option value="mlp">MLP Regressor</option> 144 <option value="mlp">MLP Regressor</option>
132 <option value="xgboost">Extreme Gradient Boosting</option> 145 <option value="xgboost">Extreme Gradient Boosting</option>
133 <option value="lightgbm">Light Gradient Boosting Machine</option> 146 <option value="lightgbm">Light Gradient Boosting Machine</option>
134 <option value="catboost">CatBoost Regressor</option> 147 <option value="catboost">CatBoost Regressor</option>
148 </param>
149 <param name="best_model_metric" type="select" label="Select metric to pick the best model" help="PyCaret will rank models by this metric. Default is R².">
150 <option value="R2" selected="true">R²</option>
151 <option value="MAE">MAE</option>
152 <option value="MSE">MSE</option>
153 <option value="RMSE">RMSE</option>
154 <option value="RMSLE">RMSLE</option>
155 <option value="MAPE">MAPE</option>
135 </param> 156 </param>
136 </when> 157 </when>
137 </conditional> 158 </conditional>
138 <param name="tune_model" type="boolean" truevalue="True" falsevalue="False" label="Tune hyperparameters" help="Hyperparameter tuning on the best model" /> 159 <param name="tune_model" type="boolean" truevalue="True" falsevalue="False" label="Tune hyperparameters" help="Hyperparameter tuning on the best model" />
139 <param name="random_seed" type="integer" value="42" label="Random Seed" help="Random seed for reproducibility." /> 160 <param name="random_seed" type="integer" value="42" label="Random Seed" help="Random seed for reproducibility." />
177 <tests> 198 <tests>
178 <test> 199 <test>
179 <param name="input_file" value="pcr.tsv"/> 200 <param name="input_file" value="pcr.tsv"/>
180 <param name="target_feature" value="11"/> 201 <param name="target_feature" value="11"/>
181 <param name="model_type" value="classification"/> 202 <param name="model_type" value="classification"/>
203 <param name="best_model_metric" value="F1"/>
182 <param name="random_seed" value="42"/> 204 <param name="random_seed" value="42"/>
183 <param name="customize_defaults" value="true"/> 205 <param name="customize_defaults" value="true"/>
184 <param name="train_size" value="0.8"/> 206 <param name="train_size" value="0.8"/>
185 <param name="normalize" value="true"/> 207 <param name="normalize" value="true"/>
186 <param name="feature_selection" value="true"/> 208 <param name="feature_selection" value="true"/>
193 <output name="comparison_result"> 215 <output name="comparison_result">
194 <assert_contents> 216 <assert_contents>
195 <has_text text="Validation Summary" /> 217 <has_text text="Validation Summary" />
196 <has_text text="Test Summary" /> 218 <has_text text="Test Summary" />
197 <has_text text="Feature Importance" /> 219 <has_text text="Feature Importance" />
220 <has_text text="Best Model Metric" />
221 <has_text text="F1" />
198 </assert_contents> 222 </assert_contents>
199 </output> 223 </output>
200 <output name="best_model_csv" value="expected_best_model_classification_customized.csv" /> 224 <output name="best_model_csv" value="expected_best_model_classification_customized.csv" />
201 </test> 225 </test>
202 <test> 226 <test>
255 </test> 279 </test>
256 <test> 280 <test>
257 <param name="input_file" value="auto-mpg.tsv"/> 281 <param name="input_file" value="auto-mpg.tsv"/>
258 <param name="target_feature" value="1"/> 282 <param name="target_feature" value="1"/>
259 <param name="model_type" value="regression"/> 283 <param name="model_type" value="regression"/>
284 <param name="best_model_metric" value="RMSE"/>
260 <param name="random_seed" value="42"/> 285 <param name="random_seed" value="42"/>
261 <output name="model" file="expected_model_regression.h5" compare="sim_size" /> 286 <output name="model" file="expected_model_regression.h5" compare="sim_size" />
262 <output name="comparison_result"> 287 <output name="comparison_result">
263 <assert_contents> 288 <assert_contents>
264 <has_text text="Validation Summary" /> 289 <has_text text="Validation Summary" />
265 <has_text text="Test Summary" /> 290 <has_text text="Test Summary" />
266 <has_text text="Feature Importance" /> 291 <has_text text="Feature Importance" />
292 <has_text text="Best Model Metric" />
293 <has_text text="RMSE" />
267 </assert_contents> 294 </assert_contents>
268 </output> 295 </output>
269 <output name="best_model_csv" value="expected_best_model_regression.csv" /> 296 <output name="best_model_csv" value="expected_best_model_regression.csv" />
270 </test> 297 </test>
271 </tests> 298 </tests>