Mercurial > repos > goeckslab > tabular_learner
comparison tabular_learner.xml @ 9:e7dd78077b72 draft default tip
planemo upload for repository https://github.com/goeckslab/gleam commit 84d5cd0b1fa5c1ff0ad892bc39c95dad1ceb4920
| author | goeckslab |
|---|---|
| date | Sat, 08 Nov 2025 14:20:19 +0000 |
| parents | ba45bc057d70 |
| children |
comparison
equal
deleted
inserted
replaced
| 8:ba45bc057d70 | 9:e7dd78077b72 |
|---|---|
| 57 #end if | 57 #end if |
| 58 #if $has_test_file == "yes" | 58 #if $has_test_file == "yes" |
| 59 --test_file '$test_file' | 59 --test_file '$test_file' |
| 60 #end if | 60 #end if |
| 61 --model_type '$model_type' | 61 --model_type '$model_type' |
| 62 #if $best_model_metric | |
| 63 --best_model_metric '$best_model_metric' | |
| 64 #end if | |
| 62 ]]> | 65 ]]> |
| 63 </command> | 66 </command> |
| 64 <inputs> | 67 <inputs> |
| 65 <param name="input_file" type="data" format="csv,tabular" label="Tabular Input Dataset" /> | 68 <param name="input_file" type="data" format="csv,tabular" label="Tabular Input Dataset" /> |
| 66 <conditional name="test_data_choice"> | 69 <conditional name="test_data_choice"> |
| 102 <option value="et">Extra Trees Classifier</option> | 105 <option value="et">Extra Trees Classifier</option> |
| 103 <option value="xgboost">Extreme Gradient Boosting</option> | 106 <option value="xgboost">Extreme Gradient Boosting</option> |
| 104 <option value="lightgbm">Light Gradient Boosting Machine</option> | 107 <option value="lightgbm">Light Gradient Boosting Machine</option> |
| 105 <option value="catboost">CatBoost Classifier</option> | 108 <option value="catboost">CatBoost Classifier</option> |
| 106 </param> | 109 </param> |
| 110 <param name="best_model_metric" type="select" label="Select metric to pick the best model" help="PyCaret will rank models by this metric. Default is Accuracy."> | |
| 111 <option value="Accuracy" selected="true">Accuracy</option> | |
| 112 <option value="AUC">ROC-AUC</option> | |
| 113 <option value="Precision">Precision</option> | |
| 114 <option value="Recall">Recall</option> | |
| 115 <option value="F1">F1</option> | |
| 116 <option value="Kappa">Cohen’s Kappa</option> | |
| 117 <option value="Log Loss">Log Loss (lower is better)</option> | |
| 118 <option value="PR-AUC-Weighted">PR-AUC (weighted)</option> | |
| 119 </param> | |
| 107 </when> | 120 </when> |
| 108 <when value="regression"> | 121 <when value="regression"> |
| 109 <param name="regression_models" type="select" multiple="true" label="Only Select Regression Models if you don't want to compare all models"> | 122 <param name="regression_models" type="select" multiple="true" label="Only Select Regression Models if you don't want to compare all models"> |
| 110 <option value="lr">Linear Regression</option> | 123 <option value="lr">Linear Regression</option> |
| 111 <option value="lasso">Lasso Regression</option> | 124 <option value="lasso">Lasso Regression</option> |
| 130 <option value="gbr">Gradient Boosting Regressor</option> | 143 <option value="gbr">Gradient Boosting Regressor</option> |
| 131 <option value="mlp">MLP Regressor</option> | 144 <option value="mlp">MLP Regressor</option> |
| 132 <option value="xgboost">Extreme Gradient Boosting</option> | 145 <option value="xgboost">Extreme Gradient Boosting</option> |
| 133 <option value="lightgbm">Light Gradient Boosting Machine</option> | 146 <option value="lightgbm">Light Gradient Boosting Machine</option> |
| 134 <option value="catboost">CatBoost Regressor</option> | 147 <option value="catboost">CatBoost Regressor</option> |
| 148 </param> | |
| 149 <param name="best_model_metric" type="select" label="Select metric to pick the best model" help="PyCaret will rank models by this metric. Default is R²."> | |
| 150 <option value="R2" selected="true">R²</option> | |
| 151 <option value="MAE">MAE</option> | |
| 152 <option value="MSE">MSE</option> | |
| 153 <option value="RMSE">RMSE</option> | |
| 154 <option value="RMSLE">RMSLE</option> | |
| 155 <option value="MAPE">MAPE</option> | |
| 135 </param> | 156 </param> |
| 136 </when> | 157 </when> |
| 137 </conditional> | 158 </conditional> |
| 138 <param name="tune_model" type="boolean" truevalue="True" falsevalue="False" label="Tune hyperparameters" help="Hyperparameter tuning on the best model" /> | 159 <param name="tune_model" type="boolean" truevalue="True" falsevalue="False" label="Tune hyperparameters" help="Hyperparameter tuning on the best model" /> |
| 139 <param name="random_seed" type="integer" value="42" label="Random Seed" help="Random seed for reproducibility." /> | 160 <param name="random_seed" type="integer" value="42" label="Random Seed" help="Random seed for reproducibility." /> |
| 177 <tests> | 198 <tests> |
| 178 <test> | 199 <test> |
| 179 <param name="input_file" value="pcr.tsv"/> | 200 <param name="input_file" value="pcr.tsv"/> |
| 180 <param name="target_feature" value="11"/> | 201 <param name="target_feature" value="11"/> |
| 181 <param name="model_type" value="classification"/> | 202 <param name="model_type" value="classification"/> |
| 203 <param name="best_model_metric" value="F1"/> | |
| 182 <param name="random_seed" value="42"/> | 204 <param name="random_seed" value="42"/> |
| 183 <param name="customize_defaults" value="true"/> | 205 <param name="customize_defaults" value="true"/> |
| 184 <param name="train_size" value="0.8"/> | 206 <param name="train_size" value="0.8"/> |
| 185 <param name="normalize" value="true"/> | 207 <param name="normalize" value="true"/> |
| 186 <param name="feature_selection" value="true"/> | 208 <param name="feature_selection" value="true"/> |
| 193 <output name="comparison_result"> | 215 <output name="comparison_result"> |
| 194 <assert_contents> | 216 <assert_contents> |
| 195 <has_text text="Validation Summary" /> | 217 <has_text text="Validation Summary" /> |
| 196 <has_text text="Test Summary" /> | 218 <has_text text="Test Summary" /> |
| 197 <has_text text="Feature Importance" /> | 219 <has_text text="Feature Importance" /> |
| 220 <has_text text="Best Model Metric" /> | |
| 221 <has_text text="F1" /> | |
| 198 </assert_contents> | 222 </assert_contents> |
| 199 </output> | 223 </output> |
| 200 <output name="best_model_csv" value="expected_best_model_classification_customized.csv" /> | 224 <output name="best_model_csv" value="expected_best_model_classification_customized.csv" /> |
| 201 </test> | 225 </test> |
| 202 <test> | 226 <test> |
| 255 </test> | 279 </test> |
| 256 <test> | 280 <test> |
| 257 <param name="input_file" value="auto-mpg.tsv"/> | 281 <param name="input_file" value="auto-mpg.tsv"/> |
| 258 <param name="target_feature" value="1"/> | 282 <param name="target_feature" value="1"/> |
| 259 <param name="model_type" value="regression"/> | 283 <param name="model_type" value="regression"/> |
| 284 <param name="best_model_metric" value="RMSE"/> | |
| 260 <param name="random_seed" value="42"/> | 285 <param name="random_seed" value="42"/> |
| 261 <output name="model" file="expected_model_regression.h5" compare="sim_size" /> | 286 <output name="model" file="expected_model_regression.h5" compare="sim_size" /> |
| 262 <output name="comparison_result"> | 287 <output name="comparison_result"> |
| 263 <assert_contents> | 288 <assert_contents> |
| 264 <has_text text="Validation Summary" /> | 289 <has_text text="Validation Summary" /> |
| 265 <has_text text="Test Summary" /> | 290 <has_text text="Test Summary" /> |
| 266 <has_text text="Feature Importance" /> | 291 <has_text text="Feature Importance" /> |
| 292 <has_text text="Best Model Metric" /> | |
| 293 <has_text text="RMSE" /> | |
| 267 </assert_contents> | 294 </assert_contents> |
| 268 </output> | 295 </output> |
| 269 <output name="best_model_csv" value="expected_best_model_regression.csv" /> | 296 <output name="best_model_csv" value="expected_best_model_regression.csv" /> |
| 270 </test> | 297 </test> |
| 271 </tests> | 298 </tests> |
