Mercurial > repos > goeckslab > tabular_learner
diff tabular_learner.xml @ 4:11fdac5affb3 draft
planemo upload for repository https://github.com/goeckslab/gleam commit 8112548ac44b7a4769093d76c722c8fcdeaaef54
author | goeckslab |
---|---|
date | Fri, 25 Jul 2025 19:02:12 +0000 |
parents | f6a65e05d6ec |
children | 3d42f82b3c7f |
line wrap: on
line diff
--- a/tabular_learner.xml Wed Jul 09 01:12:48 2025 +0000 +++ b/tabular_learner.xml Fri Jul 25 19:02:12 2025 +0000 @@ -17,6 +17,9 @@ --models '$regression_models' #end if #end if + #if $tune_model + --tune_model + #end if #if $customize_defaults == "true" #if $train_size --train_size '$train_size' @@ -27,7 +30,7 @@ #if $feature_selection --feature_selection #end if - #if $enable_cross_validation == "true" + #if $enable_cross_validation == "true" --cross_validation #if $cross_validation_folds --cross_validation_folds '$cross_validation_folds' @@ -58,9 +61,9 @@ <inputs> <param name="input_file" type="data" format="csv,tabular" label="Tabular Input Dataset" /> <param name="test_file" type="data" format="csv,tabular" optional="true" label="Tabular Test Dataset" - help="If a test dataset is not provided, - the input dataset will be split into training, validation, and test sets. - If a test set is provided, the input dataset will be split into training and validation sets. + help="If a test dataset is not provided, + the input dataset will be split into training, validation, and test sets. + If a test set is provided, the input dataset will be split into training and validation sets. Cross-validation is applied by default during training." /> <param name="target_feature" multiple="false" type="data_column" use_header_names="true" data_ref="input_file" label="Select the target column:" /> <conditional name="model_selection"> @@ -120,6 +123,7 @@ </param> </when> </conditional> + <param name="tune_model" type="boolean" truevalue="True" falsevalue="False" label="Tune hyperparameters" help="Hyperparameter tuning on the best model" /> <param name="random_seed" type="integer" value="42" label="Random Seed" help="Random seed for reproducibility." /> <conditional name="advanced_settings"> <param name="customize_defaults" type="select" label="Customize Default Settings?" help="Select yes if you want to customize the default settings of the experiment."> @@ -174,8 +178,8 @@ <output name="model" file="expected_model_classification_customized.h5" compare="sim_size"/> <output name="comparison_result"> <assert_contents> - <has_text text="Validation Result Summary" /> - <has_text text="Test Results" /> + <has_text text="Validation Summary" /> + <has_text text="Test Summary" /> <has_text text="Feature Importance" /> </assert_contents> </output> @@ -196,8 +200,8 @@ <output name="model" file="expected_model_classification_customized_cross_off.h5" compare="sim_size"/> <output name="comparison_result"> <assert_contents> - <has_text text="Validation Result Summary" /> - <has_text text="Test Results" /> + <has_text text="Validation Summary" /> + <has_text text="Test Summary" /> <has_text text="Feature Importance" /> </assert_contents> </output> @@ -208,11 +212,27 @@ <param name="target_feature" value="11"/> <param name="model_type" value="classification"/> <param name="random_seed" value="42"/> + <param name="tune_model" value="true"/> <output name="model" file="expected_model_classification.h5" compare="sim_size"/> <output name="comparison_result"> <assert_contents> - <has_text text="Validation Result Summary" /> - <has_text text="Test Results" /> + <has_text text="Validation Summary" /> + <has_text text="Test Summary" /> + <has_text text="Feature Importance" /> + </assert_contents> + </output> + <output name="best_model_csv" value="expected_best_model_classification.csv" /> + </test> + <test> + <param name="input_file" value="pcr.tsv"/> + <param name="target_feature" value="11"/> + <param name="model_type" value="classification"/> + <param name="random_seed" value="42"/> + <output name="model" file="expected_model_classification.h5" compare="sim_size"/> + <output name="comparison_result"> + <assert_contents> + <has_text text="Validation Summary" /> + <has_text text="Test Summary" /> <has_text text="Feature Importance" /> </assert_contents> </output> @@ -226,8 +246,8 @@ <output name="model" file="expected_model_regression.h5" compare="sim_size" /> <output name="comparison_result"> <assert_contents> - <has_text text="Validation Result Summary" /> - <has_text text="Test Results" /> + <has_text text="Validation Summary" /> + <has_text text="Test Summary" /> <has_text text="Feature Importance" /> </assert_contents> </output>