Mercurial > repos > goeckslab > tabular_learner
diff tabular_learner.xml @ 5:3d42f82b3c7f draft
planemo upload for repository https://github.com/goeckslab/gleam commit 4a11e8a4c4e9daa884bddedfa47090476c517667
author | goeckslab |
---|---|
date | Thu, 31 Jul 2025 15:41:07 +0000 |
parents | 11fdac5affb3 |
children |
line wrap: on
line diff
--- a/tabular_learner.xml Fri Jul 25 19:02:12 2025 +0000 +++ b/tabular_learner.xml Thu Jul 31 15:41:07 2025 +0000 @@ -22,10 +22,10 @@ #end if #if $customize_defaults == "true" #if $train_size - --train_size '$train_size' + --train_size '$train_size' #end if #if $normalize - --normalize + --normalize #end if #if $feature_selection --feature_selection @@ -34,27 +34,30 @@ --cross_validation #if $cross_validation_folds --cross_validation_folds '$cross_validation_folds' - #end if + #end if #end if #if $enable_cross_validation == "false" --no_cross_validation #end if #if $remove_outliers - --remove_outliers + --remove_outliers #end if #if $remove_multicollinearity - --remove_multicollinearity + --remove_multicollinearity #end if #if $polynomial_features - --polynomial_features + --polynomial_features #end if #if $fix_imbalance - --fix_imbalance + --fix_imbalance + #end if + #if $probability_threshold + --probability_threshold '$probability_threshold' #end if #end if #if $test_file --test_file '$test_file' - #end if + #end if --model_type '$model_type' ]]> </command> @@ -150,6 +153,7 @@ <param name="remove_multicollinearity" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Remove Multicollinearity" help="Whether to remove multicollinear features before training." /> <param name="polynomial_features" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Polynomial Features" help="Whether to create polynomial features before training." /> <param name="fix_imbalance" type="boolean" truevalue="True" falsevalue="False" checked="false" label="Fix Imbalance" help="ONLY for classfication! Whether to use SMOTE or similar methods to fix imbalance in the input dataset." /> + <param name="probability_threshold" type="float" min="0.0" max="1.0" value="0.5" label="Classification Probability Threshold" help="Only applies to classification. Probability above which a prediction is considered positive. Default is 0.5." /> </when> <when value="false"> <!-- No additional parameters to show if the user selects 'No' --> @@ -175,6 +179,7 @@ <param name="cross_validation_folds" value="5"/> <param name="remove_outliers" value="true"/> <param name="remove_multicollinearity" value="true"/> + <param name="probability_threshold" value="0.4" /> <output name="model" file="expected_model_classification_customized.h5" compare="sim_size"/> <output name="comparison_result"> <assert_contents> @@ -197,6 +202,7 @@ <param name="enable_cross_validation" value="false"/> <param name="remove_outliers" value="true"/> <param name="remove_multicollinearity" value="true"/> + <param name="probability_threshold" value="0.6" /> <output name="model" file="expected_model_classification_customized_cross_off.h5" compare="sim_size"/> <output name="comparison_result"> <assert_contents>