Mercurial > repos > goeckslab > tabular_learner
diff tabular_learner.xml @ 3:f6a65e05d6ec draft
planemo upload for repository https://github.com/goeckslab/gleam commit b430f8b466655878c3bf63b053655fdbf039ddb0
author | goeckslab |
---|---|
date | Wed, 09 Jul 2025 01:12:48 +0000 |
parents | 77c88226bfde |
children | 11fdac5affb3 |
line wrap: on
line diff
--- a/tabular_learner.xml Wed Jul 02 18:59:39 2025 +0000 +++ b/tabular_learner.xml Wed Jul 09 01:12:48 2025 +0000 @@ -28,10 +28,13 @@ --feature_selection #end if #if $enable_cross_validation == "true" - --cross_validation + --cross_validation + #if $cross_validation_folds + --cross_validation_folds '$cross_validation_folds' + #end if #end if - #if $cross_validation_folds - --cross_validation_folds '$cross_validation_folds' + #if $enable_cross_validation == "false" + --no_cross_validation #end if #if $remove_outliers --remove_outliers @@ -183,6 +186,28 @@ <param name="target_feature" value="11"/> <param name="model_type" value="classification"/> <param name="random_seed" value="42"/> + <param name="customize_defaults" value="true"/> + <param name="train_size" value="0.8"/> + <param name="normalize" value="true"/> + <param name="feature_selection" value="true"/> + <param name="enable_cross_validation" value="false"/> + <param name="remove_outliers" value="true"/> + <param name="remove_multicollinearity" value="true"/> + <output name="model" file="expected_model_classification_customized_cross_off.h5" compare="sim_size"/> + <output name="comparison_result"> + <assert_contents> + <has_text text="Validation Result Summary" /> + <has_text text="Test Results" /> + <has_text text="Feature Importance" /> + </assert_contents> + </output> + <output name="best_model_csv" value="expected_best_model_classification_customized_cross_off.csv" /> + </test> + <test> + <param name="input_file" value="pcr.tsv"/> + <param name="target_feature" value="11"/> + <param name="model_type" value="classification"/> + <param name="random_seed" value="42"/> <output name="model" file="expected_model_classification.h5" compare="sim_size"/> <output name="comparison_result"> <assert_contents>