Mercurial > repos > goeckslab > vitessce_spatial
comparison gate_finder.py @ 0:9f60ef2d586e draft
planemo upload for repository https://github.com/goeckslab/tools-mti/tree/main/tools/vitessce commit 9b2dc921e692af8045773013d9f87d4d790e2ea1
| author | goeckslab |
|---|---|
| date | Thu, 08 Sep 2022 17:23:33 +0000 |
| parents | |
| children | 068da7f7cd83 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:9f60ef2d586e |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import warnings | |
| 4 from pathlib import Path | |
| 5 | |
| 6 import numpy as np | |
| 7 import pandas as pd | |
| 8 from anndata import read_h5ad | |
| 9 from sklearn.mixture import GaussianMixture | |
| 10 from sklearn.preprocessing import MinMaxScaler | |
| 11 from vitessce import ( | |
| 12 AnnDataWrapper, | |
| 13 Component as cm, | |
| 14 MultiImageWrapper, | |
| 15 OmeTiffWrapper, | |
| 16 VitessceConfig, | |
| 17 ) | |
| 18 | |
| 19 | |
| 20 # Generate binarized phenotype for a gate | |
| 21 def get_gate_phenotype(g, d): | |
| 22 dd = d.copy() | |
| 23 dd = np.where(dd < g, 0, dd) | |
| 24 np.warnings.filterwarnings('ignore') | |
| 25 dd = np.where(dd >= g, 1, dd) | |
| 26 return dd | |
| 27 | |
| 28 | |
| 29 def get_gmm_phenotype(data): | |
| 30 low = np.percentile(data, 0.01) | |
| 31 high = np.percentile(data, 99.99) | |
| 32 data = np.clip(data, low, high) | |
| 33 | |
| 34 sum = np.sum(data) | |
| 35 median = np.median(data) | |
| 36 data_med = data / sum * median | |
| 37 | |
| 38 data_log = np.log1p(data_med) | |
| 39 data_log = data_log.reshape(-1, 1) | |
| 40 | |
| 41 scaler = MinMaxScaler(feature_range=(0, 1)) | |
| 42 data_norm = scaler.fit_transform(data_log) | |
| 43 | |
| 44 gmm = GaussianMixture(n_components=2) | |
| 45 gmm.fit(data_norm) | |
| 46 gate = np.mean(gmm.means_) | |
| 47 | |
| 48 return get_gate_phenotype(gate, np.ravel(data_norm)) | |
| 49 | |
| 50 | |
| 51 def main(inputs, output, image, anndata, masks=None): | |
| 52 """ | |
| 53 Parameter | |
| 54 --------- | |
| 55 inputs : str | |
| 56 File path to galaxy tool parameter. | |
| 57 output : str | |
| 58 Output folder for saving web content. | |
| 59 image : str | |
| 60 File path to the OME Tiff image. | |
| 61 anndata : str | |
| 62 File path to anndata containing phenotyping info. | |
| 63 masks : str | |
| 64 File path to the image masks. | |
| 65 """ | |
| 66 warnings.simplefilter('ignore') | |
| 67 | |
| 68 with open(inputs, 'r') as param_handler: | |
| 69 params = json.load(param_handler) | |
| 70 | |
| 71 marker = params['marker'].strip() | |
| 72 from_gate = params['from_gate'] | |
| 73 to_gate = params['to_gate'] | |
| 74 increment = params['increment'] | |
| 75 x_coordinate = params['x_coordinate'].strip() or 'X_centroid' | |
| 76 y_coordinate = params['y_coordinate'].strip() or 'Y_centroid' | |
| 77 | |
| 78 adata = read_h5ad(anndata) | |
| 79 | |
| 80 # If no raw data is available make a copy | |
| 81 if adata.raw is None: | |
| 82 adata.raw = adata | |
| 83 | |
| 84 # Copy of the raw data if it exisits | |
| 85 if adata.raw is not None: | |
| 86 adata.X = adata.raw.X | |
| 87 | |
| 88 data = pd.DataFrame( | |
| 89 adata.X, | |
| 90 columns=adata.var.index, | |
| 91 index=adata.obs.index | |
| 92 ) | |
| 93 marker_values = data[[marker]].values | |
| 94 marker_values_log = np.log1p(marker_values) | |
| 95 | |
| 96 # Identify the list of increments | |
| 97 gate_names = [] | |
| 98 for num in np.arange(from_gate, to_gate, increment): | |
| 99 num = round(num, 3) | |
| 100 key = marker + '--' + str(num) | |
| 101 adata.obs[key] = get_gate_phenotype(num, marker_values_log) | |
| 102 gate_names.append(key) | |
| 103 | |
| 104 adata.obs['GMM_auto'] = get_gmm_phenotype(marker_values) | |
| 105 gate_names.append('GMM_auto') | |
| 106 | |
| 107 adata.obsm['XY_coordinate'] = adata.obs[[x_coordinate, y_coordinate]].values | |
| 108 | |
| 109 vc = VitessceConfig(name=None, description=None) | |
| 110 dataset = vc.add_dataset() | |
| 111 image_wrappers = [OmeTiffWrapper(img_path=image, name='OMETIFF')] | |
| 112 if masks: | |
| 113 image_wrappers.append( | |
| 114 OmeTiffWrapper(img_path=masks, name='MASKS', is_bitmask=True) | |
| 115 ) | |
| 116 dataset.add_object(MultiImageWrapper(image_wrappers)) | |
| 117 | |
| 118 dataset.add_object( | |
| 119 AnnDataWrapper( | |
| 120 adata, | |
| 121 spatial_centroid_obsm='XY_coordinate', | |
| 122 cell_set_obs=gate_names, | |
| 123 cell_set_obs_names=[obj[0].upper() + obj[1:] for obj in gate_names], | |
| 124 expression_matrix="X" | |
| 125 ) | |
| 126 ) | |
| 127 spatial = vc.add_view(dataset, cm.SPATIAL) | |
| 128 cellsets = vc.add_view(dataset, cm.CELL_SETS) | |
| 129 status = vc.add_view(dataset, cm.STATUS) | |
| 130 lc = vc.add_view(dataset, cm.LAYER_CONTROLLER) | |
| 131 genes = vc.add_view(dataset, cm.GENES) | |
| 132 cell_set_sizes = vc.add_view(dataset, cm.CELL_SET_SIZES) | |
| 133 cell_set_expression = vc.add_view(dataset, cm.CELL_SET_EXPRESSION) | |
| 134 | |
| 135 vc.layout( | |
| 136 (status / genes / cell_set_expression) | |
| 137 | (cellsets / cell_set_sizes / lc) | |
| 138 | (spatial) | |
| 139 ) | |
| 140 config_dict = vc.export(to='files', base_url='http://localhost', out_dir=output) | |
| 141 | |
| 142 with open(Path(output).joinpath('config.json'), 'w') as f: | |
| 143 json.dump(config_dict, f, indent=4) | |
| 144 | |
| 145 | |
| 146 if __name__ == '__main__': | |
| 147 aparser = argparse.ArgumentParser() | |
| 148 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 149 aparser.add_argument("-e", "--output", dest="output", required=True) | |
| 150 aparser.add_argument("-g", "--image", dest="image", required=True) | |
| 151 aparser.add_argument("-a", "--anndata", dest="anndata", required=True) | |
| 152 aparser.add_argument("-m", "--masks", dest="masks", required=False) | |
| 153 | |
| 154 args = aparser.parse_args() | |
| 155 | |
| 156 main(args.inputs, args.output, args.image, args.anndata, args.masks) |
