Mercurial > repos > greg > draw_amr_matrix
comparison draw_amr_matrix.py @ 17:eb86b4bf140e draft default tip
Uploaded
author | greg |
---|---|
date | Wed, 03 May 2023 15:13:12 +0000 |
parents | 7bd48449ee79 |
children |
comparison
equal
deleted
inserted
replaced
16:7bd48449ee79 | 17:eb86b4bf140e |
---|---|
9 | 9 |
10 import Bio.SeqIO | 10 import Bio.SeqIO |
11 import numpy | 11 import numpy |
12 import pandas | 12 import pandas |
13 import matplotlib.pyplot as pyplot | 13 import matplotlib.pyplot as pyplot |
14 | |
15 | |
16 def get_amr_in_feature_hits(amr_feature_hits): | |
17 for k in amr_feature_hits.keys(): | |
18 if k.lower().find('amr') >= 0: | |
19 return amr_feature_hits[k] | |
20 return None | |
21 | 14 |
22 | 15 |
23 def load_fasta(fasta_file): | 16 def load_fasta(fasta_file): |
24 sequence = pandas.Series(dtype=object) | 17 sequence = pandas.Series(dtype=object) |
25 for contig in Bio.SeqIO.parse(fasta_file, 'fasta'): | 18 for contig in Bio.SeqIO.parse(fasta_file, 'fasta'): |
75 else: | 68 else: |
76 ofh.write("\nEmpty feature file %s will NOT be processed\n" % os.path.basename(amr_feature_hits_file)) | 69 ofh.write("\nEmpty feature file %s will NOT be processed\n" % os.path.basename(amr_feature_hits_file)) |
77 best_hits = None | 70 best_hits = None |
78 amr_feature_hits[feature_name] = best_hits | 71 amr_feature_hits[feature_name] = best_hits |
79 | 72 |
80 amr_hits = get_amr_in_feature_hits(amr_feature_hits) | 73 # Process populated feature hits. |
81 ofh.write("\namr_hits:\n%s\n" % str(amr_hits)) | 74 for k in amr_feature_hits.keys(): |
82 if amr_hits is not None: | 75 if amr_feature_hits[k] is not None: |
83 amr_to_draw = pandas.DataFrame(columns=['gene', 'drug']) | 76 amr_hits = amr_feature_hits[k] |
84 ofh.write("\namr_to_draw:\n%s\n" % str(amr_to_draw)) | 77 ofh.write("\namr_hits:\n%s\n" % str(amr_hits)) |
85 # Read amr_drug_gene_file. | 78 amr_to_draw = pandas.DataFrame(columns=['gene', 'drug']) |
86 amr_gene_drug = pandas.read_csv(amr_gene_drug_file, index_col=None, sep='\t', quoting=csv.QUOTE_NONE, header=None) | 79 ofh.write("\namr_to_draw:\n%s\n" % str(amr_to_draw)) |
87 ofh.write("\namr_gene_drug:\n%s\n" % str(amr_gene_drug)) | 80 # Read amr_drug_gene_file. |
88 | 81 amr_gene_drug = pandas.read_csv(amr_gene_drug_file, index_col=None, sep='\t', quoting=csv.QUOTE_NONE, header=None) |
89 # Roll up AMR gene hits. | 82 ofh.write("\namr_gene_drug:\n%s\n" % str(amr_gene_drug)) |
90 ofh.write("\namr_hits.shape[0]: %s\n" % str(amr_hits.shape[0])) | 83 |
91 if amr_hits.shape[0] > 0: | 84 # Roll up AMR gene hits. |
92 for gene_idx, gene in amr_hits.iterrows(): | 85 ofh.write("\namr_hits.shape[0]: %s\n" % str(amr_hits.shape[0])) |
93 ofh.write("gene_idx: %s\n" % str(gene_idx)) | 86 if amr_hits.shape[0] > 0: |
94 ofh.write("gene: %s\n" % str(gene)) | 87 for gene_idx, gene in amr_hits.iterrows(): |
95 gene_name = gene[3] | 88 ofh.write("gene_idx: %s\n" % str(gene_idx)) |
96 ofh.write("gene_name: %s\n" % str(gene_name)) | 89 ofh.write("gene: %s\n" % str(gene)) |
97 ofh.write("amr_gene_drug[0]: %s\n" % str(amr_gene_drug[0])) | 90 gene_name = gene[3] |
98 drugs = amr_gene_drug.loc[amr_gene_drug[0] == gene_name, :][1] | 91 ofh.write("gene_name: %s\n" % str(gene_name)) |
99 ofh.write("drugs: %s\n" % str(drugs)) | 92 ofh.write("amr_gene_drug[0]: %s\n" % str(amr_gene_drug[0])) |
100 for drug in drugs: | 93 drugs = amr_gene_drug.loc[amr_gene_drug[0] == gene_name, :][1] |
101 amr_to_draw = amr_to_draw.append(pandas.Series([gene_name, drug], name=amr_to_draw.shape[0], index=amr_to_draw.columns)) | 94 ofh.write("drugs: %s\n" % str(drugs)) |
102 ofh.write("\amr_to_draw: %s\n" % str(amr_to_draw)) | 95 for drug in drugs: |
103 | 96 amr_to_draw = amr_to_draw.append(pandas.Series([gene_name, drug], name=amr_to_draw.shape[0], index=amr_to_draw.columns)) |
104 ofh.write("\nvarscan_vcf_file is None: %s\n" % str(varscan_vcf_file == 'None')) | 97 ofh.write("\amr_to_draw: %s\n" % str(amr_to_draw)) |
105 if varscan_vcf_file not in [None, 'None'] and os.path.getsize(varscan_vcf_file) > 0: | 98 |
106 amr_mutations = pandas.Series(dtype=object) | 99 ofh.write("\nvarscan_vcf_file is None: %s\n" % str(varscan_vcf_file == 'None')) |
107 if amr_mutation_regions_bed_file is not None: | 100 if varscan_vcf_file not in [None, 'None'] and os.path.getsize(varscan_vcf_file) > 0: |
108 mutation_regions = pandas.read_csv(amr_mutation_regions_bed_file, header=0, sep='\t', index_col=False) | 101 amr_mutations = pandas.Series(dtype=object) |
109 # Validate mutation regions. | 102 if amr_mutation_regions_bed_file is not None: |
110 if mutation_regions.shape[1] != 7: | 103 mutation_regions = pandas.read_csv(amr_mutation_regions_bed_file, header=0, sep='\t', index_col=False) |
111 efh.write("The selected mutations regions BED file is invalid, it should be a six column file.\n") | 104 # Validate mutation regions. |
112 elif mutation_regions.shape[0] == 0: | 105 if mutation_regions.shape[1] != 7: |
113 efh.write("There are no rows in the selected mutation regions file.\n") | 106 efh.write("The selected mutations regions BED file is invalid, it should be a six column file.\n") |
107 elif mutation_regions.shape[0] == 0: | |
108 efh.write("There are no rows in the selected mutation regions file.\n") | |
109 else: | |
110 for region_i in range(mutation_regions.shape[0]): | |
111 region = mutation_regions.iloc[region_i, :] | |
112 if region[0] not in reference: | |
113 efh.write("Mutation region '%s' not found in reference genome.\n" % str(region)) | |
114 break | |
115 if not isinstance(region[1], numpy.int64): | |
116 efh.write("Non-integer found in mutation region start (column 2): %s.\n" % str(region[1])) | |
117 break | |
118 if not isinstance(region[2], numpy.int64): | |
119 efh.write("Non-integer found in mutation region start (column 3): %s.\n" % str(region[2])) | |
120 break | |
121 if region[1] <= 0 or region[2] <= 0: | |
122 efh.write("Mutation region '%s' starts before the reference sequence.\n" % str(region)) | |
123 if region[1] > len(reference[region[0]].seq) or region[2] > len(reference[region[0]].seq): | |
124 efh.write("Mutation region '%s' ends after the reference sequence.\n" % str(region)) | |
125 if not region.get('type', default='No Type') in ['snp', 'small-indel', 'any']: | |
126 ofh.write("\n\nSkipping mutation region '%s' with invalid type '%s', valid types are 'snp', 'small-indel', 'any'.\n\n" % (str(region), str(region.get('type', default='No Type')))) | |
127 continue | |
128 ofh.write("\nFinding AMR mutations for %s.\n" % str(region['name'])) | |
129 region_bed = 'region_%s.bed' % region_i | |
130 ofh.write("region_bed: %s\n" % str(region_bed)) | |
131 mutation_regions.loc[[region_i], ].to_csv(path_or_buf=region_bed, sep='\t', header=False, index=False) | |
132 ofh.write("mutation_regions.loc[[region_i], ]:\n%s\n" % str(mutation_regions.loc[[region_i], ])) | |
133 region_mutations_tsv = os.path.join(mutation_regions_dir, 'region_%s_mutations.tsv' % region_i) | |
134 ofh.write("region_mutations_tsv: %s\n" % str(region_mutations_tsv)) | |
135 cmd = ' '.join(['bedtools intersect', | |
136 '-nonamecheck', | |
137 '-wb', | |
138 '-a', region_bed, | |
139 '-b', varscan_vcf_file, | |
140 ' | awk \'BEGIN{getline < "' + amr_mutation_regions_bed_file + '";printf $0"\\t";', | |
141 'getline < "' + varscan_vcf_file + '"; getline < "' + varscan_vcf_file + '";print $0}{print}\'', | |
142 '1>' + region_mutations_tsv]) | |
143 ofh.write("\ncmd:\n%s\n" % cmd) | |
144 run_command(cmd) | |
145 try: | |
146 ofh.write("After running command, os.path.getsize((region_mutations_tsv): %s\n" % str(os.path.getsize(region_mutations_tsv))) | |
147 region_mutations = pandas.read_csv(region_mutations_tsv, sep='\t', header=0, index_col=False) | |
148 ofh.write("\nregion_mutations: %s\n" % region_mutations) | |
149 except Exception: | |
150 continue | |
151 # Figure out what kind of mutations are in this region. | |
152 region_mutation_types = pandas.Series(['snp'] * region_mutations.shape[0], name='TYPE', index=region_mutations.index) | |
153 region_mutation_types[region_mutations['REF'].str.len() != region_mutations['ALT'].str.len()] = 'small-indel' | |
154 region_mutation_drugs = pandas.Series(region['drug'] * region_mutations.shape[0], name='DRUG', index=region_mutations.index) | |
155 region_notes = pandas.Series(region['note'] * region_mutations.shape[0], name='NOTE', index=region_mutations.index) | |
156 region_mutations = pandas.concat([region_mutations, region_mutation_types, region_mutation_drugs, region_notes], axis=1) | |
157 region_mutations = region_mutations[['#CHROM', 'POS', 'TYPE', 'REF', 'ALT', 'DRUG', 'NOTE']] | |
158 amr_mutations[region['name']] = region_mutations | |
114 else: | 159 else: |
115 for region_i in range(mutation_regions.shape[0]): | 160 ofh.write("\nMutation region BED file not received.\n") |
116 region = mutation_regions.iloc[region_i, :] | 161 ofh.write("\nAfter processing mutations, amr_mutations: %s\n" % str(amr_mutations)) |
117 if region[0] not in reference: | 162 # Roll up potentially resistance conferring mutations. |
118 efh.write("Mutation region '%s' not found in reference genome.\n" % str(region)) | 163 ofh.write("\n##### Rolling up potentially resistance conferring mutations..\n") |
119 break | 164 for mutation_region, mutation_hits in amr_mutations.iteritems(): |
120 if not isinstance(region[1], numpy.int64): | 165 ofh.write("mutation_region: %s\n" % str(mutation_region)) |
121 efh.write("Non-integer found in mutation region start (column 2): %s.\n" % str(region[1])) | 166 ofh.write("mutation_hits: %s\n" % str(mutation_hits)) |
122 break | 167 for mutation_idx, mutation_hit in mutation_hits.iterrows(): |
123 if not isinstance(region[2], numpy.int64): | 168 ofh.write("mutation_idx: %s\n" % str(mutation_idx)) |
124 efh.write("Non-integer found in mutation region start (column 3): %s.\n" % str(region[2])) | 169 ofh.write("mutation_hit: %s\n" % str(mutation_hit)) |
125 break | 170 mutation_name = mutation_region + ' ' + mutation_hit['REF'] + '->' + mutation_hit['ALT'] |
126 if region[1] <= 0 or region[2] <= 0: | 171 ofh.write("mutation_name: %s\n" % str(mutation_name)) |
127 efh.write("Mutation region '%s' starts before the reference sequence.\n" % str(region)) | 172 amr_to_draw = amr_to_draw.append(pandas.Series([mutation_name, mutation_hit['DRUG']], name=amr_to_draw.shape[0], index=amr_to_draw.columns)) |
128 if region[1] > len(reference[region[0]].seq) or region[2] > len(reference[region[0]].seq): | 173 ofh.write("\nAfter processing mutations, amr_to_draw: %s\n" % str(amr_to_draw)) |
129 efh.write("Mutation region '%s' ends after the reference sequence.\n" % str(region)) | 174 ofh.write("\nAfter processing mutations, amr_to_draw.shape[0]: %s\n" % str(amr_to_draw.shape[0])) |
130 if not region.get('type', default='No Type') in ['snp', 'small-indel', 'any']: | 175 |
131 ofh.write("\n\nSkipping mutation region '%s' with invalid type '%s', valid types are 'snp', 'small-indel', 'any'.\n\n" % (str(region), str(region.get('type', default='No Type')))) | 176 if amr_deletions_file not in [None, 'None'] and os.path.getsize(amr_deletions_file) > 0: |
132 continue | 177 # Roll up deletions that might confer resistance. |
133 ofh.write("\nFinding AMR mutations for %s.\n" % str(region['name'])) | 178 try: |
134 region_bed = 'region_%s.bed' % region_i | 179 amr_deletions = pandas.read_csv(filepath_or_buffer=amr_deletions_file, sep='\t', header=None) |
135 ofh.write("region_bed: %s\n" % str(region_bed)) | 180 except Exception: |
136 mutation_regions.loc[[region_i], ].to_csv(path_or_buf=region_bed, sep='\t', header=False, index=False) | 181 amr_deletions = pandas.DataFrame() |
137 ofh.write("mutation_regions.loc[[region_i], ]:\n%s\n" % str(mutation_regions.loc[[region_i], ])) | 182 if amr_deletions.shape[0] > 0: |
138 region_mutations_tsv = os.path.join(mutation_regions_dir, 'region_%s_mutations.tsv' % region_i) | 183 amr_deletions.columns = ['contig', 'start', 'stop', 'name', 'type', 'drug', 'note'] |
139 ofh.write("region_mutations_tsv: %s\n" % str(region_mutations_tsv)) | 184 amr_deletions = amr_deletions.loc[amr_deletions['type'].isin(['large-deletion', 'any']), :] |
140 cmd = ' '.join(['bedtools intersect', | 185 for deletion_idx, deleted_gene in amr_deletions.iterrows(): |
141 '-nonamecheck', | 186 amr_to_draw = amr_to_draw.append(pandas.Series(['\u0394' + deleted_gene[3], deleted_gene[5]], name=amr_to_draw.shape[0], index=amr_to_draw.columns)) |
142 '-wb', | 187 ofh.write("\nAfter processing deletions, amr_to_draw: %s\n" % str(amr_to_draw)) |
143 '-a', region_bed, | 188 |
144 '-b', varscan_vcf_file, | 189 ofh.write("\namr_to_draw.shape[0]: %s\n" % str(amr_to_draw.shape[0])) |
145 ' | awk \'BEGIN{getline < "' + amr_mutation_regions_bed_file + '";printf $0"\\t";', | 190 # I have no idea why, but when running functional tests with planemo |
146 'getline < "' + varscan_vcf_file + '"; getline < "' + varscan_vcf_file + '";print $0}{print}\'', | 191 # the value of amr_to_draw.shape[0] is 1 even though the tests use the |
147 '1>' + region_mutations_tsv]) | 192 # exact inputs when running outside of planeo that result in the value |
148 ofh.write("\ncmd:\n%s\n" % cmd) | 193 # being 2. So we cannot test with planemo unless we incorporate a hack |
149 run_command(cmd) | 194 # like a hidden in_test_mode parameter. |
150 try: | 195 if amr_to_draw.shape[0] > 1: |
151 ofh.write("After running command, os.path.getsize((region_mutations_tsv): %s\n" % str(os.path.getsize(region_mutations_tsv))) | 196 ofh.write("\nDrawing AMR matrix...\n") |
152 region_mutations = pandas.read_csv(region_mutations_tsv, sep='\t', header=0, index_col=False) | 197 present_genes = amr_to_draw['gene'].unique() |
153 ofh.write("\nregion_mutations: %s\n" % region_mutations) | 198 present_drugs = amr_to_draw['drug'].unique() |
154 except Exception: | 199 amr_matrix = pandas.DataFrame(0, index=present_genes, columns=present_drugs) |
155 continue | 200 for hit_idx, hit in amr_to_draw.iterrows(): |
156 # Figure out what kind of mutations are in this region. | 201 amr_matrix.loc[hit[0], hit[1]] = 1 |
157 region_mutation_types = pandas.Series(['snp'] * region_mutations.shape[0], name='TYPE', index=region_mutations.index) | 202 amr_matrix_png = os.path.join(amr_matrix_png_dir, 'amr_matrix.png') |
158 region_mutation_types[region_mutations['REF'].str.len() != region_mutations['ALT'].str.len()] = 'small-indel' | 203 int_matrix = amr_matrix[amr_matrix.columns].astype(int) |
159 region_mutation_drugs = pandas.Series(region['drug'] * region_mutations.shape[0], name='DRUG', index=region_mutations.index) | 204 figure, axis = pyplot.subplots() |
160 region_notes = pandas.Series(region['note'] * region_mutations.shape[0], name='NOTE', index=region_mutations.index) | 205 heatmap = axis.pcolor(int_matrix, cmap=pyplot.cm.Blues, linewidth=0) |
161 region_mutations = pandas.concat([region_mutations, region_mutation_types, region_mutation_drugs, region_notes], axis=1) | 206 axis.invert_yaxis() |
162 region_mutations = region_mutations[['#CHROM', 'POS', 'TYPE', 'REF', 'ALT', 'DRUG', 'NOTE']] | 207 axis.set_yticks(numpy.arange(0.5, len(amr_matrix.index)), minor=False) |
163 amr_mutations[region['name']] = region_mutations | 208 axis.set_yticklabels(int_matrix.index.values) |
209 axis.set_xticks(numpy.arange(0.5, len(amr_matrix.columns)), minor=False) | |
210 axis.set_xticklabels(amr_matrix.columns.values, rotation=90) | |
211 axis.xaxis.tick_top() | |
212 axis.xaxis.set_label_position('top') | |
213 pyplot.tight_layout() | |
214 pyplot.savefig(amr_matrix_png, dpi=300) | |
164 else: | 215 else: |
165 ofh.write("\nMutation region BED file not received.\n") | 216 ofh.write("\nEmpty AMR matrix, nothing to draw...\n") |
166 ofh.write("\nAfter processing mutations, amr_mutations: %s\n" % str(amr_mutations)) | |
167 # Roll up potentially resistance conferring mutations. | |
168 ofh.write("\n##### Rolling up potentially resistance conferring mutations..\n") | |
169 for mutation_region, mutation_hits in amr_mutations.iteritems(): | |
170 ofh.write("mutation_region: %s\n" % str(mutation_region)) | |
171 ofh.write("mutation_hits: %s\n" % str(mutation_hits)) | |
172 for mutation_idx, mutation_hit in mutation_hits.iterrows(): | |
173 ofh.write("mutation_idx: %s\n" % str(mutation_idx)) | |
174 ofh.write("mutation_hit: %s\n" % str(mutation_hit)) | |
175 mutation_name = mutation_region + ' ' + mutation_hit['REF'] + '->' + mutation_hit['ALT'] | |
176 ofh.write("mutation_name: %s\n" % str(mutation_name)) | |
177 amr_to_draw = amr_to_draw.append(pandas.Series([mutation_name, mutation_hit['DRUG']], name=amr_to_draw.shape[0], index=amr_to_draw.columns)) | |
178 ofh.write("\nAfter processing mutations, amr_to_draw: %s\n" % str(amr_to_draw)) | |
179 ofh.write("\nAfter processing mutations, amr_to_draw.shape[0]: %s\n" % str(amr_to_draw.shape[0])) | |
180 | |
181 if amr_deletions_file not in [None, 'None'] and os.path.getsize(amr_deletions_file) > 0: | |
182 # Roll up deletions that might confer resistance. | |
183 try: | |
184 amr_deletions = pandas.read_csv(filepath_or_buffer=amr_deletions_file, sep='\t', header=None) | |
185 except Exception: | |
186 amr_deletions = pandas.DataFrame() | |
187 if amr_deletions.shape[0] > 0: | |
188 amr_deletions.columns = ['contig', 'start', 'stop', 'name', 'type', 'drug', 'note'] | |
189 amr_deletions = amr_deletions.loc[amr_deletions['type'].isin(['large-deletion', 'any']), :] | |
190 for deletion_idx, deleted_gene in amr_deletions.iterrows(): | |
191 amr_to_draw = amr_to_draw.append(pandas.Series(['\u0394' + deleted_gene[3], deleted_gene[5]], name=amr_to_draw.shape[0], index=amr_to_draw.columns)) | |
192 ofh.write("\nAfter processing deletions, amr_to_draw: %s\n" % str(amr_to_draw)) | |
193 | |
194 ofh.write("\namr_to_draw.shape[0]: %s\n" % str(amr_to_draw.shape[0])) | |
195 # I have no idea why, but when running functional tests with planemo | |
196 # the value of amr_to_draw.shape[0] is 1 even though the tests use the | |
197 # exact inputs when running outside of planeo that result in the value | |
198 # being 2. So we cannot test with planemo unless we incorporate a hack | |
199 # like a hidden in_test_mode parameter. | |
200 if amr_to_draw.shape[0] > 1: | |
201 ofh.write("\nDrawing AMR matrix...\n") | |
202 present_genes = amr_to_draw['gene'].unique() | |
203 present_drugs = amr_to_draw['drug'].unique() | |
204 amr_matrix = pandas.DataFrame(0, index=present_genes, columns=present_drugs) | |
205 for hit_idx, hit in amr_to_draw.iterrows(): | |
206 amr_matrix.loc[hit[0], hit[1]] = 1 | |
207 amr_matrix_png = os.path.join(amr_matrix_png_dir, 'amr_matrix.png') | |
208 int_matrix = amr_matrix[amr_matrix.columns].astype(int) | |
209 figure, axis = pyplot.subplots() | |
210 heatmap = axis.pcolor(int_matrix, cmap=pyplot.cm.Blues, linewidth=0) | |
211 axis.invert_yaxis() | |
212 axis.set_yticks(numpy.arange(0.5, len(amr_matrix.index)), minor=False) | |
213 axis.set_yticklabels(int_matrix.index.values) | |
214 axis.set_xticks(numpy.arange(0.5, len(amr_matrix.columns)), minor=False) | |
215 axis.set_xticklabels(amr_matrix.columns.values, rotation=90) | |
216 axis.xaxis.tick_top() | |
217 axis.xaxis.set_label_position('top') | |
218 pyplot.tight_layout() | |
219 pyplot.savefig(amr_matrix_png, dpi=300) | |
220 else: | |
221 ofh.write("\nEmpty AMR matrix, nothing to draw...\n") | |
222 efh.close() | 217 efh.close() |
223 ofh.close() | 218 ofh.close() |
224 | 219 |
225 | 220 |
226 if __name__ == '__main__': | 221 if __name__ == '__main__': |