Mercurial > repos > greg > draw_amr_matrix
diff draw_amr_matrix.py @ 4:33a0ea992043 draft
Uploaded
author | greg |
---|---|
date | Tue, 21 Feb 2023 19:55:42 +0000 |
parents | 7d7884f2d921 |
children | caf554e039b2 |
line wrap: on
line diff
--- a/draw_amr_matrix.py Fri Feb 10 20:04:31 2023 +0000 +++ b/draw_amr_matrix.py Tue Feb 21 19:55:42 2023 +0000 @@ -3,7 +3,11 @@ import argparse import csv import os +import subprocess +import sys +import tempfile +import Bio.SeqIO import numpy import pandas import matplotlib.pyplot as pyplot @@ -16,7 +20,45 @@ return None -def draw_amr_matrix(amr_feature_hits_files, amr_deletions_file, amr_mutations_file, amr_gene_drug_file, output_dir): +def load_fasta(fasta_file): + sequence = pandas.Series(dtype=object) + for contig in Bio.SeqIO.parse(fasta_file, 'fasta'): + sequence[contig.id] = contig + return sequence + + +def run_command(cmd): + try: + tmp_name = tempfile.NamedTemporaryFile(dir=".").name + tmp_stderr = open(tmp_name, 'wb') + proc = subprocess.Popen(args=cmd, shell=True, stderr=tmp_stderr.fileno()) + returncode = proc.wait() + tmp_stderr.close() + if returncode != 0: + # Get stderr, allowing for case where it's very large. + tmp_stderr = open(tmp_name, 'rb') + stderr = '' + buffsize = 1048576 + try: + while True: + stderr += tmp_stderr.read(buffsize) + if not stderr or len(stderr) % buffsize != 0: + break + except OverflowError: + pass + tmp_stderr.close() + os.remove(tmp_name) + stop_err(stderr) + except Exception as e: + stop_err('Command:\n%s\n\nended with error:\n%s\n\n' % (cmd, str(e))) + + +def stop_err(msg): + sys.stderr.write(msg) + sys.exit(1) + + +def draw_amr_matrix(amr_feature_hits_files, amr_deletions_file, amr_mutations_file, amr_mutation_regions_file, amr_gene_drug_file, reference, reference_size, region_mutations_output_file, mutations_dir, output_dir): ofh = open('process_log', 'w') # Read amr_feature_hits_files. @@ -42,35 +84,80 @@ ofh.write("\namr_gene_drug:\n%s\n" % str(amr_gene_drug)) # Roll up AMR gene hits. - ofh.write("\namr_hits.shape[0]:%s\n" % str(amr_hits.shape[0])) + ofh.write("\namr_hits.shape[0]: %s\n" % str(amr_hits.shape[0])) if amr_hits.shape[0] > 0: for gene_idx, gene in amr_hits.iterrows(): - ofh.write("gene_idx:%s\n" % str(gene_idx)) - ofh.write("gene:%s\n" % str(gene)) + ofh.write("gene_idx: %s\n" % str(gene_idx)) + ofh.write("gene: %s\n" % str(gene)) gene_name = gene[3] ofh.write("gene_name: %s\n" % str(gene_name)) ofh.write("amr_gene_drug[0]: %s\n" % str(amr_gene_drug[0])) drugs = amr_gene_drug.loc[amr_gene_drug[0] == gene_name, :][1] - ofh.write("drugs:%s\n" % str(drugs)) + ofh.write("drugs: %s\n" % str(drugs)) for drug in drugs: amr_to_draw = amr_to_draw.append(pandas.Series([gene_name, drug], name=amr_to_draw.shape[0], index=amr_to_draw.columns)) - ofh.write("\amr_to_draw:%s\n" % str(amr_to_draw)) + ofh.write("\amr_to_draw: %s\n" % str(amr_to_draw)) - if amr_mutations_file is not None: - # TODO: So far, no samples have produced mutations, so we haven't been able - # to produce a populated VarScan VCF file of mutations - https://github.com/appliedbinf/pima_md/blob/main/pima.py#L2923. - # The call_amr_mutations Galaxy tool will currently produce this VarScan VCF file, but we need a sample that - # will produce a populated file. After we find one, we'll need to figure out how to implement this loop - # https://github.com/appliedbinf/pima_md/blob/main/pima.py#L2925 in a Galaxy tool so that the VarScan VCF - # file will be converted to the TSV amr_mutations_file that thsi tool expects. - amr_mutations = pandas.DataFrame() + ofh.write("\namr_mutations_file si None: %s\n" % str(amr_mutations_file == 'None')) + if amr_mutations_file not in [None, 'None'] and os.path.getsize(amr_mutations_file) > 0: + amr_mutations = pandas.Series(dtype=object) + if amr_mutation_regions_file is not None: + mutation_regions = pandas.read_csv(amr_mutation_regions_file, header=0, sep='\t', index_col=False) + if mutation_regions.shape[1] != 7: + ofh.write("\nMutation regions should be a six column file.\n") + elif mutation_regions.shape[0] == 0: + ofh.write("\nNo rows in mutation regions file.\n") + else: + # Make sure the positions in the BED file fall within the chromosomes provided in the reference sequence. + for mutation_region in range(mutation_regions.shape[0]): + mutation_region = mutation_regions.iloc[mutation_region, :] + if not (mutation_region[0] in reference): + ofh.write("\nMutation region :%s not found in reference genome.\n" % ' '.join(mutation_region.astype(str))) + continue + if not isinstance(mutation_region[1], numpy.int64): + ofh.write("\nNon-integer found in mutation region start (column 2): %s.\n" % str(mutation_region[1])) + break + elif not isinstance(mutation_region[2], numpy.int64): + ofh.write("\nNon-integer found in mutation region start (column 3): %s.\n" % str(mutation_region[2])) + break + if mutation_region[1] <= 0 or mutation_region[2] <= 0: + ofh.write("\nMutation region %s starts before the reference sequence.\n" % ' '.join(mutation_region.astype(str))) + if mutation_region[1] > len(reference[mutation_region[0]].seq) or mutation_region[2] > len(reference[mutation_region[0]].seq): + ofh.write("\nMutation region %s ends after the reference sequence.\n" % ' '.join(mutation_region.astype(str))) + for region_i in range(mutation_regions.shape[0]): + region = mutation_regions.iloc[region_i, :] + if not region.get('type', default='No Type') in ['snp', 'small-indel', 'any']: + continue + ofh.write("\nFinding AMR mutations for %s.\n" % str(region['name'])) + region_dir = os.path.join(mutations_dir, 'region_' + str(region_i)) + os.mkdir(region_dir) + region_bed = os.path.join(region_dir, 'region.bed') + mutation_regions.loc[[region_i], ].to_csv(path_or_buf=region_bed, sep='\t', header=False, index=False) + cmd = "bedtools intersect -nonamecheck -wb -a '%s' -b '%s' | awk '{BEGIN{getline < \"%s\" ;printf $0\"\t\";getline < \"%s\"; getline < \"%s\";print $0}{print}' > %s" % (region_bed, amr_mutations_file, amr_mutation_regions_file, amr_mutations_file, amr_mutations_file, region_mutations_output_file) + run_command(cmd) + try: + region_mutations = pandas.read_csv(region_mutations_output_file, sep='\t', header=0, index_col=False) + except Exception: + region_mutations = pandas.DataFrame() + if region_mutations.shape[0] == 0: + continue + # Figure out what kind of mutations are in this region. + region_mutation_types = pandas.Series(['snp'] * region_mutations.shape[0], name='TYPE', index=region_mutations.index) + region_mutation_types[region_mutations['REF'].str.len() != region_mutations['ALT'].str.len()] = 'small-indel' + region_mutation_drugs = pandas.Series(region['drug'] * region_mutations.shape[0], name='DRUG', index=region_mutations.index) + region_notes = pandas.Series(region['note'] * region_mutations.shape[0], name='NOTE', index=region_mutations.index) + region_mutations = pandas.concat([region_mutations, region_mutation_types, region_mutation_drugs, region_notes], axis=1) + region_mutations = region_mutations[['#CHROM', 'POS', 'TYPE', 'REF', 'ALT', 'DRUG', 'NOTE']] + amr_mutations[region['name']] = region_mutations + else: + ofh.write("\nMutation region BED not received.\n") # Roll up potentially resistance conferring mutations. for mutation_region, mutation_hits in amr_mutations.iteritems(): for mutation_idx, mutation_hit in mutation_hits.iterrows(): mutation_name = mutation_region + ' ' + mutation_hit['REF'] + '->' + mutation_hit['ALT'] amr_to_draw = amr_to_draw.append(pandas.Series([mutation_name, mutation_hit['DRUG']], name=amr_to_draw.shape[0], index=amr_to_draw.columns)) - if amr_deletions_file is not None: + if amr_deletions_file not in [None, 'None'] and os.path.getsize(amr_deletions_file) > 0: # TODO: So far, no samples have produced deletions, but we do have all the pices in place # within the workflow to receive the amr_deletions_file here, although it is currently # always empty... @@ -115,12 +202,16 @@ parser.add_argument('--amr_feature_hits_dir', action='store', dest='amr_feature_hits_dir', help='Directory of tabular files containing feature hits') parser.add_argument('--amr_deletions_file', action='store', dest='amr_deletions_file', default=None, help='AMR deletions BED file') parser.add_argument('--amr_mutations_file', action='store', dest='amr_mutations_file', default=None, help='AMR mutations TSV file') + parser.add_argument('--amr_mutation_regions_file', action='store', dest='amr_mutation_regions_file', default=None, help='AMR mutation regions BED file') parser.add_argument('--amr_gene_drug_file', action='store', dest='amr_gene_drug_file', help='AMR_gene_drugs tsv file') + parser.add_argument('--reference_genome', action='store', dest='reference_genome', help='Reference genome fasta file') + parser.add_argument('--region_mutations_output_file', action='store', dest='region_mutations_output_file', default=None, help='Region mutations TSV output file') + parser.add_argument('--mutations_dir', action='store', dest='mutations_dir', help='Mutations directory') parser.add_argument('--output_dir', action='store', dest='output_dir', help='Output directory') args = parser.parse_args() - # Get thge collection of feature hits files. The collection + # Get the collection of feature hits files. The collection # will be sorted alphabetically and will contain 2 files # named something like AMR_CDS_311_2022_12_20.fasta and # Incompatibility_Groups_2023_01_01.fasta. @@ -129,4 +220,10 @@ file_path = os.path.abspath(os.path.join(args.amr_feature_hits_dir, file_name)) amr_feature_hits_files.append(file_path) - draw_amr_matrix(amr_feature_hits_files, args.amr_deletions_file, args.amr_mutations_file, args.amr_gene_drug_file, args.output_dir) + # Load the reference genome into memory. + reference = load_fasta(args.reference_genome) + reference_size = 0 + for i in reference: + reference_size += len(i.seq) + + draw_amr_matrix(amr_feature_hits_files, args.amr_deletions_file, args.amr_mutations_file, args.amr_mutation_regions_file, args.amr_gene_drug_file, reference, reference_size, args.region_mutations_output_file, args.mutations_dir, args.output_dir)