0
|
1 #!/usr/bin/env Rscript
|
|
2
|
|
3 suppressPackageStartupMessages(library("optparse"))
|
|
4
|
|
5 option_list <- list(
|
|
6 make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"),
|
|
7 make_option(c("-b", "--adult_accum"), action="store", dest="adult_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"),
|
|
8 make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"),
|
|
9 make_option(c("-d", "--latitude"), action="store", dest="latitude", type="double", help="Latitude of selected location"),
|
|
10 make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"),
|
|
11 make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"),
|
|
12 make_option(c("-i", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"),
|
|
13 make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"),
|
|
14 make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"),
|
|
15 make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"),
|
|
16 make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
|
|
17 make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
|
|
18 make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
|
|
19 make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"),
|
|
20 make_option(c("-u", "--year"), action="store", dest="year", type="integer", help="Starting year"),
|
|
21 make_option(c("-v", "--temperature_dataset"), action="store", dest="temperature_dataset", help="Temperature data for selected location"),
|
|
22 make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)")
|
|
23 )
|
|
24
|
|
25 parser <- OptionParser(usage="%prog [options] file", option_list=option_list)
|
|
26 args <- parse_args(parser, positional_arguments=TRUE)
|
|
27 opt <- args$options
|
|
28
|
|
29 data.input=function(loc, year, temperature.dataset)
|
|
30 {
|
|
31 expdata <- matrix(rep(0, 365 * 3), nrow=365)
|
|
32 namedat <- paste(loc, year, ".Rdat", sep="")
|
|
33 temp.data <- read.csv(file=temperature.dataset, header=T)
|
|
34
|
|
35 expdata[,1] <- c(1:365)
|
|
36 # Minimum
|
|
37 expdata[,2] <- temp.data[c(1:365), 3]
|
|
38 # Maximum
|
|
39 expdata[,3] <- temp.data[c(1:365), 2]
|
|
40 save(expdata, file=namedat)
|
|
41 namedat
|
|
42 }
|
|
43
|
|
44 daylength=function(latitude)
|
|
45 {
|
|
46 # from Forsythe 1995
|
|
47 p=0.8333
|
|
48 dl <- NULL
|
|
49 for (i in 1:365) {
|
|
50 theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (i - 186)))
|
|
51 phi <- asin(0.39795 * cos(theta))
|
|
52 dl[i] <- 24 - 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi)))
|
|
53 }
|
|
54 dl # return a vector of daylength in 365 days
|
|
55 }
|
|
56
|
|
57 hourtemp=function(latitude, date, temperature_file_path)
|
|
58 {
|
|
59 load(temperature_file_path)
|
|
60 threshold <- 14.17 # base development threshold for BMSB
|
|
61 dnp <- expdata[date, 2] # daily minimum
|
|
62 dxp <- expdata[date, 3] # daily maximum
|
|
63 dmean <- 0.5 * (dnp + dxp)
|
|
64 dd <- 0 # initialize degree day accumulation
|
|
65
|
|
66 if (dxp<threshold) {
|
|
67 dd <- 0
|
|
68 }
|
|
69 else {
|
|
70 dlprofile <- daylength(latitude) # extract daylength data for entire year
|
|
71 T <- NULL # initialize hourly temperature
|
|
72 dh <- NULL #initialize degree hour vector
|
|
73 # date <- 200
|
|
74 y <- dlprofile[date] # calculate daylength in given date
|
|
75 z <- 24 - y # night length
|
|
76 a <- 1.86 # lag coefficient
|
|
77 b <- 2.20 # night coefficient
|
|
78 #tempdata <- read.csv("tempdata.csv") #import raw data set
|
|
79 # Should be outside function otherwise its redundant
|
|
80 risetime <- 12 - y / 2 # sunrise time
|
|
81 settime <- 12 + y / 2 # sunset time
|
|
82 ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp
|
|
83 for (i in 1:24) {
|
|
84 if (i > risetime && i<settime) {
|
|
85 m <- i - 5 # number of hours after Tmin until sunset
|
|
86 T[i]=(dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp
|
|
87 if (T[i]<8.4) {
|
|
88 dh[i] <- 0
|
|
89 }
|
|
90 else {
|
|
91 dh[i] <- T[i] - 8.4
|
|
92 }
|
|
93 }
|
|
94 else if (i > settime) {
|
|
95 n <- i - settime
|
|
96 T[i]=dnp + (ts - dnp) * exp( - b * n / z)
|
|
97 if (T[i]<8.4) {
|
|
98 dh[i] <- 0
|
|
99 }
|
|
100 else {
|
|
101 dh[i] <- T[i] - 8.4
|
|
102 }
|
|
103 }
|
|
104 else {
|
|
105 n <- i + 24 - settime
|
|
106 T[i]=dnp + (ts - dnp) * exp( - b * n / z)
|
|
107 if (T[i]<8.4) {
|
|
108 dh[i] <- 0
|
|
109 }
|
|
110 else {
|
|
111 dh[i] <- T[i] - 8.4
|
|
112 }
|
|
113 }
|
|
114 }
|
|
115 dd <- sum(dh) / 24
|
|
116 }
|
|
117 return=c(dmean, dd)
|
|
118 return
|
|
119 }
|
|
120
|
|
121 dev.egg = function(temperature)
|
|
122 {
|
|
123 dev.rate= -0.9843 * temperature + 33.438
|
|
124 return = dev.rate
|
|
125 return
|
|
126 }
|
|
127
|
|
128 dev.young = function(temperature)
|
|
129 {
|
|
130 n12 <- -0.3728 * temperature + 14.68
|
|
131 n23 <- -0.6119 * temperature + 25.249
|
|
132 dev.rate = mean(n12 + n23)
|
|
133 return = dev.rate
|
|
134 return
|
|
135 }
|
|
136
|
|
137 dev.old = function(temperature)
|
|
138 {
|
|
139 n34 <- -0.6119 * temperature + 17.602
|
|
140 n45 <- -0.4408 * temperature + 19.036
|
|
141 dev.rate = mean(n34 + n45)
|
|
142 return = dev.rate
|
|
143 return
|
|
144 }
|
|
145
|
|
146 dev.emerg = function(temperature)
|
|
147 {
|
|
148 emerg.rate <- -0.5332 * temperature + 24.147
|
|
149 return = emerg.rate
|
|
150 return
|
|
151 }
|
|
152
|
|
153 mortality.egg = function(temperature)
|
|
154 {
|
|
155 if (temperature < 12.7) {
|
|
156 mort.prob = 0.8
|
|
157 }
|
|
158 else {
|
|
159 mort.prob = 0.8 - temperature / 40.0
|
|
160 if (mort.prob < 0) {
|
|
161 mort.prob = 0.01
|
|
162 }
|
|
163 }
|
|
164 return = mort.prob
|
|
165 return
|
|
166 }
|
|
167
|
|
168 mortality.nymph = function(temperature)
|
|
169 {
|
|
170 if (temperature < 12.7) {
|
|
171 mort.prob = 0.03
|
|
172 }
|
|
173 else {
|
|
174 mort.prob = temperature * 0.0008 + 0.03
|
|
175 }
|
|
176 return = mort.prob
|
|
177 return
|
|
178 }
|
|
179
|
|
180 mortality.adult = function(temperature)
|
|
181 {
|
|
182 if (temperature < 12.7) {
|
|
183 mort.prob = 0.002
|
|
184 }
|
|
185 else {
|
|
186 mort.prob = temperature * 0.0005 + 0.02
|
|
187 }
|
|
188 return = mort.prob
|
|
189 return
|
|
190 }
|
|
191
|
|
192 cat("Replications: ", opt$replications, "\n")
|
|
193 cat("Photoperiod: ", opt$photoperiod, "\n")
|
|
194 cat("Oviposition rate: ", opt$oviposition, "\n")
|
|
195 cat("Egg mortality rate: ", opt$egg_mort, "\n")
|
|
196 cat("Nymph mortality rate: ", opt$nymph_mort, "\n")
|
|
197 cat("Adult mortality rate: ", opt$adult_mort, "\n")
|
|
198 cat("Min clutch size: ", opt$min_clutch_size, "\n")
|
|
199 cat("Max clutch size: ", opt$max_clutch_size, "\n")
|
|
200 cat("(egg->young nymph): ", opt$young_nymph_accum, "\n")
|
|
201 cat("(young nymph->old nymph): ", opt$old_nymph_accum, "\n")
|
|
202 cat("(old nymph->adult): ", opt$adult_accum, "\n")
|
|
203
|
|
204 # Read in the input temperature datafile
|
|
205 temperature_file_path <- data.input(opt$location, opt$year, opt$temperature_dataset)
|
|
206
|
|
207 # Initialize matrix for results from all replications
|
|
208 S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, 365 * opt$replications), ncol = opt$replications)
|
|
209 newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, 365 * opt$replications), ncol=opt$replications)
|
|
210
|
|
211 # loop through replications
|
|
212 for (N.rep in 1:opt$replications) {
|
|
213 # during each replication
|
|
214 # start with 1000 individuals -- user definable as well?
|
|
215 n <- 1000
|
|
216 # Generation, Stage, DD, T, Diapause
|
|
217 vec.ini <- c(0, 3, 0, 0, 0)
|
|
218 # overwintering, previttelogenic, DD=0, T=0, no-diapause
|
|
219 vec.mat <- rep(vec.ini, n)
|
|
220 # complete matrix for the population
|
|
221 vec.mat <- t(matrix(vec.mat, nrow=5))
|
|
222 # complete photoperiod profile in a year, requires daylength function
|
|
223 ph.p <- daylength(opt$latitude)
|
|
224
|
|
225 # time series of population size
|
|
226 tot.pop <- NULL
|
|
227 # gen.0 pop size
|
|
228 gen0.pop <- rep(0, 365)
|
|
229 gen1.pop <- rep(0, 365)
|
|
230 gen2.pop <- rep(0, 365)
|
|
231 S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, 365)
|
|
232 g0.adult <- g1.adult <- g2.adult <- rep(0, 365)
|
|
233 N.newborn <- N.death <- N.adult <- rep(0, 365)
|
|
234 dd.day <- rep(0, 365)
|
|
235
|
|
236 # start tick
|
|
237 ptm <- proc.time()
|
|
238
|
|
239 # all the days
|
|
240 for (day in 1:365) {
|
|
241 # photoperiod in the day
|
|
242 photoperiod <- ph.p[day]
|
|
243 temp.profile <- hourtemp(opt$latitude, day, temperature_file_path)
|
|
244 mean.temp <- temp.profile[1]
|
|
245 dd.temp <- temp.profile[2]
|
|
246 dd.day[day] <- dd.temp
|
|
247 # trash bin for death
|
|
248 death.vec <- NULL
|
|
249 # new born
|
|
250 birth.vec <- NULL
|
|
251
|
|
252 # all individuals
|
|
253 for (i in 1:n) {
|
|
254 # find individual record
|
|
255 vec.ind <- vec.mat[i,]
|
|
256 # first of all, still alive?
|
|
257 # adjustment for late season mortality rate
|
|
258 if (opt$latitude < 40.0) {
|
|
259 post.mort <- 1
|
|
260 day.kill <- 300
|
|
261 }
|
|
262 else {
|
|
263 post.mort <- 2
|
|
264 day.kill <- 250
|
|
265 }
|
|
266 if (vec.ind[2] == 0) {
|
|
267 # egg
|
|
268 death.prob = opt$egg_mort * mortality.egg(mean.temp)
|
|
269 }
|
|
270 else if (vec.ind[2] == 1 | vec.ind[2] == 2) {
|
|
271 death.prob = opt$nymph_mort * mortality.nymph(mean.temp)
|
|
272 }
|
|
273 else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) {
|
|
274 # for adult
|
|
275 if (day < day.kill) {
|
|
276 death.prob = opt$adult_mort * mortality.adult(mean.temp)
|
|
277 }
|
|
278 else {
|
|
279 # increase adult mortality after fall equinox
|
|
280 death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp)
|
|
281 }
|
|
282 }
|
|
283 # (or dependent on temperature and life stage?)
|
|
284 u.d <- runif(1)
|
|
285 if (u.d < death.prob) {
|
|
286 death.vec <- c(death.vec, i)
|
|
287 }
|
|
288 else {
|
|
289 # aggregrate index of dead bug
|
|
290 # event 1 end of diapause
|
|
291 if (vec.ind[1] == 0 && vec.ind[2] == 3) {
|
|
292 # overwintering adult (previttelogenic)
|
|
293 if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && day < 180) {
|
|
294 # add 68C to become fully reproductively matured
|
|
295 # transfer to vittelogenic
|
|
296 vec.ind <- c(0, 4, 0, 0, 0)
|
|
297 vec.mat[i,] <- vec.ind
|
|
298 }
|
|
299 else {
|
|
300 # add to DD
|
|
301 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
302 # add 1 day in current stage
|
|
303 vec.ind[4] <- vec.ind[4] + 1
|
|
304 vec.mat[i,] <- vec.ind
|
|
305 }
|
|
306 }
|
|
307 if (vec.ind[1] != 0 && vec.ind[2] == 3) {
|
|
308 # NOT overwintering adult (previttelogenic)
|
|
309 current.gen <- vec.ind[1]
|
|
310 if (vec.ind[3] > 68) {
|
|
311 # add 68C to become fully reproductively matured
|
|
312 # transfer to vittelogenic
|
|
313 vec.ind <- c(current.gen, 4, 0, 0, 0)
|
|
314 vec.mat[i,] <- vec.ind
|
|
315 }
|
|
316 else {
|
|
317 # add to DD
|
|
318 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
319 # add 1 day in current stage
|
|
320 vec.ind[4] <- vec.ind[4] + 1
|
|
321 vec.mat[i,] <- vec.ind
|
|
322 }
|
|
323 }
|
|
324
|
|
325 # event 2 oviposition -- where population dynamics comes from
|
|
326 if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10) {
|
|
327 # vittelogenic stage, overwintering generation
|
|
328 if (vec.ind[4] == 0) {
|
|
329 # just turned in vittelogenic stage
|
|
330 n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
|
|
331 }
|
|
332 else {
|
|
333 # daily probability of birth
|
|
334 p.birth = opt$oviposition * 0.01
|
|
335 u1 <- runif(1)
|
|
336 if (u1 < p.birth) {
|
|
337 n.birth=round(runif(1, 2, 8))
|
|
338 }
|
|
339 }
|
|
340 # add to DD
|
|
341 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
342 # add 1 day in current stage
|
|
343 vec.ind[4] <- vec.ind[4] + 1
|
|
344 vec.mat[i,] <- vec.ind
|
|
345 if (n.birth > 0) {
|
|
346 # add new birth -- might be in different generations
|
|
347 # generation + 1
|
|
348 new.gen <- vec.ind[1] + 1
|
|
349 # egg profile
|
|
350 new.ind <- c(new.gen, 0, 0, 0, 0)
|
|
351 new.vec <- rep(new.ind, n.birth)
|
|
352 # update batch of egg profile
|
|
353 new.vec <- t(matrix(new.vec, nrow=5))
|
|
354 # group with total eggs laid in that day
|
|
355 birth.vec <- rbind(birth.vec, new.vec)
|
|
356 }
|
|
357 }
|
|
358
|
|
359 # event 2 oviposition -- for gen 1.
|
|
360 if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && day < 222) {
|
|
361 # vittelogenic stage, 1st generation
|
|
362 if (vec.ind[4] == 0) {
|
|
363 # just turned in vittelogenic stage
|
|
364 n.birth=round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size))
|
|
365 }
|
|
366 else {
|
|
367 # daily probability of birth
|
|
368 p.birth = opt$oviposition * 0.01
|
|
369 u1 <- runif(1)
|
|
370 if (u1 < p.birth) {
|
|
371 n.birth = round(runif(1, 2, 8))
|
|
372 }
|
|
373 }
|
|
374 # add to DD
|
|
375 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
376 # add 1 day in current stage
|
|
377 vec.ind[4] <- vec.ind[4] + 1
|
|
378 vec.mat[i,] <- vec.ind
|
|
379 if (n.birth > 0) {
|
|
380 # add new birth -- might be in different generations
|
|
381 # generation + 1
|
|
382 new.gen <- vec.ind[1] + 1
|
|
383 # egg profile
|
|
384 new.ind <- c(new.gen, 0, 0, 0, 0)
|
|
385 new.vec <- rep(new.ind, n.birth)
|
|
386 # update batch of egg profile
|
|
387 new.vec <- t(matrix(new.vec, nrow=5))
|
|
388 # group with total eggs laid in that day
|
|
389 birth.vec <- rbind(birth.vec, new.vec)
|
|
390 }
|
|
391 }
|
|
392
|
|
393 # event 3 development (with diapause determination)
|
|
394 # event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg)
|
|
395 if (vec.ind[2] == 0) {
|
|
396 # egg stage
|
|
397 # add to DD
|
|
398 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
399 if (vec.ind[3] >= (68 + opt$young_nymph_accum)) {
|
|
400 # from egg to young nymph, DD requirement met
|
|
401 current.gen <- vec.ind[1]
|
|
402 # transfer to young nym stage
|
|
403 vec.ind <- c(current.gen, 1, 0, 0, 0)
|
|
404 }
|
|
405 else {
|
|
406 # add 1 day in current stage
|
|
407 vec.ind[4] <- vec.ind[4] + 1
|
|
408 }
|
|
409 vec.mat[i,] <- vec.ind
|
|
410 }
|
|
411
|
|
412 # event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause)
|
|
413 if (vec.ind[2] == 1) {
|
|
414 # young nymph stage
|
|
415 # add to DD
|
|
416 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
417 if (vec.ind[3] >= (250 + opt$old_nymph_accum)) {
|
|
418 # from young to old nymph, DD requirement met
|
|
419 current.gen <- vec.ind[1]
|
|
420 # transfer to old nym stage
|
|
421 vec.ind <- c(current.gen, 2, 0, 0, 0)
|
|
422 if (photoperiod < opt$photoperiod && day > 180) {
|
|
423 vec.ind[5] <- 1
|
|
424 } # prepare for diapausing
|
|
425 }
|
|
426 else {
|
|
427 # add 1 day in current stage
|
|
428 vec.ind[4] <- vec.ind[4] + 1
|
|
429 }
|
|
430 vec.mat[i,] <- vec.ind
|
|
431 }
|
|
432
|
|
433 # event 3.3 old nymph to adult: previttelogenic or diapausing?
|
|
434 if (vec.ind[2] == 2) {
|
|
435 # old nymph stage
|
|
436 # add to DD
|
|
437 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
438 if (vec.ind[3] >= (200 + opt$adult_accum)) {
|
|
439 # from old to adult, DD requirement met
|
|
440 current.gen <- vec.ind[1]
|
|
441 if (vec.ind[5] == 0) {
|
|
442 # non-diapausing adult -- previttelogenic
|
|
443 vec.ind <- c(current.gen, 3, 0, 0, 0)
|
|
444 }
|
|
445 else {
|
|
446 # diapausing
|
|
447 vec.ind <- c(current.gen, 5, 0, 0, 1)
|
|
448 }
|
|
449 }
|
|
450 else {
|
|
451 # add 1 day in current stage
|
|
452 vec.ind[4] <- vec.ind[4] + 1
|
|
453 }
|
|
454 vec.mat[i,] <- vec.ind
|
|
455 }
|
|
456
|
|
457 # event 4 growing of diapausing adult (unimportant, but still necessary)##
|
|
458 if (vec.ind[2] == 5) {
|
|
459 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
460 vec.ind[4] <- vec.ind[4] + 1
|
|
461 vec.mat[i,] <- vec.ind
|
|
462 }
|
|
463 } # else if it is still alive
|
|
464 } # end of the individual bug loop
|
|
465
|
|
466 # find how many died
|
|
467 n.death <- length(death.vec)
|
|
468 if (n.death > 0) {
|
|
469 vec.mat <- vec.mat[-death.vec, ]
|
|
470 }
|
|
471 # remove record of dead
|
|
472 # find how many new born
|
|
473 n.newborn <- length(birth.vec[,1])
|
|
474 vec.mat <- rbind(vec.mat, birth.vec)
|
|
475 # update population size for the next day
|
|
476 n <- n - n.death + n.newborn
|
|
477
|
|
478 # aggregate results by day
|
|
479 tot.pop <- c(tot.pop, n)
|
|
480 # egg
|
|
481 s0 <- sum(vec.mat[,2] == 0)
|
|
482 # young nymph
|
|
483 s1 <- sum(vec.mat[,2] == 1)
|
|
484 # old nymph
|
|
485 s2 <- sum(vec.mat[,2] == 2)
|
|
486 # previtellogenic
|
|
487 s3 <- sum(vec.mat[,2] == 3)
|
|
488 # vitellogenic
|
|
489 s4 <- sum(vec.mat[,2] == 4)
|
|
490 # diapausing
|
|
491 s5 <- sum(vec.mat[,2] == 5)
|
|
492 # overwintering adult
|
|
493 gen0 <- sum(vec.mat[,1] == 0)
|
|
494 # first generation
|
|
495 gen1 <- sum(vec.mat[,1] == 1)
|
|
496 # second generation
|
|
497 gen2 <- sum(vec.mat[,1] == 2)
|
|
498 # sum of all adults
|
|
499 n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5)
|
|
500 # gen.0 pop size
|
|
501 gen0.pop[day] <- gen0
|
|
502 gen1.pop[day] <- gen1
|
|
503 gen2.pop[day] <- gen2
|
|
504 S0[day] <- s0
|
|
505 S1[day] <- s1
|
|
506 S2[day] <- s2
|
|
507 S3[day] <- s3
|
|
508 S4[day] <- s4
|
|
509 S5[day] <- s5
|
|
510 g0.adult[day] <- sum(vec.mat[,1] == 0)
|
|
511 g1.adult[day] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5))
|
|
512 g2.adult[day] <- sum((vec.mat[,1]== 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5))
|
|
513
|
|
514 N.newborn[day] <- n.newborn
|
|
515 N.death[day] <- n.death
|
|
516 N.adult[day] <- n.adult
|
|
517 #print(c(N.rep, day, n, n.adult))
|
|
518 } # end of 365 days
|
|
519
|
|
520 dd.cum <- cumsum(dd.day)
|
|
521 # collect all the outputs
|
|
522 S0.rep[,N.rep] <- S0
|
|
523 S1.rep[,N.rep] <- S1
|
|
524 S2.rep[,N.rep] <- S2
|
|
525 S3.rep[,N.rep] <- S3
|
|
526 S4.rep[,N.rep] <- S4
|
|
527 S5.rep[,N.rep] <- S5
|
|
528 newborn.rep[,N.rep] <- N.newborn
|
|
529 death.rep[,N.rep] <- N.death
|
|
530 adult.rep[,N.rep] <- N.adult
|
|
531 pop.rep[,N.rep] <- tot.pop
|
|
532 g0.rep[,N.rep] <- gen0.pop
|
|
533 g1.rep[,N.rep] <- gen1.pop
|
|
534 g2.rep[,N.rep] <- gen2.pop
|
|
535 g0a.rep[,N.rep] <- g0.adult
|
|
536 g1a.rep[,N.rep] <- g1.adult
|
|
537 g2a.rep[,N.rep] <- g2.adult
|
|
538 }
|
|
539
|
|
540 # save(dd.day, dd.cum, S0.rep, S1.rep, S2.rep, S3.rep, S4.rep, S5.rep, newborn.rep, death.rep, adult.rep, pop.rep, g0.rep, g1.rep, g2.rep, g0a.rep, g1a.rep, g2a.rep, file=opt$output)
|
|
541 # maybe do not need to export this bit, but for now just leave it as-is
|
|
542 # do we need to export this Rdat file?
|
|
543
|
|
544 # Data analysis and visualization
|
|
545 # default: plot 1 year of result
|
|
546 # but can be expanded to accommodate multiple years
|
|
547 n.yr <- 1
|
|
548 day.all <- c(1:365 * n.yr)
|
|
549
|
|
550 # mean value for adults
|
|
551 sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean)
|
|
552 # mean value for nymphs
|
|
553 sn <- apply((S1.rep + S2.rep), 1,mean)
|
|
554 # mean value for eggs
|
|
555 se <- apply(S0.rep, 1, mean)
|
|
556 # mean value for P
|
|
557 g0 <- apply(g0.rep, 1, mean)
|
|
558 # mean value for F1
|
|
559 g1 <- apply(g1.rep, 1, mean)
|
|
560 # mean value for F2
|
|
561 g2 <- apply(g2.rep, 1, mean)
|
|
562 # mean value for P adult
|
|
563 g0a <- apply(g0a.rep, 1, mean)
|
|
564 # mean value for F1 adult
|
|
565 g1a <- apply(g1a.rep, 1, mean)
|
|
566 # mean value for F2 adult
|
|
567 g2a <- apply(g2a.rep, 1, mean)
|
|
568
|
|
569 # SE for adults
|
|
570 sa.se <- apply((S3.rep + S4.rep + S5.rep), 1, sd) / sqrt(opt$replications)
|
|
571 # SE for nymphs
|
|
572 sn.se <- apply((S1.rep + S2.rep) / sqrt(opt$replications), 1, sd)
|
|
573 # SE for eggs
|
|
574 se.se <- apply(S0.rep, 1, sd) / sqrt(opt$replications)
|
|
575 # SE value for P
|
|
576 g0.se <- apply(g0.rep, 1, sd) / sqrt(opt$replications)
|
|
577 # SE for F1
|
|
578 g1.se <- apply(g1.rep, 1, sd) / sqrt(opt$replications)
|
|
579 # SE for F2
|
|
580 g2.se <- apply(g2.rep, 1, sd) / sqrt(opt$replications)
|
|
581 # SE for P adult
|
|
582 g0a.se <- apply(g0a.rep, 1, sd) / sqrt(opt$replications)
|
|
583 # SE for F1 adult
|
|
584 g1a.se <- apply(g1a.rep, 1, sd) / sqrt(opt$replications)
|
|
585 # SE for F2 adult
|
|
586 g2a.se <- apply(g2a.rep, 1, sd) / sqrt(opt$replications)
|
|
587
|
|
588 dev.new(width=20, height=20)
|
|
589
|
|
590 # Start PDF device driver to save charts to output.
|
|
591 pdf(file=opt$output, height=20, width=20, bg="white")
|
|
592
|
|
593 par(mar = c(5, 6, 4, 4), mfrow=c(3, 1))
|
|
594
|
|
595 # Subfigure 2: population size by life stage
|
|
596 plot(day.all, sa, main = "BSMB Total Population Size by Life Stage", type = "l", ylim = c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
|
|
597 # Young and old nymphs
|
|
598 lines(day.all, sn, lwd = 2, lty = 1, col = 2)
|
|
599 # Eggs
|
|
600 lines(day.all, se, lwd = 2, lty = 1, col = 4)
|
|
601 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
|
|
602 axis(2, cex.axis = 2)
|
|
603 leg.text <- c("Egg", "Nymph", "Adult")
|
|
604 legend("topleft", leg.text, lty = c(1, 1, 1), col = c(4, 2, 1), cex = 2)
|
|
605 if (opt$se_plot == 1) {
|
|
606 # add SE lines to plot
|
|
607 # SE for adults
|
|
608 lines (day.all, sa + sa.se, lty = 2)
|
|
609 lines (day.all, sa - sa.se, lty = 2)
|
|
610 # SE for nymphs
|
|
611 lines (day.all, sn + sn.se, col = 2, lty = 2)
|
|
612 lines (day.all, sn - sn.se, col = 2, lty = 2)
|
|
613 # SE for eggs
|
|
614 lines (day.all, se + se.se, col = 4, lty = 2)
|
|
615 lines (day.all, se - se.se, col = 4, lty = 2)
|
|
616 }
|
|
617
|
|
618 # Subfigure 3: population size by generation
|
|
619 plot(day.all, g0, main = "BSMB Total Population Size by Generation", type = "l", ylim = c(0, max(g2)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
|
|
620 lines(day.all, g1, lwd = 2, lty = 1, col = 2)
|
|
621 lines(day.all, g2, lwd = 2, lty = 1, col = 4)
|
|
622 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
|
|
623 axis(2, cex.axis = 2)
|
|
624 leg.text <- c("P", "F1", "F2")
|
|
625 legend("topleft", leg.text, lty = c(1, 1, 1), col =c(1, 2, 4), cex = 2)
|
|
626 if (opt$se_plot == 1) {
|
|
627 # add SE lines to plot
|
|
628 # SE for adults
|
|
629 lines (day.all, g0 + g0.se, lty = 2)
|
|
630 lines (day.all, g0 - g0.se, lty = 2)
|
|
631 # SE for nymphs
|
|
632 lines (day.all, g1 + g1.se, col = 2, lty = 2)
|
|
633 lines (day.all, g1 - g1.se, col = 2, lty = 2)
|
|
634 # SE for eggs
|
|
635 lines (day.all, g2 + g2.se, col = 4, lty = 2)
|
|
636 lines (day.all, g2 - g2.se, col = 4, lty = 2)
|
|
637 }
|
|
638
|
|
639 # Subfigure 4: adult population size by generation
|
|
640 plot(day.all, g0a, ylim = c(0, max(g2a) + 100), main = "BSMB Adult Population Size by Generation", type = "l", axes = F, lwd = 2, xlab = "Year", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
|
|
641 lines(day.all, g1a, lwd = 2, lty = 1, col = 2)
|
|
642 lines(day.all, g2a, lwd = 2, lty = 1, col = 4)
|
|
643 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
|
|
644 axis(2, cex.axis = 2)
|
|
645 leg.text <- c("P", "F1", "F2")
|
|
646 legend("topleft", leg.text, lty = c(1, 1, 1), col = c(1, 2, 4), cex = 2)
|
|
647 if (opt$se_plot == 1) {
|
|
648 # add SE lines to plot
|
|
649 # SE for adults
|
|
650 lines (day.all, g0a + g0a.se, lty = 2)
|
|
651 lines (day.all, g0a - g0a.se, lty = 2)
|
|
652 # SE for nymphs
|
|
653 lines (day.all, g1a + g1a.se, col = 2, lty = 2)
|
|
654 lines (day.all, g1a - g1a.se, col = 2, lty = 2)
|
|
655 # SE for eggs
|
|
656 lines (day.all, g2a + g2a.se, col = 4, lty = 2)
|
|
657 lines (day.all, g2a - g2a.se, col = 4, lty = 2)
|
|
658 }
|
|
659
|
|
660 # Turn off device driver to flush output.
|
|
661 dev.off()
|