Mercurial > repos > greg > insect_phenology_model
view insect_phenology_model.R @ 55:8c2b9eb9f9af draft
Uploaded
author | greg |
---|---|
date | Fri, 02 Nov 2018 11:37:32 -0400 |
parents | 5bb1d76c29ca |
children | 829518206949 |
line wrap: on
line source
#!/usr/bin/env Rscript suppressPackageStartupMessages(library("optparse")) option_list <- list( make_option(c("--adult_mortality"), action="store", dest="adult_mortality", type="integer", help="Adjustment rate for adult mortality"), make_option(c("--adult_accumulation"), action="store", dest="adult_accumulation", type="integer", help="Adjustment of degree-days accumulation (old nymph->adult)"), make_option(c("--egg_mortality"), action="store", dest="egg_mortality", type="integer", help="Adjustment rate for egg mortality"), make_option(c("--input_norm"), action="store", dest="input_norm", help="30 year normals temperature data for selected station"), make_option(c("--input_ytd"), action="store", dest="input_ytd", default=NULL, help="Year-to-date temperature data for selected location"), make_option(c("--insect"), action="store", dest="insect", help="Insect name"), make_option(c("--insects_per_replication"), action="store", dest="insects_per_replication", type="integer", help="Number of insects with which to start each replication"), make_option(c("--life_stages"), action="store", dest="life_stages", help="Selected life stages for plotting"), make_option(c("--life_stages_adult"), action="store", dest="life_stages_adult", default=NULL, help="Adult life stages for plotting"), make_option(c("--life_stages_nymph"), action="store", dest="life_stages_nymph", default=NULL, help="Nymph life stages for plotting"), make_option(c("--location"), action="store", dest="location", default=NULL, help="Selected location"), make_option(c("--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), make_option(c("--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), make_option(c("--num_days_ytd"), action="store", dest="num_days_ytd", default=NULL, type="integer", help="Total number of days in the year-to-date temperature dataset"), make_option(c("--nymph_mortality"), action="store", dest="nymph_mortality", type="integer", help="Adjustment rate for nymph mortality"), make_option(c("--old_nymph_accumulation"), action="store", dest="old_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (young nymph->old nymph)"), make_option(c("--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), make_option(c("--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), make_option(c("--plot_generations_separately"), action="store", dest="plot_generations_separately", help="Plot Plot P, F1 and F2 as separate lines or pool across them"), make_option(c("--plot_std_error"), action="store", dest="plot_std_error", help="Plot Standard error"), make_option(c("--replications"), action="store", dest="replications", type="integer", help="Number of replications"), make_option(c("--script_dir"), action="store", dest="script_dir", help="R script source directory"), make_option(c("--young_nymph_accumulation"), action="store", dest="young_nymph_accumulation", type="integer", help="Adjustment of degree-days accumulation (egg->young nymph)") ) parser <- OptionParser(usage="%prog [options] file", option_list=option_list); args <- parse_args(parser, positional_arguments=TRUE); opt <- args$options; add_daylight_length = function(temperature_data_frame) { # Return temperature_data_frame with an added column # of daylight length (photoperiod profile). num_rows = dim(temperature_data_frame)[1]; # From Forsythe 1995. p = 0.8333; latitude = temperature_data_frame$LATITUDE[1]; daylight_length_vector = NULL; for (i in 1:num_rows) { # Get the day of the year from the current row # of the temperature data for computation. doy = temperature_data_frame$DOY[i]; theta = 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (doy - 186))); phi = asin(0.39795 * cos(theta)); # Compute the length of daylight for the day of the year. darkness_length = 24 / pi * acos((sin(p * pi / 180) + sin(latitude * pi / 180) * sin(phi)) / (cos(latitude * pi / 180) * cos(phi))); daylight_length_vector[i] = 24 - darkness_length; } # Append daylight_length_vector as a new column to temperature_data_frame. temperature_data_frame = append_vector(temperature_data_frame, daylight_length_vector, "DAYLEN"); return(temperature_data_frame); } append_vector = function(data_frame, vec, new_column_name) { num_columns = dim(data_frame)[2]; current_column_names = colnames(data_frame); # Append vector vec as a new column to data_frame. data_frame[,num_columns+1] = vec; # Reset the column names with the additional column for later access. colnames(data_frame) = append(current_column_names, new_column_name); return(data_frame); } from_30_year_normals = function(norm_data_frame, start_date_doy, end_date_doy, year) { # The data we want is fully contained within the 30 year normals data. first_norm_row = which(norm_data_frame$DOY==start_date_doy); last_norm_row = which(norm_data_frame$DOY==end_date_doy); # Add 1 to the number of rows to ensure that the end date is included. tmp_data_frame_rows = last_norm_row - first_norm_row + 1; tmp_data_frame = get_new_temperature_data_frame(nrow=tmp_data_frame_rows); j = 0; for (i in first_norm_row:last_norm_row) { j = j + 1; tmp_data_frame[j,] = get_next_normals_row(norm_data_frame, year, i); } return (tmp_data_frame); } get_new_norm_data_frame = function(is_leap_year, input_norm=NULL, nrow=0) { # The input_norm data has the following 10 columns: # STATIONID, LATITUDE, LONGITUDE, ELEV_M, NAME, ST, MMDD, DOY, TMIN, TMAX column_names = c("STATIONID", "LATITUDE","LONGITUDE", "ELEV_M", "NAME", "ST", "MMDD", "DOY", "TMIN", "TMAX"); if (is.null(input_norm)) { norm_data_frame = data.frame(matrix(ncol=10, nrow)); # Set the norm_data_frame column names for access. colnames(norm_data_frame) = column_names; } else { norm_data_frame = read.csv(file=input_norm, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=","); # Set the norm_data_frame column names for access. colnames(norm_data_frame) = column_names; if (!is_leap_year) { # All normals data includes Feb 29 which is row 60 in # the data, so delete that row if we're not in a leap year. norm_data_frame = norm_data_frame[-c(60),]; # Since we've removed row 60, we need to subtract 1 from # each value in the DOY column of the data frame starting # with the 60th row. num_rows = dim(norm_data_frame)[1]; for (i in 60:num_rows) { leap_year_doy = norm_data_frame$DOY[i]; non_leap_year_doy = leap_year_doy - 1; norm_data_frame$DOY[i] = non_leap_year_doy; } } } return (norm_data_frame); } get_new_temperature_data_frame = function(input_ytd=NULL, nrow=0) { # The input_ytd data has the following 6 columns: # LATITUDE, LONGITUDE, DATE, DOY, TMIN, TMAX if (is.null(input_ytd)) { temperature_data_frame = data.frame(matrix(ncol=6, nrow)); } else { temperature_data_frame = read.csv(file=input_ytd, header=T, strip.white=TRUE, stringsAsFactors=FALSE, sep=","); } colnames(temperature_data_frame) = c("LATITUDE", "LONGITUDE", "DATE", "DOY", "TMIN", "TMAX"); return(temperature_data_frame); } get_next_normals_row = function(norm_data_frame, year, index) { # Return the next 30 year normals row formatted # appropriately for the year-to-date data. latitude = norm_data_frame[index,"LATITUDE"][1]; longitude = norm_data_frame[index,"LONGITUDE"][1]; # Format the date. mmdd = norm_data_frame[index,"MMDD"][1]; date_str = paste(year, mmdd, sep="-"); doy = norm_data_frame[index,"DOY"][1]; tmin = norm_data_frame[index,"TMIN"][1]; tmax = norm_data_frame[index,"TMAX"][1]; return(list(latitude, longitude, date_str, doy, tmin, tmax)); } get_temperature_at_hour = function(latitude, temperature_data_frame, row) { # Base development threshold for Brown Marmorated Stink Bug # insect phenology model. threshold = 14.17; # Minimum temperature for current row. curr_min_temp = temperature_data_frame$TMIN[row]; # Maximum temperature for current row. curr_max_temp = temperature_data_frame$TMAX[row]; # Mean temperature for current row. curr_mean_temp = 0.5 * (curr_min_temp + curr_max_temp); # Initialize degree day accumulation averages = 0; if (curr_max_temp < threshold) { averages = 0; } else { # Initialize hourly temperature. T = NULL; # Initialize degree hour vector. dh = NULL; # Daylight length for current row. y = temperature_data_frame$DAYLEN[row]; # Darkness length. z = 24 - y; # Lag coefficient. a = 1.86; # Darkness coefficient. b = 2.20; # Sunrise time. risetime = 12 - y / 2; # Sunset time. settime = 12 + y / 2; ts = (curr_max_temp - curr_min_temp) * sin(pi * (settime - 5) / (y + 2 * a)) + curr_min_temp; for (i in 1:24) { if (i > risetime && i < settime) { # Number of hours after Tmin until sunset. m = i - 5; T[i] = (curr_max_temp - curr_min_temp) * sin(pi * m / (y + 2 * a)) + curr_min_temp; if (T[i] < 8.4) { dh[i] = 0; } else { dh[i] = T[i] - 8.4; } } else if (i > settime) { n = i - settime; T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z); if (T[i] < 8.4) { dh[i] = 0; } else { dh[i] = T[i] - 8.4; } } else { n = i + 24 - settime; T[i] = curr_min_temp + (ts - curr_min_temp) * exp( - b * n / z); if (T[i] < 8.4) { dh[i] = 0; } else { dh[i] = T[i] - 8.4; } } } averages = sum(dh) / 24; } return(c(curr_mean_temp, averages)) } is_leap_year = function(date_str) { # Extract the year from the date_str. date = format(date_str); items = strsplit(date, "-")[[1]]; year = as.integer(items[1]); if (((year %% 4 == 0) & (year %% 100 != 0)) | (year %% 400 == 0)) { return(TRUE); } else { return(FALSE); } } mortality.adult = function(temperature) { if (temperature < 12.7) { mortality.probability = 0.002; } else { mortality.probability = temperature * 0.0005 + 0.02; } return(mortality.probability) } mortality.egg = function(temperature, adj=0) { # If no input from adjustment, default # value is 0 (data from Nielsen, 2008). T.mortality = c(15, 17, 20, 25, 27, 30, 33, 35); egg.mortality = c(50, 2, 1, 0, 0, 0, 5, 100); # Calculates slopes and intercepts for lines. slopes = NULL; intercepts = NULL; for (i in 1:length(T.mortality)) { slopes[i] = (egg.mortality[i+1] - egg.mortality[i]) / (T.mortality[i+1] - T.mortality[i]); intercepts[i] = -slopes[i] * T.mortality[i] + egg.mortality[i]; } # Calculates mortality based on temperature. mortality.probability = NULL; for (j in 1:length(temperature)) { mortality.probability[j] = if(temperature[j] <= T.mortality[2]) { temperature[j] * slopes[1] + intercepts[1]; } else if (temperature[j] > T.mortality[2] && temperature[j] <= T.mortality[3]) { temperature[j] * slopes[2] + intercepts[2]; } else if (temperature[j] > T.mortality[3] && temperature[j] <= T.mortality[4]) { temperature[j] * slopes[3] + intercepts[3]; } else if (temperature[j] > T.mortality[4] && temperature[j] <= T.mortality[5]) { temperature[j] * slopes[4] + intercepts[4]; } else if (temperature[j] > T.mortality[5] && temperature[j] <= T.mortality[6]) { temperature[j] * slopes[5] + intercepts[5]; } else if (temperature[j] > T.mortality[6] && temperature[j] <= T.mortality[7]) { temperature[j] * slopes[6] + intercepts[6]; } else if (temperature[j] > T.mortality[7]) { temperature[j] * slopes[7] + intercepts[7]; } # If mortality > 100, make it equal to 100. mortality.probability[mortality.probability>100] = 100; # If mortality <0, make equal to 0. mortality.probability[mortality.probability<0] = 0; } # Make mortality adjustments based on adj parameter. mortality.probability = (100 - mortality.probability) * adj + mortality.probability; # if mortality > 100, make it equal to 100. mortality.probability[mortality.probability>100] = 100; # If mortality <0, make equal to 0. mortality.probability[mortality.probability<0] = 0; # Change percent to proportion. mortality.probability = mortality.probability / 100; return(mortality.probability) } mortality.nymph = function(temperature) { if (temperature < 12.7) { mortality.probability = 0.03; } else { mortality.probability = temperature * 0.0008 + 0.03; } return(mortality.probability); } parse_input_data = function(input_ytd, input_norm, location, start_date, end_date) { # The end DOY for norm data prepended to ytd data. prepend_end_doy_norm = 0; # The start DOY for norm data appended to ytd data. append_start_doy_norm = 0; if (is.null(start_date) && is.null(end_date)) { # We're not dealing with a date interval. date_interval = FALSE; if (is.null(input_ytd)) { # Base all dates on the current date since 30 year # normals data does not include any dates. year = format(Sys.Date(), "%Y"); } } else { date_interval = TRUE; year = get_year_from_date(start_date); # Get the DOY for start_date and end_date. start_date_doy = as.integer(strftime(start_date, format="%j")); end_date_doy = as.integer(strftime(end_date, format="%j")); } if (is.null(input_ytd)) { # We're processing only the 30 year normals data. processing_year_to_date_data = FALSE; if (is.null(start_date) && is.null(end_date)) { # We're processing the entire year, so we can # set the start_date to Jan 1. start_date = paste(year, "01", "01", sep="-"); } } else { processing_year_to_date_data = TRUE; # Read the input_ytd temperature data file into a data frame. temperature_data_frame = get_new_temperature_data_frame(input_ytd=input_ytd); num_ytd_rows = dim(temperature_data_frame)[1]; if (!date_interval) { start_date = temperature_data_frame$DATE[1]; year = get_year_from_date(start_date); } } # See if we're in a leap year. is_leap_year = is_leap_year(start_date); # Read the input_norm temperature datafile into a data frame. norm_data_frame = get_new_norm_data_frame(is_leap_year, input_norm=input_norm); if (processing_year_to_date_data) { if (date_interval) { # We're plotting a date interval. start_date_ytd_row = which(temperature_data_frame$DATE==start_date); if (length(start_date_ytd_row) > 0) { # The start date is contained within the input_ytd data. start_date_ytd_row = start_date_ytd_row[1]; start_doy_ytd = as.integer(temperature_data_frame$DOY[start_date_ytd_row]); } else { # The start date is contained within the input_norm data. start_date_ytd_row = 0; start_date_norm_row = which(norm_data_frame$DOY==start_date_doy); } end_date_ytd_row = which(temperature_data_frame$DATE==end_date); if (length(end_date_ytd_row) > 0) { end_date_ytd_row = end_date_ytd_row[1]; # The end date is contained within the input_ytd data. end_doy_ytd = as.integer(temperature_data_frame$DOY[end_date_ytd_row]); if (end_doy_ytd > end_date_ytd_row + 1) { # The input year-to-date dataset is missing 1 or more # days of data. days_missing = end_doy_ytd - end_date_ytd_row; msg = cat("The year-to-date dataset is missing ", days_missing, " days of data.\n"); stop_err(msg); } } else { end_date_ytd_row = 0; } } else { # We're plotting an entire year. # Get the start date and end date from temperature_data_frame. start_date_ytd_row = 1; # Temporarily set start_date to get the year. start_date = temperature_data_frame$DATE[1]; end_date_ytd_row = num_ytd_rows; end_date = temperature_data_frame$DATE[num_ytd_rows]; date_str = format(start_date); # Extract the year from the start date. date_str_items = strsplit(date_str, "-")[[1]]; # Get the year. year = date_str_items[1]; # Properly set the start_date to be Jan 1 of the year. start_date = paste(year, "01", "01", sep="-"); # Properly set the end_date to be Dec 31 of the year. end_date = paste(year, "12", "31", sep="-"); # Save the first DOY to later check if start_date is Jan 1. start_doy_ytd = as.integer(temperature_data_frame$DOY[1]); end_doy_ytd = as.integer(temperature_data_frame$DOY[num_ytd_rows]); if (end_doy_ytd > end_date_ytd_row + 1) { # The input year-to-date dataset is missing 1 or more # days of data. days_missing = end_doy_ytd - end_date_ytd_row; msg = cat("The year-to-date dataset is missing ", days_missing, " days of data.\n"); stop_err(msg); } } } else { # We're processing only the 30 year normals data, so create an empty # data frame for containing temperature data after it is converted # from the 30 year normals format to the year-to-date format. temperature_data_frame = get_new_temperature_data_frame(); if (date_interval) { # We're plotting a date interval. # Extract the year, month and day from the start date. start_date_str = format(start_date); start_date_str_items = strsplit(start_date_str, "-")[[1]]; year = start_date_str_items[1]; start_date_month = start_date_str_items[2]; start_date_day = start_date_str_items[3]; start_date = paste(year, start_date_month, start_date_day, sep="-"); # Extract the month and day from the end date. end_date_str = format(start_date); end_date_str_items = strsplit(end_date_str, "-")[[1]]; end_date_month = end_date_str_items[2]; end_date_day = end_date_str_items[3]; end_date = paste(year, end_date_month, end_date_day, sep="-"); } else { # We're plotting an entire year. start_date = paste(year, "01", "01", sep="-"); end_date = paste(year, "12", "31", sep="-"); } } # Set the location to be the station name if the user elected not to enter it. if (is.null(location) | length(location) == 0) { location = norm_data_frame$NAME[1]; } if (processing_year_to_date_data) { # Merge the year-to-date data with the 30 year normals data. if (date_interval) { # The values of start_date_ytd_row and end_date_ytd_row were set above. if (start_date_ytd_row > 0 & end_date_ytd_row > 0) { # The date interval is contained within the input_ytd # data, so we don't need to merge the 30 year normals data. temperature_data_frame = temperature_data_frame[start_date_ytd_row:end_date_ytd_row,]; } else if (start_date_ytd_row == 0 & end_date_ytd_row > 0) { # The date interval starts in input_norm and ends in # input_ytd, so prepend appropriate rows from input_norm # to appropriate rows from input_ytd. first_norm_row = which(norm_data_frame$DOY==start_date_doy); # Get the first DOY from temperature_data_frame. first_ytd_doy = temperature_data_frame$DOY[1]; # End DOY of input_norm data prepended to input_ytd. prepend_end_doy_norm = first_ytd_doy - 1; # Get the number of rows for the restricted date interval # that are contained in temperature_data_frame. num_temperature_data_frame_rows = end_date_ytd_row; # Get the last row needed from the 30 year normals data. last_norm_row = which(norm_data_frame$DOY==prepend_end_doy_norm); # Get the number of rows for the restricted date interval # that are contained in norm_data_frame. num_norm_data_frame_rows = last_norm_row - first_norm_row; # Create a temporary data frame to contain the 30 year normals # data from the start date to the date immediately prior to the # first row of the input_ytd data. tmp_norm_data_frame = get_new_temperature_data_frame(nrow=num_temperature_data_frame_rows+num_norm_data_frame_rows); j = 1; for (i in first_norm_row:last_norm_row) { # Populate the temp_data_frame row with # values from norm_data_frame. tmp_norm_data_frame[j,] = get_next_normals_row(norm_data_frame, year, i); j = j + 1; } # Create a second temporary data frame containing the # appropriate rows from temperature_data_frame. tmp_temperature_data_frame = temperature_data_frame[1:num_temperature_data_frame_rows,]; # Merge the 2 temporary data frames. temperature_data_frame = rbind(tmp_norm_data_frame, tmp_temperature_data_frame); } else if (start_date_ytd_row > 0 & end_date_ytd_row == 0) { # The date interval starts in input_ytd and ends in input_norm, # so append appropriate rows from input_norm to appropriate rows # from input_ytd. First, get the number of rows for the restricted # date interval that are contained in temperature_data_frame. num_temperature_data_frame_rows = num_ytd_rows - start_date_ytd_row + 1; # Get the DOY of the last row in the input_ytd data. last_ytd_doy = temperature_data_frame$DOY[num_ytd_rows]; # Get the DOYs for the first and last rows from norm_data_frame # that will be appended to temperature_data_frame. append_start_doy_norm = last_ytd_doy + 1; # Get the row from norm_data_frame containing first_norm_doy. first_norm_row = which(norm_data_frame$DOY == append_start_doy_norm); # Get the row from norm_data_frame containing end_date_doy. last_norm_row = which(norm_data_frame$DOY == end_date_doy); # Get the number of rows for the restricted date interval # that are contained in norm_data_frame. num_norm_data_frame_rows = last_norm_row - first_norm_row; # Create a temporary data frame to contain the data # taken from both temperature_data_frame and norm_data_frame # for the date interval. tmp_data_frame = get_new_temperature_data_frame(nrow=num_temperature_data_frame_rows+num_norm_data_frame_rows); # Populate tmp_data_frame with the appropriate rows from temperature_data_frame. j = start_date_ytd_row; for (i in 1:num_temperature_data_frame_rows) { tmp_data_frame[i,] = temperature_data_frame[j,]; j = j + 1; } # Apppend the appropriate rows from norm_data_frame to tmp_data_frame. current_iteration = num_temperature_data_frame_rows + 1; num_iterations = current_iteration + num_norm_data_frame_rows; j = first_norm_row; for (i in current_iteration:num_iterations) { tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, j); j = j + 1; } temperature_data_frame = tmp_data_frame[,]; } else if (start_date_ytd_row == 0 & end_date_ytd_row == 0) { # The date interval is contained witin input_norm. temperature_data_frame = from_30_year_normals(norm_data_frame, start_date_doy, end_date_doy, year); } } else { # We're plotting an entire year. if (start_doy_ytd > 1) { # The input_ytd data starts after Jan 1, so prepend # appropriate rows from input_norm to temperature_data_frame. prepend_end_doy_norm = start_doy_ytd - 1; last_norm_row = which(norm_data_frame$DOY == prepend_end_doy_norm); # Create a temporary data frame to contain the input_norm data # from Jan 1 to the date immediately prior to start_date. tmp_data_frame = temperature_data_frame[FALSE,]; # Populate tmp_data_frame with appropriate rows from norm_data_frame. for (i in 1:last_norm_row) { tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, i); } # Merge the temporary data frame with temperature_data_frame. temperature_data_frame = rbind(tmp_data_frame, temperature_data_frame); } # Set the value of total_days. total_days = get_total_days(is_leap_year); if (end_doy_ytd < total_days) { # Define the next row for the year-to-date data from the 30 year normals data. append_start_doy_norm = end_doy_ytd + 1; first_norm_row = which(norm_data_frame$DOY == append_start_doy_norm); # Append the 30 year normals data to the year-to-date data. for (i in first_norm_row:total_days) { temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, i); } } } } else { # We're processing only the 30 year normals data. if (date_interval) { # Populate temperature_data_frame from norm_data_frame. temperature_data_frame = from_30_year_normals(norm_data_frame, start_date_doy, end_date_doy, year); } else { total_days = get_total_days(is_leap_year); for (i in 1:total_days) { temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, i); } } } # Add a column containing the daylight length for each day. temperature_data_frame = add_daylight_length(temperature_data_frame); return(list(temperature_data_frame, start_date, end_date, prepend_end_doy_norm, append_start_doy_norm, is_leap_year, location)); } # Import the shared utility functions. utils_path <- paste(opt$script_dir, "utils.R", sep="/"); source(utils_path); if (is.null(opt$input_ytd)) { processing_year_to_date_data = FALSE; } else { processing_year_to_date_data = TRUE; } # Determine if we're plotting generations separately. if (opt$plot_generations_separately=="yes") { plot_generations_separately = TRUE; } else { plot_generations_separately = FALSE; } # Parse the inputs. data_list = parse_input_data(opt$input_ytd, opt$input_norm, opt$location, opt$start_date, opt$end_date); temperature_data_frame = data_list[[1]]; # Information needed for plots, some of these values are # being reset here since in some case they were set above. start_date = data_list[[2]]; end_date = data_list[[3]]; prepend_end_doy_norm = data_list[[4]]; append_start_doy_norm = data_list[[5]]; is_leap_year = data_list[[6]]; location = data_list[[7]]; # We're plotting an entire year. # Display the total number of days in the Galaxy history item blurb. if (processing_year_to_date_data) { cat("Number of days year-to-date: ", opt$num_days_ytd, "\n"); } else { if (is_leap_year) { num_days = 366; } else { num_days = 365; } cat("Number of days in year: ", num_days, "\n"); } # Create copies of the temperature data for generations P, F1 and F2 if we're plotting generations separately. if (plot_generations_separately) { temperature_data_frame_P = data.frame(temperature_data_frame); temperature_data_frame_F1 = data.frame(temperature_data_frame); temperature_data_frame_F2 = data.frame(temperature_data_frame); } # Get the ticks date labels for plots. ticks_and_labels = get_x_axis_ticks_and_labels(temperature_data_frame, prepend_end_doy_norm, append_start_doy_norm); ticks = c(unlist(ticks_and_labels[1])); date_labels = c(unlist(ticks_and_labels[2])); # All latitude values are the same, so get the value for plots from the first row. latitude = temperature_data_frame$LATITUDE[1]; # Determine the specified life stages for processing. # Split life_stages into a list of strings for plots. life_stages_str = as.character(opt$life_stages); life_stages = strsplit(life_stages_str, ",")[[1]]; # Determine the data we need to generate for plotting. process_eggs = FALSE; process_nymphs = FALSE; process_young_nymphs = FALSE; process_old_nymphs = FALSE; process_total_nymphs = FALSE; process_adults = FALSE; process_previttelogenic_adults = FALSE; process_vittelogenic_adults = FALSE; process_diapausing_adults = FALSE; process_total_adults = FALSE; process_total = FALSE; for (life_stage in life_stages) { if (life_stage=="Total") { process_eggs = TRUE; process_nymphs = TRUE; process_adults = TRUE; process_total = TRUE; } else if (life_stage=="Egg") { process_eggs = TRUE; } else if (life_stage=="Nymph") { process_nymphs = TRUE; } else if (life_stage=="Adult") { process_adults = TRUE; } } if (process_nymphs) { # Split life_stages_nymph into a list of strings for plots. life_stages_nymph_str = as.character(opt$life_stages_nymph); life_stages_nymph = strsplit(life_stages_nymph_str, ",")[[1]]; for (life_stage_nymph in life_stages_nymph) { if (life_stage_nymph=="Young") { process_young_nymphs = TRUE; } else if (life_stage_nymph=="Old") { process_old_nymphs = TRUE; } else if (life_stage_nymph=="Total") { process_total_nymphs = TRUE; } } } if (process_adults) { # Split life_stages_adult into a list of strings for plots. life_stages_adult_str = as.character(opt$life_stages_adult); life_stages_adult = strsplit(life_stages_adult_str, ",")[[1]]; for (life_stage_adult in life_stages_adult) { if (life_stage_adult=="Pre-vittelogenic") { process_previttelogenic_adults = TRUE; } else if (life_stage_adult=="Vittelogenic") { process_vittelogenic_adults = TRUE; } else if (life_stage_adult=="Diapausing") { process_diapausing_adults = TRUE; } else if (life_stage_adult=="Total") { process_total_adults = TRUE; } } } # Initialize matrices. total_days = dim(temperature_data_frame)[1]; if (process_eggs) { Eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_young_nymphs | process_total_nymphs) { YoungNymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_old_nymphs | process_total_nymphs) { OldNymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_previttelogenic_adults | process_total_adults) { Previttelogenic.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_vittelogenic_adults | process_total_adults) { Vittelogenic.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_diapausing_adults | process_total_adults) { Diapausing.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } newborn.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); adult.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); death.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); if (plot_generations_separately) { # P is Parental, or overwintered adults. P.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); # F1 is the first field-produced generation. F1.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); # F2 is the second field-produced generation. F2.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); if (process_eggs) { P_eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F1_eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F2_eggs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_young_nymphs) { P_young_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F1_young_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F2_young_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_old_nymphs) { P_old_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F1_old_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F2_old_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_total_nymphs) { P_total_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F1_total_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F2_total_nymphs.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_previttelogenic_adults) { P_previttelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F1_previttelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F2_previttelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_vittelogenic_adults) { P_vittelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F1_vittelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F2_vittelogenic_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_diapausing_adults) { P_diapausing_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F1_diapausing_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F2_diapausing_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } if (process_total_adults) { P_total_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F1_total_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); F2_total_adults.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); } } # Total population. population.replications = matrix(rep(0, total_days*opt$replications), ncol=opt$replications); # Process replications. for (current_replication in 1:opt$replications) { # Start with the user-defined number of insects per replication. num_insects = opt$insects_per_replication; # Generation, Stage, degree-days, T, Diapause. vector.ini = c(0, 3, 0, 0, 0); # Replicate to create a matrix where the columns are # Generation, Stage, degree-days, T, Diapause and the # rows are the initial number of insects per replication. vector.matrix = rep(vector.ini, num_insects); # Complete transposed matrix for the population, so now # the rows are Generation, Stage, degree-days, T, Diapause vector.matrix = base::t(matrix(vector.matrix, nrow=5)); # Time series of population size. if (process_eggs) { Eggs = rep(0, total_days); } if (process_young_nymphs | process_total_nymphs) { YoungNymphs = rep(0, total_days); } if (process_old_nymphs | process_total_nymphs) { OldNymphs = rep(0, total_days); } if (process_previttelogenic_adults | process_total_adults) { Previttelogenic = rep(0, total_days); } if (process_vittelogenic_adults | process_total_adults) { Vittelogenic = rep(0, total_days); } if (process_diapausing_adults | process_total_adults) { Diapausing = rep(0, total_days); } N.newborn = rep(0, total_days); N.adult = rep(0, total_days); N.death = rep(0, total_days); overwintering_adult.population = rep(0, total_days); first_generation.population = rep(0, total_days); second_generation.population = rep(0, total_days); if (plot_generations_separately) { # P is Parental, or overwintered adults. # F1 is the first field-produced generation. # F2 is the second field-produced generation. if (process_eggs) { P.egg = rep(0, total_days); F1.egg = rep(0, total_days); F2.egg = rep(0, total_days); } if (process_young_nymphs) { P.young_nymph = rep(0, total_days); F1.young_nymph = rep(0, total_days); F2.young_nymph = rep(0, total_days); } if (process_old_nymphs) { P.old_nymph = rep(0, total_days); F1.old_nymph = rep(0, total_days); F2.old_nymph = rep(0, total_days); } if (process_total_nymphs) { P.total_nymph = rep(0, total_days); F1.total_nymph = rep(0, total_days); F2.total_nymph = rep(0, total_days); } if (process_previttelogenic_adults) { P.previttelogenic_adult = rep(0, total_days); F1.previttelogenic_adult = rep(0, total_days); F2.previttelogenic_adult = rep(0, total_days); } if (process_vittelogenic_adults) { P.vittelogenic_adult = rep(0, total_days); F1.vittelogenic_adult = rep(0, total_days); F2.vittelogenic_adult = rep(0, total_days); } if (process_diapausing_adults) { P.diapausing_adult = rep(0, total_days); F1.diapausing_adult = rep(0, total_days); F2.diapausing_adult = rep(0, total_days); } if (process_total_adults) { P.total_adult = rep(0, total_days); F1.total_adult = rep(0, total_days); F2.total_adult = rep(0, total_days); } } total.population = NULL; averages.day = rep(0, total_days); # All the days included in the input_ytd temperature dataset. for (row in 1:total_days) { # Get the integer day of the year for the current row. doy = temperature_data_frame$DOY[row]; # Photoperiod in the day. photoperiod = temperature_data_frame$DAYLEN[row]; temp.profile = get_temperature_at_hour(latitude, temperature_data_frame, row); mean.temp = temp.profile[1]; averages.temp = temp.profile[2]; averages.day[row] = averages.temp; # Trash bin for death. death.vector = NULL; # Newborn. birth.vector = NULL; # All individuals. for (i in 1:num_insects) { # Individual record. vector.individual = vector.matrix[i,]; # Adjustment for late season mortality rate (still alive?). if (latitude < 40.0) { post.mortality = 1; day.kill = 300; } else { post.mortality = 2; day.kill = 250; } if (vector.individual[2] == 0) { # Egg. death.probability = opt$egg_mortality * mortality.egg(mean.temp, adj=opt$egg_mortality); } else if (vector.individual[2] == 1 | vector.individual[2] == 2) { # Nymph. death.probability = opt$nymph_mortality * mortality.nymph(mean.temp); } else if (vector.individual[2] == 3 | vector.individual[2] == 4 | vector.individual[2] == 5) { # Adult. if (doy < day.kill) { death.probability = opt$adult_mortality * mortality.adult(mean.temp); } else { # Increase adult mortality after fall equinox. death.probability = opt$adult_mortality * post.mortality * mortality.adult(mean.temp); } } # Dependent on temperature and life stage? u.d = runif(1); if (u.d < death.probability) { death.vector = c(death.vector, i); } else { # End of diapause. if (vector.individual[1] == 0 && vector.individual[2] == 3) { # Overwintering adult (pre-vittelogenic). if (photoperiod > opt$photoperiod && vector.individual[3] > 68 && doy < 180) { # Add 68C to become fully reproductively matured. # Transfer to vittelogenic. vector.individual = c(0, 4, 0, 0, 0); vector.matrix[i,] = vector.individual; } else { # Add average temperature for current day. vector.individual[3] = vector.individual[3] + averages.temp; # Add 1 day in current stage. vector.individual[4] = vector.individual[4] + 1; vector.matrix[i,] = vector.individual; } } if (vector.individual[1] != 0 && vector.individual[2] == 3) { # Not overwintering adult (pre-vittelogenic). current.gen = vector.individual[1]; if (vector.individual[3] > 68) { # Add 68C to become fully reproductively matured. # Transfer to vittelogenic. vector.individual = c(current.gen, 4, 0, 0, 0); vector.matrix[i,] = vector.individual; } else { # Add average temperature for current day. vector.individual[3] = vector.individual[3] + averages.temp; # Add 1 day in current stage. vector.individual[4] = vector.individual[4] + 1; vector.matrix[i,] = vector.individual; } } # Oviposition -- where population dynamics comes from. if (vector.individual[2] == 4 && vector.individual[1] == 0 && mean.temp > 10) { # Vittelogenic stage, overwintering generation. if (vector.individual[4] == 0) { # Just turned in vittelogenic stage. num_insects.birth = round(runif(1, 2 + opt$min_clutch_size, 8 + opt$max_clutch_size)); } else { # Daily probability of birth. p.birth = opt$oviposition * 0.01; u1 = runif(1); if (u1 < p.birth) { num_insects.birth = round(runif(1, 2, 8)); } } # Add average temperature for current day. vector.individual[3] = vector.individual[3] + averages.temp; # Add 1 day in current stage. vector.individual[4] = vector.individual[4] + 1; vector.matrix[i,] = vector.individual; if (num_insects.birth > 0) { # Add new birth -- might be in different generations. new.gen = vector.individual[1] + 1; # Egg profile. new.individual = c(new.gen, 0, 0, 0, 0); new.vector = rep(new.individual, num_insects.birth); # Update batch of egg profile. new.vector = t(matrix(new.vector, nrow=5)); # Group with total eggs laid in that day. birth.vector = rbind(birth.vector, new.vector); } } # Oviposition -- for generation 1. if (vector.individual[2] == 4 && vector.individual[1] == 1 && mean.temp > 12.5 && doy < 222) { # Vittelogenic stage, 1st generation if (vector.individual[4] == 0) { # Just turned in vittelogenic stage. num_insects.birth = round(runif(1, 2+opt$min_clutch_size, 8+opt$max_clutch_size)); } else { # Daily probability of birth. p.birth = opt$oviposition * 0.01; u1 = runif(1); if (u1 < p.birth) { num_insects.birth = round(runif(1, 2, 8)); } } # Add average temperature for current day. vector.individual[3] = vector.individual[3] + averages.temp; # Add 1 day in current stage. vector.individual[4] = vector.individual[4] + 1; vector.matrix[i,] = vector.individual; if (num_insects.birth > 0) { # Add new birth -- might be in different generations. new.gen = vector.individual[1] + 1; # Egg profile. new.individual = c(new.gen, 0, 0, 0, 0); new.vector = rep(new.individual, num_insects.birth); # Update batch of egg profile. new.vector = t(matrix(new.vector, nrow=5)); # Group with total eggs laid in that day. birth.vector = rbind(birth.vector, new.vector); } } # Egg to young nymph. if (vector.individual[2] == 0) { # Add average temperature for current day. vector.individual[3] = vector.individual[3] + averages.temp; if (vector.individual[3] >= (68+opt$young_nymph_accumulation)) { # From egg to young nymph, degree-days requirement met. current.gen = vector.individual[1]; # Transfer to young nymph stage. vector.individual = c(current.gen, 1, 0, 0, 0); } else { # Add 1 day in current stage. vector.individual[4] = vector.individual[4] + 1; } vector.matrix[i,] = vector.individual; } # Young nymph to old nymph. if (vector.individual[2] == 1) { # Add average temperature for current day. vector.individual[3] = vector.individual[3] + averages.temp; if (vector.individual[3] >= (250+opt$old_nymph_accumulation)) { # From young to old nymph, degree_days requirement met. current.gen = vector.individual[1]; # Transfer to old nym stage. vector.individual = c(current.gen, 2, 0, 0, 0); if (photoperiod < opt$photoperiod && doy > 180) { vector.individual[5] = 1; } # Prepare for diapausing. } else { # Add 1 day in current stage. vector.individual[4] = vector.individual[4] + 1; } vector.matrix[i,] = vector.individual; } # Old nymph to adult: pre-vittelogenic or diapausing? if (vector.individual[2] == 2) { # Add average temperature for current day. vector.individual[3] = vector.individual[3] + averages.temp; if (vector.individual[3] >= (200+opt$adult_accumulation)) { # From old to adult, degree_days requirement met. current.gen = vector.individual[1]; if (vector.individual[5] == 0) { # Previttelogenic. vector.individual = c(current.gen, 3, 0, 0, 0); } else { # Diapausing. vector.individual = c(current.gen, 5, 0, 0, 1); } } else { # Add 1 day in current stage. vector.individual[4] = vector.individual[4] + 1; } vector.matrix[i,] = vector.individual; } # Growing of diapausing adult (unimportant, but still necessary). if (vector.individual[2] == 5) { vector.individual[3] = vector.individual[3] + averages.temp; vector.individual[4] = vector.individual[4] + 1; vector.matrix[i,] = vector.individual; } } # Else if it is still alive. } # End of the individual bug loop. # Number of deaths. num_insects.death = length(death.vector); if (num_insects.death > 0) { # Remove record of dead. vector.matrix = vector.matrix[-death.vector,]; } # Number of births. num_insects.newborn = length(birth.vector[,1]); vector.matrix = rbind(vector.matrix, birth.vector); # Update population size for the next day. num_insects = num_insects - num_insects.death + num_insects.newborn; # Aggregate results by day. Due to multiple transpose calls # on vector.matrix above, the columns of vector.matrix # are now Generation, Stage, degree-days, T, Diapause, if (process_eggs) { # For egg population size, column 2 (Stage), must be 0. Eggs[row] = sum(vector.matrix[,2]==0); } if (process_young_nymphs | process_total_nymphs) { # For young nymph population size, column 2 (Stage) must be 1. YoungNymphs[row] = sum(vector.matrix[,2]==1); } if (process_old_nymphs | process_total_nymphs) { # For old nymph population size, column 2 (Stage) must be 2. OldNymphs[row] = sum(vector.matrix[,2]==2); } if (process_previttelogenic_adults | process_total_adults) { # For pre-vittelogenic population size, column 2 (Stage) must be 3. Previttelogenic[row] = sum(vector.matrix[,2]==3); } if (process_vittelogenic_adults | process_total_adults) { # For vittelogenic population size, column 2 (Stage) must be 4. Vittelogenic[row] = sum(vector.matrix[,2]==4); } if (process_diapausing_adults | process_total_adults) { # For diapausing population size, column 2 (Stage) must be 5. Diapausing[row] = sum(vector.matrix[,2]==5); } # Newborn population size. N.newborn[row] = num_insects.newborn; # Adult population size. N.adult[row] = sum(vector.matrix[,2]==3) + sum(vector.matrix[,2]==4) + sum(vector.matrix[,2]==5); # Dead population size. N.death[row] = num_insects.death; total.population = c(total.population, num_insects); # For overwintering adult (P) population # size, column 1 (Generation) must be 0. overwintering_adult.population[row] = sum(vector.matrix[,1]==0); # For first field generation (F1) population # size, column 1 (Generation) must be 1. first_generation.population[row] = sum(vector.matrix[,1]==1); # For second field generation (F2) population # size, column 1 (Generation) must be 2. second_generation.population[row] = sum(vector.matrix[,1]==2); if (plot_generations_separately) { if (process_eggs) { # For egg life stage of generation P population size, # column 1 (generation) is 0 and column 2 (Stage) is 0. P.egg[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==0); # For egg life stage of generation F1 population size, # column 1 (generation) is 1 and column 2 (Stage) is 0. F1.egg[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==0); # For egg life stage of generation F2 population size, # column 1 (generation) is 2 and column 2 (Stage) is 0. F2.egg[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==0); } if (process_young_nymphs) { # For young nymph life stage of generation P population # size, the following combination is required: # - column 1 (Generation) is 0 and column 2 (Stage) is 1 (Young nymph) P.young_nymph[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==1); # For young nymph life stage of generation F1 population # size, the following combination is required: # - column 1 (Generation) is 1 and column 2 (Stage) is 1 (Young nymph) F1.young_nymph[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==1); # For young nymph life stage of generation F2 population # size, the following combination is required: # - column 1 (Generation) is 2 and column 2 (Stage) is 1 (Young nymph) F2.young_nymph[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==1); } if (process_old_nymphs) { # For old nymph life stage of generation P population # size, the following combination is required: # - column 1 (Generation) is 0 and column 2 (Stage) is 2 (Old nymph) P.old_nymph[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==2); # For old nymph life stage of generation F1 population # size, the following combination is required: # - column 1 (Generation) is 1 and column 2 (Stage) is 2 (Old nymph) F1.old_nymph[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==2); # For old nymph life stage of generation F2 population # size, the following combination is required: # - column 1 (Generation) is 2 and column 2 (Stage) is 2 (Old nymph) F2.old_nymph[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==2); } if (process_total_nymphs) { # For total nymph life stage of generation P population # size, one of the following combinations is required: # - column 1 (Generation) is 0 and column 2 (Stage) is 1 (Young nymph) # - column 1 (Generation) is 0 and column 2 (Stage) is 2 (Old nymph) P.total_nymph[row] = sum((vector.matrix[,1]==0 & vector.matrix[,2]==1) | (vector.matrix[,1]==0 & vector.matrix[,2]==2)); # For total nymph life stage of generation F1 population # size, one of the following combinations is required: # - column 1 (Generation) is 1 and column 2 (Stage) is 1 (Young nymph) # - column 1 (Generation) is 1 and column 2 (Stage) is 2 (Old nymph) F1.total_nymph[row] = sum((vector.matrix[,1]==1 & vector.matrix[,2]==1) | (vector.matrix[,1]==1 & vector.matrix[,2]==2)); # For total nymph life stage of generation F2 population # size, one of the following combinations is required: # - column 1 (Generation) is 2 and column 2 (Stage) is 1 (Young nymph) # - column 1 (Generation) is 2 and column 2 (Stage) is 2 (Old nymph) F2.total_nymph[row] = sum((vector.matrix[,1]==2 & vector.matrix[,2]==1) | (vector.matrix[,1]==2 & vector.matrix[,2]==2)); } if (process_previttelogenic_adults) { # For previttelogenic adult life stage of generation P population # size, the following combination is required: # - column 1 (Generation) is 0 and column 2 (Stage) is 3 (Pre-vittelogenic) P.previttelogenic_adult[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==3); # For previttelogenic adult life stage of generation F1 population # size, the following combination is required: # - column 1 (Generation) is 1 and column 2 (Stage) is 3 (Pre-vittelogenic) F1.previttelogenic_adult[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==3); # For previttelogenic adult life stage of generation F2 population # size, the following combination is required: # - column 1 (Generation) is 2 and column 2 (Stage) is 3 (Pre-vittelogenic) F2.previttelogenic_adult[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==3); } if (process_vittelogenic_adults) { # For vittelogenic adult life stage of generation P population # size, the following combination is required: # - column 1 (Generation) is 0 and column 2 (Stage) is 4 (Vittelogenic) P.vittelogenic_adult[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==4); # For vittelogenic adult life stage of generation F1 population # size, the following combination is required: # - column 1 (Generation) is 1 and column 2 (Stage) is 4 (Vittelogenic) F1.vittelogenic_adult[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==4); # For vittelogenic adult life stage of generation F2 population # size, the following combination is required: # - column 1 (Generation) is 2 and column 2 (Stage) is 4 (Vittelogenic) F2.vittelogenic_adult[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==4); } if (process_diapausing_adults) { # For diapausing adult life stage of generation P population # size, the following combination is required: # - column 1 (Generation) is 0 and column 2 (Stage) is 5 (Diapausing) P.diapausing_adult[row] = sum(vector.matrix[,1]==0 & vector.matrix[,2]==5); # For diapausing adult life stage of generation F1 population # size, the following combination is required: # - column 1 (Generation) is 1 and column 2 (Stage) is 5 (Diapausing) F1.diapausing_adult[row] = sum(vector.matrix[,1]==1 & vector.matrix[,2]==5); # For diapausing adult life stage of generation F2 population # size, the following combination is required: # - column 1 (Generation) is 2 and column 2 (Stage) is 5 (Diapausing) F2.diapausing_adult[row] = sum(vector.matrix[,1]==2 & vector.matrix[,2]==5); } if (process_total_adults) { # For total adult life stage of generation P population # size, one of the following combinations is required: # - column 1 (Generation) is 0 and column 2 (Stage) is 3 (Pre-vittelogenic) # - column 1 (Generation) is 0 and column 2 (Stage) is 4 (Vittelogenic) # - column 1 (Generation) is 0 and column 2 (Stage) is 5 (Diapausing) P.total_adult[row] = sum((vector.matrix[,1]==0 & vector.matrix[,2]==3) | (vector.matrix[,1]==0 & vector.matrix[,2]==4) | (vector.matrix[,1]==0 & vector.matrix[,2]==5)); # For total adult life stage of generation F1 population # size, one of the following combinations is required: # - column 1 (Generation) is 1 and column 2 (Stage) is 3 (Pre-vittelogenic) # - column 1 (Generation) is 1 and column 2 (Stage) is 4 (Vittelogenic) # - column 1 (Generation) is 1 and column 2 (Stage) is 5 (Diapausing) F1.total_adult[row] = sum((vector.matrix[,1]==1 & vector.matrix[,2]==3) | (vector.matrix[,1]==1 & vector.matrix[,2]==4) | (vector.matrix[,1]==1 & vector.matrix[,2]==5)); # For total adult life stage of generation F2 population # size, one of the following combinations is required: # - column 1 (Generation) is 2 and column 2 (Stage) is 3 (Pre-vittelogenic) # - column 1 (Generation) is 2 and column 2 (Stage) is 4 (Vittelogenic) # - column 1 (Generation) is 2 and column 2 (Stage) is 5 (Diapausing) F2.total_adult[row] = sum((vector.matrix[,1]==2 & vector.matrix[,2]==3) | (vector.matrix[,1]==2 & vector.matrix[,2]==4) | (vector.matrix[,1]==2 & vector.matrix[,2]==5)); } } } # End of days specified in the input_ytd temperature data. averages.cum = cumsum(averages.day); # Define the output values. if (process_eggs) { Eggs.replications[,current_replication] = Eggs; } if (process_young_nymphs | process_total_nymphs) { YoungNymphs.replications[,current_replication] = YoungNymphs; } if (process_old_nymphs | process_total_nymphs) { OldNymphs.replications[,current_replication] = OldNymphs; } if (process_previttelogenic_adults | process_total_adults) { Previttelogenic.replications[,current_replication] = Previttelogenic; } if (process_vittelogenic_adults | process_total_adults) { Vittelogenic.replications[,current_replication] = Vittelogenic; } if (process_diapausing_adults | process_total_adults) { Diapausing.replications[,current_replication] = Diapausing; } newborn.replications[,current_replication] = N.newborn; adult.replications[,current_replication] = N.adult; death.replications[,current_replication] = N.death; if (plot_generations_separately) { # P is Parental, or overwintered adults. P.replications[,current_replication] = overwintering_adult.population; # F1 is the first field-produced generation. F1.replications[,current_replication] = first_generation.population; # F2 is the second field-produced generation. F2.replications[,current_replication] = second_generation.population; if (process_eggs) { P_eggs.replications[,current_replication] = P.egg; F1_eggs.replications[,current_replication] = F1.egg; F2_eggs.replications[,current_replication] = F2.egg; } if (process_young_nymphs) { P_young_nymphs.replications[,current_replication] = P.young_nymph; F1_young_nymphs.replications[,current_replication] = F1.young_nymph; F2_young_nymphs.replications[,current_replication] = F2.young_nymph; } if (process_old_nymphs) { P_old_nymphs.replications[,current_replication] = P.old_nymph; F1_old_nymphs.replications[,current_replication] = F1.old_nymph; F2_old_nymphs.replications[,current_replication] = F2.old_nymph; } if (process_total_nymphs) { P_total_nymphs.replications[,current_replication] = P.total_nymph; F1_total_nymphs.replications[,current_replication] = F1.total_nymph; F2_total_nymphs.replications[,current_replication] = F2.total_nymph; } if (process_previttelogenic_adults) { P_previttelogenic_adults.replications[,current_replication] = P.previttelogenic_adult; F1_previttelogenic_adults.replications[,current_replication] = F1.previttelogenic_adult; F2_previttelogenic_adults.replications[,current_replication] = F2.previttelogenic_adult; } if (process_vittelogenic_adults) { P_vittelogenic_adults.replications[,current_replication] = P.vittelogenic_adult; F1_vittelogenic_adults.replications[,current_replication] = F1.vittelogenic_adult; F2_vittelogenic_adults.replications[,current_replication] = F2.vittelogenic_adult; } if (process_diapausing_adults) { P_diapausing_adults.replications[,current_replication] = P.diapausing_adult; F1_diapausing_adults.replications[,current_replication] = F1.diapausing_adult; F2_diapausing_adults.replications[,current_replication] = F2.diapausing_adult; } if (process_total_adults) { P_total_adults.replications[,current_replication] = P.total_adult; F1_total_adults.replications[,current_replication] = F1.total_adult; F2_total_adults.replications[,current_replication] = F2.total_adult; } } population.replications[,current_replication] = total.population; # End processing replications. } if (process_eggs) { # Mean value for eggs. eggs = apply(Eggs.replications, 1, mean); temperature_data_frame = append_vector(temperature_data_frame, eggs, "EGG"); # Standard error for eggs. eggs.std_error = apply(Eggs.replications, 1, sd) / sqrt(opt$replications); temperature_data_frame = append_vector(temperature_data_frame, eggs.std_error, "EGGSE"); } if (process_nymphs) { # Calculate nymph populations for selected life stage. for (life_stage_nymph in life_stages_nymph) { if (life_stage_nymph=="Young") { # Mean value for young nymphs. young_nymphs = apply(YoungNymphs.replications, 1, mean); temperature_data_frame = append_vector(temperature_data_frame, young_nymphs, "YOUNGNYMPH"); # Standard error for young nymphs. young_nymphs.std_error = apply(YoungNymphs.replications / sqrt(opt$replications), 1, sd); temperature_data_frame = append_vector(temperature_data_frame, young_nymphs.std_error, "YOUNGNYMPHSE"); } else if (life_stage_nymph=="Old") { # Mean value for old nymphs. old_nymphs = apply(OldNymphs.replications, 1, mean); temperature_data_frame = append_vector(temperature_data_frame, old_nymphs, "OLDNYMPH"); # Standard error for old nymphs. old_nymphs.std_error = apply(OldNymphs.replications / sqrt(opt$replications), 1, sd); temperature_data_frame = append_vector(temperature_data_frame, old_nymphs.std_error, "OLDNYMPHSE"); } else if (life_stage_nymph=="Total") { # Mean value for all nymphs. total_nymphs = apply((YoungNymphs.replications+OldNymphs.replications), 1, mean); temperature_data_frame = append_vector(temperature_data_frame, total_nymphs, "TOTALNYMPH"); # Standard error for all nymphs. total_nymphs.std_error = apply((YoungNymphs.replications+OldNymphs.replications) / sqrt(opt$replications), 1, sd); temperature_data_frame = append_vector(temperature_data_frame, total_nymphs.std_error, "TOTALNYMPHSE"); } } } if (process_adults) { # Calculate adult populations for selected life stage. for (life_stage_adult in life_stages_adult) { if (life_stage_adult == "Pre-vittelogenic") { # Mean value for previttelogenic adults. previttelogenic_adults = apply(Previttelogenic.replications, 1, mean); temperature_data_frame = append_vector(temperature_data_frame, previttelogenic_adults, "PRE.VITADULT"); # Standard error for previttelogenic adults. previttelogenic_adults.std_error = apply(Previttelogenic.replications, 1, sd) / sqrt(opt$replications); temperature_data_frame = append_vector(temperature_data_frame, previttelogenic_adults.std_error, "PRE.VITADULTSE"); } else if (life_stage_adult == "Vittelogenic") { # Mean value for vittelogenic adults. vittelogenic_adults = apply(Vittelogenic.replications, 1, mean); temperature_data_frame = append_vector(temperature_data_frame, vittelogenic_adults, "VITADULT"); # Standard error for vittelogenic adults. vittelogenic_adults.std_error = apply(Vittelogenic.replications, 1, sd) / sqrt(opt$replications); temperature_data_frame = append_vector(temperature_data_frame, vittelogenic_adults.std_error, "VITADULTSE"); } else if (life_stage_adult == "Diapausing") { # Mean value for vittelogenic adults. diapausing_adults = apply(Diapausing.replications, 1, mean); temperature_data_frame = append_vector(temperature_data_frame, diapausing_adults, "DIAPAUSINGADULT"); # Standard error for vittelogenic adults. diapausing_adults.std_error = apply(Diapausing.replications, 1, sd) / sqrt(opt$replications); temperature_data_frame = append_vector(temperature_data_frame, diapausing_adults.std_error, "DIAPAUSINGADULTSE"); } else if (life_stage_adult=="Total") { # Mean value for all adults. total_adults = apply((Previttelogenic.replications+Vittelogenic.replications+Diapausing.replications), 1, mean); temperature_data_frame = append_vector(temperature_data_frame, total_adults, "TOTALADULT"); # Standard error for all adults. total_adults.std_error = apply((Previttelogenic.replications+Vittelogenic.replications+Diapausing.replications), 1, sd) / sqrt(opt$replications); temperature_data_frame = append_vector(temperature_data_frame, total_adults.std_error, "TOTALADULTSE"); } } } if (plot_generations_separately) { m_se = get_mean_and_std_error(P.replications, F1.replications, F2.replications); P = m_se[[1]]; P.std_error = m_se[[2]]; F1 = m_se[[3]]; F1.std_error = m_se[[4]]; F2 = m_se[[5]]; F2.std_error = m_se[[6]]; if (process_eggs) { m_se = get_mean_and_std_error(P_eggs.replications, F1_eggs.replications, F2_eggs.replications); P_eggs = m_se[[1]]; P_eggs.std_error = m_se[[2]]; temperature_data_frame_P = append_vector(temperature_data_frame_P, P_eggs, "EGG.P"); temperature_data_frame_P = append_vector(temperature_data_frame_P, P_eggs.std_error, "EGG.P.SE"); F1_eggs = m_se[[3]]; F1_eggs.std_error = m_se[[4]]; temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_eggs, "EGG.F1"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_eggs.std_error, "EGG.F1.SE"); F2_eggs = m_se[[5]]; F2_eggs.std_error = m_se[[6]]; temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_eggs, "EGG.F2"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_eggs.std_error, "EGG.F2.SE"); } if (process_young_nymphs) { m_se = get_mean_and_std_error(P_young_nymphs.replications, F1_young_nymphs.replications, F2_young_nymphs.replications); P_young_nymphs = m_se[[1]]; P_young_nymphs.std_error = m_se[[2]]; temperature_data_frame_P = append_vector(temperature_data_frame_P, P_young_nymphs, "YOUNGNYMPH.P"); temperature_data_frame_P = append_vector(temperature_data_frame_P, P_young_nymphs.std_error, "YOUNGNYMPH.P.SE"); F1_young_nymphs = m_se[[3]]; F1_young_nymphs.std_error = m_se[[4]]; temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_young_nymphs, "YOUNGNYMPH.F1"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_young_nymphs.std_error, "YOUNGNYMPH.F1.SE"); F2_young_nymphs = m_se[[5]]; F2_young_nymphs.std_error = m_se[[6]]; temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_young_nymphs, "YOUNGNYMPH.F2"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_young_nymphs.std_error, "YOUNGNYMPH.F2.SE"); } if (process_old_nymphs) { m_se = get_mean_and_std_error(P_old_nymphs.replications, F1_old_nymphs.replications, F2_old_nymphs.replications); P_old_nymphs = m_se[[1]]; P_old_nymphs.std_error = m_se[[2]]; temperature_data_frame_P = append_vector(temperature_data_frame_P, P_old_nymphs, "OLDNYMPH.P"); temperature_data_frame_P = append_vector(temperature_data_frame_P, P_old_nymphs.std_error, "OLDNYMPH.P.SE"); F1_old_nymphs = m_se[[3]]; F1_old_nymphs.std_error = m_se[[4]]; temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_old_nymphs, "OLDNYMPH.F1"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_old_nymphs.std_error, "OLDNYMPH.F1.SE"); F2_old_nymphs = m_se[[5]]; F2_old_nymphs.std_error = m_se[[6]]; temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_old_nymphs, "OLDNYMPH.F2"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_old_nymphs.std_error, "OLDNYMPH.F2.SE"); } if (process_total_nymphs) { m_se = get_mean_and_std_error(P_total_nymphs.replications, F1_total_nymphs.replications, F2_total_nymphs.replications); P_total_nymphs = m_se[[1]]; P_total_nymphs.std_error = m_se[[2]]; temperature_data_frame_P = append_vector(temperature_data_frame_P, P_total_nymphs, "TOTALNYMPH.P"); temperature_data_frame_P = append_vector(temperature_data_frame_P, P_total_nymphs.std_error, "TOTALNYMPH.P.SE"); F1_total_nymphs = m_se[[3]]; F1_total_nymphs.std_error = m_se[[4]]; temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_total_nymphs, "TOTALNYMPH.F1"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_total_nymphs.std_error, "TOTALNYMPH.F1.SE"); F2_total_nymphs = m_se[[5]]; F2_total_nymphs.std_error = m_se[[6]]; temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_total_nymphs, "TOTALNYMPH.F2"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_total_nymphs.std_error, "TOTALNYMPH.F2.SE"); } if (process_previttelogenic_adults) { m_se = get_mean_and_std_error(P_previttelogenic_adults.replications, F1_previttelogenic_adults.replications, F2_previttelogenic_adults.replications); P_previttelogenic_adults = m_se[[1]]; P_previttelogenic_adults.std_error = m_se[[2]]; temperature_data_frame_P = append_vector(temperature_data_frame_P, P_previttelogenic_adults, "PRE.VITADULT.P"); temperature_data_frame_P = append_vector(temperature_data_frame_P, P_previttelogenic_adults.std_error, "PRE.VITADULT.P.SE"); F1_previttelogenic_adults = m_se[[3]]; F1_previttelogenic_adults.std_error = m_se[[4]]; temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_previttelogenic_adults, "PRE.VITADULT.F1"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_previttelogenic_adults.std_error, "PRE.VITADULT.F1.SE"); F2_previttelogenic_adults = m_se[[5]]; F2_previttelogenic_adults.std_error = m_se[[6]]; temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_previttelogenic_adults, "PRE.VITADULT.F2"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_previttelogenic_adults.std_error, "PRE.VITADULT.F2.SE"); } if (process_vittelogenic_adults) { m_se = get_mean_and_std_error(P_vittelogenic_adults.replications, F1_vittelogenic_adults.replications, F2_vittelogenic_adults.replications); P_vittelogenic_adults = m_se[[1]]; P_vittelogenic_adults.std_error = m_se[[2]]; temperature_data_frame_P = append_vector(temperature_data_frame_P, P_vittelogenic_adults, "VITADULT.P"); temperature_data_frame_P = append_vector(temperature_data_frame_P, P_vittelogenic_adults.std_error, "VITADULT.P.SE"); F1_vittelogenic_adults = m_se[[3]]; F1_vittelogenic_adults.std_error = m_se[[4]]; temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_vittelogenic_adults, "VITADULT.F1"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_vittelogenic_adults.std_error, "VITADULT.F1.SE"); F2_vittelogenic_adults = m_se[[5]]; F2_vittelogenic_adults.std_error = m_se[[6]]; temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_vittelogenic_adults, "VITADULT.F2"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_vittelogenic_adults.std_error, "VITADULT.F2.SE"); } if (process_diapausing_adults) { m_se = get_mean_and_std_error(P_diapausing_adults.replications, F1_diapausing_adults.replications, F2_diapausing_adults.replications); P_diapausing_adults = m_se[[1]]; P_diapausing_adults.std_error = m_se[[2]]; temperature_data_frame_P = append_vector(temperature_data_frame_P, P_diapausing_adults, "DIAPAUSINGADULT.P"); temperature_data_frame_P = append_vector(temperature_data_frame_P, P_diapausing_adults.std_error, "DIAPAUSINGADULT.P.SE"); F1_diapausing_adults = m_se[[3]]; F1_diapausing_adults.std_error = m_se[[4]]; temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_diapausing_adults, "DIAPAUSINGADULT.F1"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_diapausing_adults.std_error, "DIAPAUSINGADULT.F1.SE"); F2_diapausing_adults = m_se[[5]]; F2_diapausing_adults.std_error = m_se[[6]]; temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_diapausing_adults, "DIAPAUSINGADULT.F2"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_diapausing_adults.std_error, "DIAPAUSINGADULT.F2.SE"); } if (process_total_adults) { m_se = get_mean_and_std_error(P_total_adults.replications, F1_total_adults.replications, F2_total_adults.replications); P_total_adults = m_se[[1]]; P_total_adults.std_error = m_se[[2]]; temperature_data_frame_P = append_vector(temperature_data_frame_P, P_total_adults, "TOTALADULT.P"); temperature_data_frame_P = append_vector(temperature_data_frame_P, P_total_adults.std_error, "TOTALADULT.P.SE"); F1_total_adults = m_se[[3]]; F1_total_adults.std_error = m_se[[4]]; temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_total_adults, "TOTALADULT.F1"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1_total_adults.std_error, "TOTALADULT.F1.SE"); F2_total_adults = m_se[[5]]; F2_total_adults.std_error = m_se[[6]]; temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_total_adults, "TOTALADULT.F2"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2_total_adults.std_error, "TOTALADULT.F2.SE"); } if (process_total) { temperature_data_frame_P = append_vector(temperature_data_frame_P, P, "ALL.TOTAL.P"); temperature_data_frame_P = append_vector(temperature_data_frame_P, P.std_error, "ALL.TOTAL.P.SE"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1, "ALL.TOTAL.F1"); temperature_data_frame_F1 = append_vector(temperature_data_frame_F1, F1.std_error, "ALL.TOTAL.F1.SE"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2, "ALL.TOTAL.F2"); temperature_data_frame_F2 = append_vector(temperature_data_frame_F2, F2.std_error, "ALL.TOTAL.F2.SE"); } } # Save the analyzed data for combined generations. file_path = paste("output_data_dir", "04_combined_generations.csv", sep="/"); write.csv(temperature_data_frame, file=file_path, row.names=F); if (plot_generations_separately) { # Save the analyzed data for generation P. file_path = paste("output_data_dir", "01_generation_P.csv", sep="/"); write.csv(temperature_data_frame_P, file=file_path, row.names=F); # Save the analyzed data for generation F1. file_path = paste("output_data_dir", "02_generation_F1.csv", sep="/"); write.csv(temperature_data_frame_F1, file=file_path, row.names=F); # Save the analyzed data for generation F2. file_path = paste("output_data_dir", "03_generation_F2.csv", sep="/"); write.csv(temperature_data_frame_F2, file=file_path, row.names=F); } total_days_vector = c(1:dim(temperature_data_frame)[1]); if (plot_generations_separately) { for (life_stage in life_stages) { if (life_stage == "Egg") { # Start PDF device driver. dev.new(width=20, height=30); file_path = get_file_path(life_stage, "egg_pop_by_generation.pdf") pdf(file=file_path, width=20, height=30, bg="white"); par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); # Egg population size by generation. maxval = max(P_eggs+F1_eggs+F2_eggs) + 100; render_chart(ticks, date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, location, latitude, start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=P_eggs, group_std_error=P_eggs.std_error, group2=F1_eggs, group2_std_error=F1_eggs.std_error, group3=F2_eggs, group3_std_error=F2_eggs.std_error); # Turn off device driver to flush output. dev.off(); } else if (life_stage == "Nymph") { for (life_stage_nymph in life_stages_nymph) { # Start PDF device driver. dev.new(width=20, height=30); file_path = get_file_path(life_stage, "nymph_pop_by_generation.pdf", sub_life_stage=life_stage_nymph) pdf(file=file_path, width=20, height=30, bg="white"); par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); if (life_stage_nymph=="Young") { # Young nymph population size by generation. maxval = max(P_young_nymphs+F1_young_nymphs+F2_young_nymphs) + 100; group = P_young_nymphs; group_std_error = P_young_nymphs.std_error; group2 = F1_young_nymphs; group2_std_error = F1_young_nymphs.std_error; group3 = F2_young_nymphs; group3_std_error = F2_young_nymphs.std_error; } else if (life_stage_nymph=="Old") { # Total nymph population size by generation. maxval = max(P_old_nymphs+F1_old_nymphs+F2_old_nymphs) + 100; group = P_old_nymphs; group_std_error = P_old_nymphs.std_error; group2 = F1_old_nymphs; group2_std_error = F1_old_nymphs.std_error; group3 = F2_old_nymphs; group3_std_error = F2_old_nymphs.std_error; } else if (life_stage_nymph=="Total") { # Total nymph population size by generation. maxval = max(P_total_nymphs+F1_total_nymphs+F2_total_nymphs) + 100; group = P_total_nymphs; group_std_error = P_total_nymphs.std_error; group2 = F1_total_nymphs; group2_std_error = F1_total_nymphs.std_error; group3 = F2_total_nymphs; group3_std_error = F2_total_nymphs.std_error; } render_chart(ticks, date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, location, latitude, start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=group, group_std_error=group_std_error, group2=group2, group2_std_error=group2_std_error, group3=group3, group3_std_error=group3_std_error, sub_life_stage=life_stage_nymph); # Turn off device driver to flush output. dev.off(); } } else if (life_stage == "Adult") { for (life_stage_adult in life_stages_adult) { # Start PDF device driver. dev.new(width=20, height=30); file_path = get_file_path(life_stage, "adult_pop_by_generation.pdf", sub_life_stage=life_stage_adult) pdf(file=file_path, width=20, height=30, bg="white"); par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); if (life_stage_adult=="Pre-vittelogenic") { # Pre-vittelogenic adult population size by generation. maxval = max(P_previttelogenic_adults+F1_previttelogenic_adults+F2_previttelogenic_adults) + 100; group = P_previttelogenic_adults; group_std_error = P_previttelogenic_adults.std_error; group2 = F1_previttelogenic_adults; group2_std_error = F1_previttelogenic_adults.std_error; group3 = F2_previttelogenic_adults; group3_std_error = F2_previttelogenic_adults.std_error; } else if (life_stage_adult=="Vittelogenic") { # Vittelogenic adult population size by generation. maxval = max(P_vittelogenic_adults+F1_vittelogenic_adults+F2_vittelogenic_adults) + 100; group = P_vittelogenic_adults; group_std_error = P_vittelogenic_adults.std_error; group2 = F1_vittelogenic_adults; group2_std_error = F1_vittelogenic_adults.std_error; group3 = F2_vittelogenic_adults; group3_std_error = F2_vittelogenic_adults.std_error; } else if (life_stage_adult=="Diapausing") { # Diapausing adult population size by generation. maxval = max(P_diapausing_adults+F1_diapausing_adults+F2_diapausing_adults) + 100; group = P_diapausing_adults; group_std_error = P_diapausing_adults.std_error; group2 = F1_diapausing_adults; group2_std_error = F1_diapausing_adults.std_error; group3 = F2_diapausing_adults; group3_std_error = F2_diapausing_adults.std_error; } else if (life_stage_adult=="Total") { # Total adult population size by generation. maxval = max(P_total_adults+F1_total_adults+F2_total_adults) + 100; group = P_total_adults; group_std_error = P_total_adults.std_error; group2 = F1_total_adults; group2_std_error = F1_total_adults.std_error; group3 = F2_total_adults; group3_std_error = F2_total_adults.std_error; } render_chart(ticks, date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, location, latitude, start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=group, group_std_error=group_std_error, group2=group2, group2_std_error=group2_std_error, group3=group3, group3_std_error=group3_std_error, sub_life_stage=life_stage_adult); # Turn off device driver to flush output. dev.off(); } } else if (life_stage == "Total") { # Start PDF device driver. # Name collection elements so that they # are displayed in logical order. dev.new(width=20, height=30); file_path = get_file_path(life_stage, "total_pop_by_generation.pdf") pdf(file=file_path, width=20, height=30, bg="white"); par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); # Total population size by generation. maxval = max(P+F1+F2) + 100; render_chart(ticks, date_labels, "pop_size_by_generation", opt$plot_std_error, opt$insect, location, latitude, start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=P, group_std_error=P.std_error, group2=F1, group2_std_error=F1.std_error, group3=F2, group3_std_error=F2.std_error); # Turn off device driver to flush output. dev.off(); } } } else { for (life_stage in life_stages) { if (life_stage == "Egg") { # Start PDF device driver. dev.new(width=20, height=30); file_path = get_file_path(life_stage, "egg_pop.pdf") pdf(file=file_path, width=20, height=30, bg="white"); par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); # Egg population size. maxval = max(eggs+eggs.std_error) + 100; render_chart(ticks, date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, location, latitude, start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=eggs, group_std_error=eggs.std_error); # Turn off device driver to flush output. dev.off(); } else if (life_stage == "Nymph") { for (life_stage_nymph in life_stages_nymph) { # Start PDF device driver. dev.new(width=20, height=30); file_path = get_file_path(life_stage, "nymph_pop.pdf", sub_life_stage=life_stage_nymph) pdf(file=file_path, width=20, height=30, bg="white"); par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); if (life_stage_nymph=="Total") { # Total nymph population size. group = total_nymphs; group_std_error = total_nymphs.std_error; } else if (life_stage_nymph=="Young") { # Young nymph population size. group = young_nymphs; group_std_error = young_nymphs.std_error; } else if (life_stage_nymph=="Old") { # Old nymph population size. group = old_nymphs; group_std_error = old_nymphs.std_error; } maxval = max(group+group_std_error) + 100; render_chart(ticks, date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, location, latitude, start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=group, group_std_error=group_std_error, sub_life_stage=life_stage_nymph); # Turn off device driver to flush output. dev.off(); } } else if (life_stage == "Adult") { for (life_stage_adult in life_stages_adult) { # Start PDF device driver. dev.new(width=20, height=30); file_path = get_file_path(life_stage, "adult_pop.pdf", sub_life_stage=life_stage_adult) pdf(file=file_path, width=20, height=30, bg="white"); par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); if (life_stage_adult=="Total") { # Total adult population size. group = total_adults; group_std_error = total_adults.std_error } else if (life_stage_adult=="Pre-vittelogenic") { # Pre-vittelogenic adult population size. group = previttelogenic_adults; group_std_error = previttelogenic_adults.std_error } else if (life_stage_adult=="Vittelogenic") { # Vittelogenic adult population size. group = vittelogenic_adults; group_std_error = vittelogenic_adults.std_error } else if (life_stage_adult=="Diapausing") { # Diapausing adult population size. group = diapausing_adults; group_std_error = diapausing_adults.std_error } maxval = max(group+group_std_error) + 100; render_chart(ticks, date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, location, latitude, start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=group, group_std_error=group_std_error, sub_life_stage=life_stage_adult); # Turn off device driver to flush output. dev.off(); } } else if (life_stage == "Total") { # Start PDF device driver. dev.new(width=20, height=30); file_path = get_file_path(life_stage, "total_pop.pdf") pdf(file=file_path, width=20, height=30, bg="white"); par(mar=c(5, 6, 4, 4), mfrow=c(3, 1)); # Total population size. maxval = max(eggs+eggs.std_error, total_nymphs+total_nymphs.std_error, total_adults+total_adults.std_error) + 100; render_chart(ticks, date_labels, "pop_size_by_life_stage", opt$plot_std_error, opt$insect, location, latitude, start_date, end_date, total_days_vector, maxval, opt$replications, life_stage, group=total_adults, group_std_error=total_adults.std_error, group2=total_nymphs, group2_std_error=total_nymphs.std_error, group3=eggs, group3_std_error=eggs.std_error); # Turn off device driver to flush output. dev.off(); } } }